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ABSTRACT

This paper presents a system identification scheme with a regularization technique for con-
tinuous structures. The Tikhonov regularization is employed to overcome the instabilities
caused by ill-posedness of nonlinear inverse problems. The singular values decomposed
from the sensitivity matrix of responses are utilized to investigate the characteristics of the
nonlinear inverse problem and the role of the regularization function. To determine regu-
larization factors, three different schemes - the L-curve method (LCM), the generalized cross
validation (GCV), and the variable regularization factor scheme (VRFS) - are employed.
The regularization effect of the LCM, the GCV and the VRFS is presented through two nu-
merical examples.

1. INTRODUCTION

System identification (SI) methods have been widely used for the last few decades in the area
of structural engineering to refine an analytical model for a structure and to detect damage in
a structural system. However, most of the applications have been limited to discrete struc-
tures such as trusses or frames, and very limited works on continuous structures are available.

It is known that SI schemes based on the minimization of least squared errors between
measured and analytically computed responses have suffered from inherent instabilities
caused by the ill-posedness of inverse problems [1, 2]. In particular, when measured data
are polluted with noise or when a finite element model used for the SI cannot represent the
actual situation properly, the instabilities become very severe.

This paper shows that the results from the conventional SI using the output error estima-
tor (OEE) may be unstable due to noise in measurement data by means of the singular value
decomposition (SVD). To overcome the instabilities of SI methods, the Tikhonov regulari-
zation scheme [2], in which a positive definite regularization function is added to the OEE, is
employed. Suitable regularization factors have to be determined in order to obtain a physi-
cally meaningful and numerically stable solution from a SI scheme with the regularization.

Well-established schemes such as the L-curve method (LCM) [3] and the generalized
cross validation (GCV) [4] have been proposed for linear inverse problems to obtain well-
balanced regularization factors. For nonlinear inverse problems, however, rigorous schemes
to determine regularization factors are rarely available. Lee ef al. present a simple but very
effective scheme referred to as the variable regularization factor scheme (VRFS) for shape

1-157



identification problems. In this paper, an iterative method to utilize the LCM and GCV in
nonlinear inverse problems is proposed. The performance of the VRFS is also investigated
when a Tikhonov-type regularization function is employed. Numerical simulation studies
using the LCM, the GCV, and the VRFS are presented and discussed.

2. SYSTEM IDENTIFICATION WITH REGULARIZATION
2.1 System Identification Scheme
The unknown system parameters of the finite body are identified by minimizing least

squared errors between calculated and measured displacements at some discrete observation
points located on the exterior boundary of the finite body.

uf(x)—u"."“l subject to R(x)<0 (1)

Mininize I, = %2'

where uf, u], R and nic are calculated displacement vector by the analytical model, meas-

ured displacement vector at observation points for the i-th load case, constraint vector for the
system parameters, and the number of load cases, respectively, and H” represents the

Euclidean norm of a vector. It is assumed that elastic material properties of some part of the
finite body are different from original, known material properties, which are referred as base-
line values. The basclinc valucs rcpresent a priori information on the given finite body.

The error function defined in Eq. (1) is normalized by the Euclidean norm of the meas-
ured displacement vectors of all load cases, and system parameters and constraints are nor-
malized with respect to the corresponding bascline valuec.

Minmize 7, = %Hfj(g) T subject to E(&)<0 Q)

where U and U are vectors obtained by arranging the vectors of the normalized calculated
displacements and the normalized measured displacements for each load case in a row.
£ and E are normalized system parameters and constraints with respect to the baseline values
respectively.

The solution of the minimization problem (2) is obtained by solving the following
quadratic subproblem iteratively.

MinArgnize AE'S; U, + %AE_,THHAY; subject to E(E, , +AE) <0 3)

where subscript £ denotes the iteration count, and S, , and H, , are the sensitivity matrix
of U, , and the Hessian matrix of the error function with respect to the normalized system
parameters at the previous iteration, respectively. The displacement residual U, , is de-

finedas U, = U, , - U at the previous iteration, and A is the increment of normalized

system parameters at the current iteration step. The Hessian matrix in Eq. (3) is approxi-
mated by the Gauss-Newton Hessian to avoid computational complexity.
To simplify the expressions, the subscript representing the iteration count in the incre-
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mental formulation presented hereafter is omitted. To limit our attention to the behaviors of
the minimization problem (3), it is assumed that all constraints are inactive. The first-order
necessary optimality condition for Eq. (3) is given by the following linear equation.

S"U” +S"SAE=0 (4)

. By the singular value decomposition (SVD), the mxn sensitivity matrix S with m2n can
;,be written as a product of an mxn orthogonal matrix Z, an nxn diagonal matrix €, and the

transpose of an nxn orthogonal matrix V. In the definition, m is the total number of meas-
ured degrees of treedom for all the applied loads and » is the number of system parameters.

S=7ZQV’ (3)

where Q =diag(o;) in which o is a singular value of S which has the descending order

of o,=w,,2...20,20,=o_, 20. This paper assumes that the sensitivity matrix always

possesses sufficient ranks. Substituting Eq.(5) into Eq. (4), the solution of Eq. (4) can be
represented as the following equation.

AE = —Vdiag(i)zTU’ (6)
.

J

The measured displacement can be theoretically decomposed into the noise-free dis-
placement U’ and the error vector e as follows.

U=U" +e (7

This decomposition cannot be achieved explicitly for actual displacements, and is purely
conceptual. However, the decomposition of the displacement vector is very useful to ex-
plain and study the effect of errors on solutions of nonlinear inverse problems.

There are two sources of errors in applying a SI method, i.e., measurement error and
modeling error. The former represents noise caused by sensitivity of sensors or misreading
of test equipment during actual measurements. The latter occurs due to the discrepancy
between a real structure and its mathematical model employed in the SI.  Substitution of Eq.
(7) into Eq. (6) leads to the following expression.

AE = —Vdiag(—l—)ZT (U-U")+ Vdiag(—l—)ZTe (8)
. .

J J

The first and the second term on the right-hand-side of Eq. (8) represent the solution incre-
ment caused by the displacement residual between the computed solution and noise-free dis-
placement and the disturbed component of the solution increment caused by noise, respec-
tively. The components of Z' e associated with small singular values amplify the deviation
of the solution caused by the errors. Since the deviation occurred in each iteration accumu-
lates through optimization iterations, the converged solution for noise-polluted measurements
may be quite different from the noise-free solution. Furthermore, the solution is likely to
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lose physical significance due to the accumulation of solution components amplified by
physically meaningless noise. A small change in noise may yield a totally different solution

because small singular values amplify the change in measurements, which is a source of the
discontinuity characteristics of the SI problems.

2.2 Regularization Scheme

The regularization can be interpreted as a process of mixing the a priori information into
the a posteriori solution. The a priori information is taken into account in the problem
statement of inverse problems by adding a regularization function that contains the a priori

information. The following regularization function proposed by Tikhonov is used in the
current study.

T | ©)

where A and x, denote the regularization factor and the baseline properties of a structure,
respectively. By adding the normalized regularization function with respect to the baseline

properties to the minimization problem of Eq. (2), the regularized system identification
problem is written in the normalized form.

e e . 1 e |2 1 2 2 . —
MlnlngZC i3 =§]|U(E_,) - U" +E)\. “& - 1" subject to E(§) <0 (10)

where 1 denotes a column vector which has unit values in all the components. The regulari-
zation factor determines the effect of regularization on the system identification, i.e., the in-

fluence of the a priori information on the solution of Eq. (10). The quadratic subproblem of
Eq. (10) is defined as

Mingize {A&TSTUr +%A§TSTSA§} ; XZ[AE_,T(&,— 1)+%A§TA§}

an
subject to E(§+AE)<0
The incremental solution of Eq. (11) is obtained by use of the SVD.
o’ . A2
AEF —leag( Y —)Z U leag( )V (&- (12)
A/ / !

where AE” is the regularized solution for the increments of the system parameters at the

current iteration.  As the regularization factor A increases, the first term of Eq.(12) vanishes,
and the a priori information governs the regularized solution (12). On the other hand, as the
regularization factor decreases, the second term of Eq.(12) vanishes, and the a posteriori so-
lution governs the regularized solution (12).

By decomposing the measured displacements into the noise-free components and error
components using Eq. (7), the following expression is obtained.
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© 1. .; N or
AE" =< - Vdiag( -5 —)Z U —Vdiag( ——)V (-1
o, +A o, O+
, (13)
o 1
- Vdiag(——~—~—)Z"e
u)j+k o,

The terms in the curly bracket and the last term in Eq. (13) represent the solution increment
of Eq. (11) for noise-free measurements and solution increments contributed by errors in
measurements, respectively. Components of Z'e associated with small singular values,
which are responsible for the discontinuity and the deviation from the noise-free solution as
explained before, are mostly suppressed in the solution as the regularization factor becomes
large.

3. DETERMINATION OF AN OPTIMAL REGULARIZATION FACTOR

Two different schemes are possible in nonlinear inverse problems to determine the regulari-
zation factor: a fixed scheme and a variable scheme. In the fixed scheme, the regularization
factor is fixed throughout iterations, and the optimal regularization factor is determined based
on the converged solution of a nonlinear inverse problem. In the variable scheme, the opti-
mal parameter is defined at each iteration, and varies throughout iterations.

In this paper, the variable schemes are employed to determine regularization factors at
each iteration of a quadratic subproblem by applying one of the three following schemes; the
L-curve method (LCM) proposed by Hansen [3], the generalized cross validation proposed
by Wahba and coworkers [4], and the variable regularization factor scheme (VRFS) proposed
by Lee and the coworkers [1].

3.1 The L-Curve Method

The L-curve is a log-log plot of the regularization function versus the error function for
various regularization factors. Hansen showed for linear inverse problems that the plot
formed a ‘L’ shaped curve, and that the optimal regularization factor corresponds to the sharp
edge of the curve where the curvature of the curve becomes maximum [3)]. For nonlinear
inverse problems, the L-curve is defined at each iteration for the linearized error function.
The curvature of the L-curve is given as

PN —p™’
@ 9
where p and 1 denote the linearized error function and the regularization function in a log
scale, respectively, and the superscript ' denotes the differentiation of a variable with respect
toA. Since p and 1) are continuous functions of A and expressed explicitly for A, the deriva-
tives in Eq. (14) are obtained analytically. The optimal regularization factor that yields the
maximum curvaturc of the L-curve is calculated precisely by a one-dimensional line search.

3.2 Generalized Cross Validation

The GCV proposcd by Wahba and coworkers [4] has been employed in numerous linear
inverse problems successfully. The GCV is based on statistical consideration that a good val-
ue of the regularization parameter should predict missing data accurately. In the GCV, an
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optimal regularization factor A is determined by the minimization of the following equation.

, 2
oL [t-aoyu

nl1 2
[, Trace(I - A(k)}
n

(15)

where, A(A)=S(S"™+nAI)"'S™U’, and 7 is the number of the system parameters.

3.3 Variable Regularization Factor Scheme

Recently, the variable regularization factor scheme (VRFS) is proposed by Lee et al. for
nonlinear inverse problems to identify shapes of inclusions in finite bodies [1]. The VRFS
is based on an argument that the regularization function should be smaller than the error
function to prevent the regularization function from dominating the optimization process.

In the VRFS, the regularization factor is defined by an inequality condition between the
error function and the regularization function as follows.

[0©) -1 222[g -1 (16)

When the regularization function becomes larger than the error function by the solution
of the current iteration, the regularization factor is rcduccd by multiplying a precscribed re-
duction factor B ranging from 0 to 1. Lee et al. [1] demonstrated that identification results
are relatively insensitive to moderate values of the reduction factor around 0.1. The VRFS
with = 0.1 has been successfully applied to shape identification problems.[1] One of the
advantages of the VRFS is that the VRFS method can be easily applied to any type of regu-
larization functions.

4. NUMERICAL SIMULATION STUDY

Behaviors of the proposed scheme are investigated for the identification of an inclusion in a
square plate when the measurement data are polluted with random noise. The Young’s
modulus of each element group is taken as the system parameter. To focus on discussion on
the rcgularization scheme, it is assumed that element groups are predefined.

Fig. 1 illustrates geometry, boundary condition, and the applied traction. The inclusion
is denoted by the shadowed region in the figure. The Young’s modulus of the square plate
is 210 GPa, which is the representative of steel. Two types of inclusions are identified; a
soft inclusion (aluminum, E = 70 GPa) and a hard inclusion (tungsten, £ = 380 GPa). Ran-
dom noise in measurement data is assumed as 5% proportional noise for both the aluminum
and the tungsten case. The predefined element groups are shown in Fig. 2, and each ele-
ment group contains 4 elements. Observation points are depicted as solid circles in Fig. 2.
The baseline values of all the system parameters are assumed as Young’s modulus of steel.
The initial valucs for the optimization of the system paramcters arc taken as the same as the
baseline value. The reduction factor of the VRFS, B=0.1, is used for the simulation studies in
the current paper.

Since optimal regularization factors calculated from the GCV are too small for both hard
and soft inclusion cases, the estimated system parameters are identical with those from the SI
without regularization. Therefore, results from the GCV will not be presented in this paper.
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Fig. 1. Geometry and boundary condi- Fig. 2. Predefined group configuration
tions of a square plate of a square plate
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L 1n 1 1 al 1 in Fig
3, Fig. 4, respectively. For both cases, SI scheme without regularization leads to severely
oscillatory results. In this case, it is very difficult to identify the existence of the inclusion
because the reduction in the Young’s modulus of element group 17 may bc causcd by an ac-
tual inclusion as well as by the oscillatory results. For soft cases, the LCM and the VRFS
somewhat reduce the amplitude of oscillation for the element groups in the plate matrix.
However, significant oscillations in the estimated results are observed. Sincc the Young’s
modulus of element group 17 is reduced prominently for a soft inclusion case compared with
the oscillation magnitude of the other element groups, the existence of a soft inclusion may
be identified. For a hard inclusion case, the LCM cannot yield the converged solutions,
while the VRFS has difficulty to identify the hard inclusion successfully because it yields
much lower Young’s modulus compared with the actual value.

Regularization factors obtained by the different schemes at each itcration step are com-

pared in Fig. 5 and Fig. 6. By relating the obtained regularization factors of Fig. 5 and Fig. 6
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Fig. 5. Optimal regularization factors
- aluminum, 5% noise-

Fig. 6. Optimal rcgularization factors
- tungsten, 5% noise-

to the corresponding identified results in F ig. 3 and Fig. 4, it is easily observed that the identi-
fied results are greatly influenced by the magnitude of the regularization factor. For a hard
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inclusion case, the regularization factor by the LCM oscillates periodically at each iteration,
which leads to divergence of the optimization iteration.

5. CONCLUSIONS

The effect of a regularization function is investigated through theoretical formulations com-
bined with singular values decomposed from the sensitivity matrix of the response. It is
shown that the error component associated with a small singular value can be suppressed in
the incremental solution when the regularization function is added. The LCM, the GCV,
and the VRFS that are applicable to nonlinear inverse problems, are reviewed and their theo-
retical backgrounds are discussed. From numerical simulation study for the identification of
an inclusion in the square plate, it is revealed that more rigorous scheme to determine regu-
larization factors is needed since the aforementioned methods yield too smeared results in
some cases, and can not effectively control oscillations of estimated results in other cases.
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