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ABSTRACT: This paper introduces an dgorithm for the parameter estimation scheme based
on systlem identification (SI) in time domain. Acceleration data measured by dynamic tests are
used as the measured responses. The least squared errors of the difference between
caculated acceleration and measured acceleration are adopted as an error function. Damping
parameters as well as gtiffness properties of a structure are considered as system parameters.
The Rayleigh damping is adopted for the SI. A regularization technique is applied to dleviae
theill-posed characteritics of Sl problems. A new regularizetion function suitable to the time
domain is proposed. The regularization factor is determined by the geometric mean scheme
(GMS). Firgt order of sengtivity of acceleration is obtained by direct differentiation of the
equation of motion. The vdidity of the proposed method is demongrated by numerica

examples.
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INTRODUCTION

The modd analysis gpproaches have been widely adopted to identify structura properties using
measured acceleration. The moda analysis gpproaches suffer from drawbacks caused by
insengitiveness of modd data to changes of structura properties. In addition, the damping properties
of structures cannot be estimated by the moda analysis. To overcome the drawbacks of the modal
analysis approaches, this paper presents a system identification scheme to determine structural
properties such as stiffness and damping parameters of structures using measured acceleration data.
The proposed dgorithm is based on the minimization of an error function with respect to the
gructural parameters. The error function is defined as thetimeintegrdl of the least squared errors
between the measured accel eration and the ca culated acceleration by a mathematica modd.

A system identification problem is atype of inverse problems, which are usudly ill-posed. Anill-
posed problem is characterized by the non-uniqueness and ingtability of solutions. The regularization
technique has been employed to overcome the ill-posedness of inverse hest transfer problems and
inverse eadticity problems. In the regularization technique, a predefined regularization function is
added to the error function to impose constraints on the admissible solutions of agiven inverse
problem. This paper introduces a new regularization function that is defined as the L, norm of the
time derivative of sysem parameters. To determine the regularization factor, which has crucid effect
on the solution of the SI scheme, the geometric mean scheme is adopted.

The validity and effectiveness of the proposed method are demonstrated with severa numerica
examples. The numerically generated data with noises are utilized as measured acceleretion.
Detalled discussions on the numerica behaviors of the proposed method are presented.

PARAMETER ESTIMATION SCHEME IN TIME DOMAIN

The discretized equation of motion of a given structure is obtained by the finite e ement method
asfollows.

Ma +C(x)v + K(x)u = P(?) Q)

where x and P are a system parameter vector and aload vector, and M, C and K represent the
mass, damping and diffness matrix of the Structure, respectively. a, v and u are the acceleration,
velocity and displacement of the Structure, respectively. Newmark b-method is used to integrate the
equation of motion (1).

It isassumed for damage detection that accelerations of a given structure are measured from a
dynamic tet at some discrete observation points, and that the stiffness properties and damping
properties during the test do not change. The unknown system parameters of a structure including
diffness and damping properties are identified through minimizing least squared errors between
computed and measured accel eration.
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where a , a and R are the calculated acceleration and the measured acceleration at observation
points and congtraint vector, respectively, with || ¥ representing the Euclidean norm of avector.

Linear condraints are used to set physicaly significant upper and lower bounds of the system
parameters. The minimization problem defined in Eq. (2) is a congtrained nonlinear optimization
problem because the acceleration vector a is anonlinear implicit function of the system parameters
X.

The parameter estimation defined by aminimization problem as Eq. (2) isatype of ill-posed inverse
problems. 1lI-posed problems suffer from three ingtabilities: nonexistence of solution, non-uniqueness
of solution and discontinuity of solutions when measured data are polluted by noises. Because of the
ingtabilities, the optimization problem given in Eq. (2) may yidd meaningless solutions or divergein
optimization process. Attempts have been made to overcome ingtabilities of inverse problems
merely by imposing upper and lower limits on the system parameters. However, it has been
demonstrated by several researchers that the congtraints on the system parameters are not sufficient
to guarantee physicaly meaningful and numericaly stable solutions of inverse problems [1].

The regularization technique proposed by Tikhonov is considered as a more rigorous way to
overcome the ill-posedness of inverse problems. In the regularization technique, the origina object
function is modified by adding a positive definite regularization function [2,3]. Various regularizetion
functions are used for different types of inverse problems. The following regularization function is
adopted for the parameter estimation in time domain.
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where| istheregularization factor. By adding the regularization function to the error function, the
regularized parameter estimation scheme is defined as follows.
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The regularization function defined in Eq. (3) represents the variance of system parameters in time.
Since the system parameters are assumed to be invariant in time, the regularization function vanishes
in case the Sl yidds exact solution. However, the ill-posedness of a inverse problem and noises in
measurements generaly lead to severe oscillations of the solution of Eq. (2) in time. The
regularizetion function added in Eq. (4) becomes smdler as the rates of changes of the system
parameters decrease, and thus prevents the sysem parameters from arbitrary changes in time during
optimization.



The regularization effect in parameter estimation processis determined by the regularization factor.
The regularization effect vanishes for asmall regularization factor while the regularization function has
adominant effect over the error function during the optimization process for alarge regularization
factor. In ether case, the optimization problem is unable to estimate correct system parameters due
to ingtabilities or excessive regularization effects on the system parameters. Therefore, sdection of a
proper regularization factor is very crucia to obtain meaningful solutions of system identification
problems. The geometric mean scheme proposed (GMS) by Park is adopted in this study to
determine the optimal regularization factor [4]. In the GMS, the optimd regularization factor is
defined as the geometric mean between the maximum singular value and the minimum singular vaue
of the Gauss-Newton hessan matrix of the discretized error function givenin Eq. (2).

l opt = VSmax ><Smin (5)

where | S s Spi, denote regularization factor, maximum singular value and minimum singular

opt 1 max !
vaue which is greater than zero, repectively. The singular values of any given matrix can be
obtained by using the sngular value decomposition [5]. The sengtivity of the computed acceleration
required in the optimization process is obtained by the direct differentiation of the equation of motion
D).

DAMPING MODEL

It isadifficult task to mode damping properties of red structures. In fact, existing damping models
cannot describe actud damping characteristics exactly, and are gpproximations of red damping
phenomenato some extents. Since the damping has an important effect on dynamic responses of a
sructure, the damping properties should be considered properly in the parameter estimation scheme.
In most of previous studies on the parameter estimation, the damping properties of a structure are
assumed as known properties, and only stiffness properties are identified. However, the damping
properties are not known apriori and should be included in system parametersin the SI.

Among various classcd damping models, the moda damping and the Rayleigh damping are the most
frequently adopted model. In the moda damping, a damping matrix is congtructed by using
generdized moda masses and mode shapes [6].
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where N, M,, z,, f , and w,, denote the number of the degrees of freedom (DOF), n-th generdized
moda mass, moda damping ratio for n-th mode, the -th mode shape and »-th mode frequency,
repectively. In Rayleigh damping, a damping matrix is represented by a linear combination of the
mass matrix and siffness metrix.



C=a,M+aK (7)
The damping coefficients of the Rayleigh damping can be determined when any two moda damping
ratios and the corresponding modal frequencies are specified.

In case the moda damping is employed in the parameter estimation, the number of the system
parameters associated with the damping is equa to that of the total number of DOFs, which
increases the total number of unknownsin the optimization problem givenin Eq. (4). Since neither
moda damping nor Rayleigh damping can describe actud damping exactly, and the moda damping
requires more unknowns than the Rayleigh damping in the parameter estimation, this sudy employs
the Rayleigh damping for the SI. The Rayleigh damping yidlds a lineer fit to the exact damping of a
structure.

EXAMPLE

Thevalidity of the proposad time domain S is examined through a Smulation sudy with atwo-span
continuous truss shown in Figure 1. Typica materid properties of stedl (Young' s modulus = 210
GPa, Specific mass = 7.85K g/nt) are used for al members. The cross sectiona areaof each
member (top member, bottom menmber, verticad member and diagona member) isgiven in Figure 1.
The natural frequencies of the truss range from 6.6 Hz to 114.7 Hz.
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Fig. 1 2-span continuous truss



Damage of the trussis smulated with 40%, 50% and 34 % reductions in the sectiond aress of
member 7, 16 and 31, respectively. The damaged members are depicted by dotted linesin Figure 1.
It is assumed that accelerations are measured from afree vibration induced by a sudden release of
applied loads of 10KN shown in Figure 1. The measured accelerations are generated by the finite
element model used in Sl. The measurement errors are Smulated by adding 8% random noise
generated from a uniform probability function to acceleration caculated by the finite eement mode.
The observation points are located at 12 bottom nodes of the truss. Both x- and y- component of
acceleration are measured in the time period from 0 sec to 0.2 sec with the interval of 1/200 sec.
The moda damping is employed for the cal culation of mesasured accd eration while Rayleigh damping
is adopted for the SI. The moda damping ratios for the calculation of measured accelertion are
shown in Figure 4.

In case either the regularization scheme or damping estimation is not included in the S, the
optimization procedure does not converge or converges to meaningless solutions. Therefore, only
the results with the regul arization scheme and damping estimation are presented here. Figure 2
illudrates the variation of the identified stiffness properties of the damaged members with time.
Although rather large measurement noise of 8% is presented, the proposed method is able to identify
accurately the severity of damage of each damaged member. Theidentified stiffness properties of dl
members at the find time step are shown in Figure 3. Since giffness properties of the damaged
members reduce prominently compared with the oscillation magnitude of the other members, the
damaged members are clearly assured. Figure 4 shows the exact moda damping ratios used for the
calculation of measured accel erations together with identified moda damping ratios by the Rayleigh
damping. Theinitiad moda damping ratio caculated by the assumed Rayleigh damping coeffident is
adso drawn in the same figure. The identified Rayleigh damping well gpproximates the real modal
damping.
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CONCLUSION

A time domain Sl using measured acceleration data is proposed. The least squared errors of the
difference between caculated accd eration and measured acceleration is adopted as an error function.
The Tikhonov regularization technique is employed to dleviate the ill- posedness of the inverse
problemin S. The GMSis utilized to determine the optimal regularization factor. The Rayleigh
damping is used to estimate the damping characterigtics of astructure. The system parameters
include the damping coefficients of the Rayleigh damping as well as the stiffness parameters of a
structure.

In mogt previous study, the damping characteristics of a structure are assumed as known values. Itis
confirmed that the damping characteristics should be adjusted properly according to measured
accderation data. Although it is not possible to form the exact damping mairix of a structure, it is
very important to gpproximate the damping matrix to the read damping matrix as close as possible.
The proposed method can estimate the stiffness properties accurately even though the damping
characteristics are approximated by Rayleigh damping. The find solution converges to the exact
solution even for noise-polluted data. It is believed the proposed method provides a very powerful
engineering toal to identify dynamic characterigtics of structures and to detect damage in structures
based on measured acceleration.
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