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ABSTRACT: This paper introduces an algorithm for the parameter estimation scheme based
on system identification (SI) in time domain.  Acceleration data measured by dynamic tests are
used as the measured responses.  The least squared errors of the difference between
calculated acceleration and measured acceleration are adopted as an error function.  Damping
parameters as well as stiffness properties of a structure are considered as system parameters.
The Rayleigh damping is adopted for the SI.  A regularization technique is applied to alleviate
the ill-posed characteristics of SI problems.  A new regularization function suitable to the time
domain is proposed.  The regularization factor is determined by the geometric mean scheme
(GMS).  First order of sensitivity of acceleration is obtained by direct differentiation of the
equation of motion.  The validity of the proposed method is demonstrated by numerical
examples.
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INTRODUCTION

The modal analysis approaches have been widely adopted to identify structural properties using
measured acceleration.  The modal analysis approaches suffer from drawbacks caused by
insensitiveness of modal data to changes of structural properties.  In addition, the damping properties
of structures cannot be estimated by the modal analysis.  To overcome the drawbacks of the modal
analysis approaches, this paper presents a system identification scheme to determine structural
properties such as stiffness and damping parameters of structures using measured acceleration data.
The proposed algorithm is based on the minimization of an error function with respect to the
structural parameters.  The error function is defined as the time integral of the least squared errors
between the measured acceleration and the calculated acceleration by a mathematical model.

A system identification problem is a type of inverse problems, which are usually ill-posed.  An ill-
posed problem is characterized by the non-uniqueness and instability of solutions.  The regularization
technique has been employed to overcome the ill-posedness of inverse heat transfer problems and
inverse elasticity problems.  In the regularization technique, a predefined regularization function is
added to the error function to impose constraints on the admissible solutions of a given inverse
problem.  This paper introduces a new regularization function that is defined as the L2 norm of the
time derivative of system parameters.  To determine the regularization factor, which has crucial effect
on the solution of the SI scheme, the geometric mean scheme is adopted.

The validity and effectiveness of the proposed method are demonstrated with several numerical
examples.  The numerically generated data with noises are utilized as measured acceleration.
Detailed discussions on the numerical behaviors of the proposed method are presented.

PARAMETER ESTIMATION SCHEME IN TIME DOMAIN

The discretized equation of motion of a given structure is obtained by the finite element method
as follows.

)()()( tPuxKvxCMa =++ (1)

where x and P are a system parameter vector and a load vector, and M, C and K represent the
mass, damping and stiffness matrix of the structure, respectively.  a, v and u are the acceleration,
velocity and displacement of the structure, respectively.  Newmark β-method is used to integrate the
equation of motion (1).

It is assumed for damage detection that accelerations of a given structure are measured from a
dynamic test at some discrete observation points, and that the stiffness properties and damping
properties during the test do not change.  The unknown system parameters of a structure including
stiffness and damping properties are identified through minimizing least squared errors between
computed and measured acceleration.
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where a~ , a  and R are the calculated acceleration and the measured acceleration at observation
points and constraint vector, respectively, with   ⋅  representing the Euclidean norm of a vector.

Linear constraints are used to set physically significant upper and lower bounds of the system
parameters.  The minimization problem defined in Eq. (2) is a constrained nonlinear optimization
problem because the acceleration vector a~  is a nonlinear implicit function of the system parameters
x.

The parameter estimation defined by a minimization problem as Eq. (2) is a type of ill-posed inverse
problems.  Ill-posed problems suffer from three instabilities: nonexistence of solution, non-uniqueness
of solution and discontinuity of solutions when measured data are polluted by noises.  Because of the
instabilities, the optimization problem given in Eq. (2) may yield meaningless solutions or diverge in
optimization process.  Attempts have been made to overcome instabilities of inverse problems
merely by imposing upper and lower limits on the system parameters.  However, it has been
demonstrated by several researchers that the constraints on the system parameters are not sufficient
to guarantee physically meaningful and numerically stable solutions of inverse problems [1].

The regularization technique proposed by Tikhonov is considered as a more rigorous way to
overcome the ill-posedness of inverse problems.  In the regularization technique, the original object
function is modified by adding a positive definite regularization function [2,3].  Various regularization
functions are used for different types of inverse problems.  The following regularization function is
adopted for the parameter estimation in time domain.
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where λ is the regularization factor.  By adding the regularization function to the error function, the
regularized parameter estimation scheme is defined as follows.
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The regularization function defined in Eq. (3) represents the variance of system parameters in time.
Since the system parameters are assumed to be invariant in time, the regularization function vanishes
in case the SI yields exact solution.  However, the ill-posedness of a inverse problem and noises in
measurements generally lead to severe oscillations of the solution of Eq. (2) in time.  The
regularization function added in Eq. (4) becomes smaller as the rates of changes of the system
parameters decrease, and thus prevents the system parameters from arbitrary changes in time during
optimization.



The regularization effect in parameter estimation process is determined by the regularization factor.
The regularization effect vanishes for a small regularization factor while the regularization function has
a dominant effect over the error function during the optimization process for a large regularization
factor.  In either case, the optimization problem is unable to estimate correct system parameters due
to instabilities or excessive regularization effects on the system parameters.  Therefore, selection of a
proper regularization factor is very crucial to obtain meaningful solutions of system identification
problems.  The geometric mean scheme proposed (GMS) by Park is adopted in this study to
determine the optimal regularization factor [4].  In the GMS, the optimal regularization factor is
defined as the geometric mean between the maximum singular value and the minimum singular value
of the Gauss-Newton hessian matrix of the discretized error function given in Eq. (2).

minmax SSopt ⋅=λ (5)

where optλ , maxS , minS  denote regularization factor, maximum singular value and minimum singular

value which is greater than zero, respectively.  The singular values of any given matrix can be
obtained by using the singular value decomposition [5].  The sensitivity of the computed acceleration
required in the optimization process is obtained by the direct differentiation of the equation of motion
(1).

DAMPING MODEL

It is a difficult task to model damping properties of real structures.  In fact, existing damping models
cannot describe actual damping characteristics exactly, and are approximations of real damping
phenomena to some extents.  Since the damping has an important effect on dynamic responses of a
structure, the damping properties should be considered properly in the parameter estimation scheme.
In most of previous studies on the parameter estimation, the damping properties of a structure are
assumed as known properties, and only stiffness properties are identified.  However, the damping
properties are not known a priori and should be included in system parameters in the SI.

Among various classical damping models, the modal damping and the Rayleigh damping are the most
frequently adopted model.  In the modal damping, a damping matrix is constructed by using
generalized modal masses and mode shapes [6].
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where N, Mn, ζn, φ n and ωn denote the number of the degrees of freedom (DOF), n-th generalized
modal mass, modal damping ratio for n-th mode, the n-th mode shape and n-th mode frequency,
respectively.  In Rayleigh damping, a damping matrix is represented by a linear combination of the
mass matrix and stiffness matrix.
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The damping coefficients of the Rayleigh damping can be determined when any two modal damping
ratios and the corresponding modal frequencies are specified.

In case the modal damping is employed in the parameter estimation, the number of the system
parameters associated with the damping is equal to that of the total number of DOFs, which
increases the total number of unknowns in the optimization problem given in Eq. (4).  Since neither
modal damping nor Rayleigh damping can describe actual damping exactly, and the modal damping
requires more unknowns than the Rayleigh damping in the parameter estimation, this study employs
the Rayleigh damping for the SI.  The Rayleigh damping yields a linear fit to the exact damping of a
structure.

EXAMPLE

The validity of the proposed time domain SI is examined through a simulation study with a two-span
continuous truss shown in Figure 1.  Typical material properties of steel (Young’s modulus = 210
GPa, Specific mass = 7.85Kg/m3) are used for all members.  The cross sectional area of each
member (top member, bottom member, vertical member and diagonal member) is given in Figure 1.
The natural frequencies of the truss range from 6.6 Hz to 114.7 Hz.

Fig. 1 2-span continuous truss
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Damage of the truss is simulated with 40%, 50% and 34 % reductions in the sectional areas of
member 7, 16 and 31, respectively.  The damaged members are depicted by dotted lines in Figure 1.
It is assumed that accelerations are measured from a free vibration induced by a sudden release of
applied loads of 10KN shown in Figure 1.  The measured accelerations are generated by the finite
element model used in SI.  The measurement errors are simulated by adding 8% random noise
generated from a uniform probability function to acceleration calculated by the finite element model.
The observation points are located at 12 bottom nodes of the truss.  Both x- and y- component of
acceleration are measured in the time period from 0 sec to 0.2 sec with the interval of 1/200 sec.
The modal damping is employed for the calculation of measured acceleration while Rayleigh damping
is adopted for the SI.  The modal damping ratios for the calculation of measured acceleration are
shown in Figure 4.

In case either the regularization scheme or damping estimation is not included in the SI, the
optimization procedure does not converge or converges to meaningless solutions.  Therefore, only
the results with the regularization scheme and damping estimation are presented here.  Figure 2
illustrates the variation of the identified stiffness properties of the damaged members with time.
Although rather large measurement noise of 8% is presented, the proposed method is able to identify
accurately the severity of damage of each damaged member.  The identified stiffness properties of all
members at the final time step are shown in Figure 3.  Since stiffness properties of the damaged
members reduce prominently compared with the oscillation magnitude of the other members, the
damaged members are clearly assured.  Figure 4 shows the exact modal damping ratios used for the
calculation of measured accelerations together with identified modal damping ratios by the Rayleigh
damping.  The initial modal damping ratio calculated by the assumed Rayleigh damping coefficient is
also drawn in the same figure.  The identified Rayleigh damping well approximates the real modal
damping.

Fig. 2 Variation of estimated stiffness properties of damaged members with time



Fig. 3 Estimated stiffness properties at the final time step

Fig. 4 Estimated damping ratio
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CONCLUSION

A time domain SI using measured acceleration data is proposed.  The least squared errors of the
difference between calculated acceleration and measured acceleration is adopted as an error function.
The Tikhonov regularization technique is employed to alleviate the ill-posedness of the inverse
problem in SI.  The GMS is utilized to determine the optimal regularization factor.  The Rayleigh
damping is used to estimate the damping characteristics of a structure.  The system parameters
include the damping coefficients of the Rayleigh damping as well as the stiffness parameters of a
structure.

In most previous study, the damping characteristics of a structure are assumed as known values.  It is
confirmed that the damping characteristics should be adjusted properly according to measured
acceleration data.  Although it is not possible to form the exact damping matrix of a structure, it is
very important to approximate the damping matrix to the real damping matrix as close as possible.
The proposed method can estimate the stiffness properties accurately even though the damping
characteristics are approximated by Rayleigh damping.  The final solution converges to the exact
solution even for noise-polluted data.  It is believed the proposed method provides a very powerful
engineering tool to identify dynamic characteristics of structures and to detect damage in structures
based on measured acceleration.
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