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ABSTRACT: The parameter estimation scheme for System Identification (SI) has been 
developed by many researchers for more than three decades.  It is achieved by 
comparing the measured responses of a real structure and the calculated responses of a 
mathematical model.  Generally the dynamic test is applied to a large structure for 
diagnosis of the system.  Modal parameter estimation is formulated as a minimization 
problem the discrepancy between the real measurement data and the predictions of a 
mathematical model of the structure.  It is usually difficult to measure at all of the 
degrees of freedom and to collect data from all of the modes.  Furthermore, the 
measurement data always include a considerable measuring errors.  Inverse problem for 
parameter estimation is severe ill-posedness problem because of the sparseness of 
measurement data and the measuring error.  Tikhonov norm for the change of the 
stiffness is used as the regularization function.  Geometric Mean Scheme (GMS) is 
employed to determine a regularization factor. 
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INTRODUCTION 

Structural damage often causes a loss of stiffness in one or more elements of a structure that 
affects its modal responses such as modal frequencies and mode shapes.  Many methods have 
been developed to detect the location and severity of damage based on these changes.  In this 
study, system identification (SI) based on the minimization of least square errors between 
measured mode shape vector and calculated mode shape vector is employed. 

To solve nonlinear optimization problem, the recursive quadratic programming (RQP) and the 
Fletcher active set strategy are employed [1].  In RQP, sensitivity of calculated mode shape 
vector with respect to the system parameters is required. Current proposed algorithms to 
calculate sensitivity of mode shape vector, such as the modal method, the modified modal 
method, and the Nelson’s method [6] are valid only when the mode shape vector is 
normalized with respect to mass matrix.  Unless fully measured mode shape vector is 
available due to economic or physical restriction, normalization of measured mode shape 
vector cannot be obtained.  So an algorithm to calculate sensitivity of the mode shape vector 
which is normalized with respect to an arbitrary matrix is developed. 

It is known that SI is typically ill-posed inverse problem which suffers from severe numerical 
instabilities, such as non-existence, non-uniqueness, and discontinuity of solution.  A 
regularization technique [2,3] is adopted to overcome such numerical instabilities.  As a 
regularization function, Tikhonov norm which is difference between a baseline stiffness 
property and an assumed stiffness property is used.  A regularization factor plays the most 
important role for estimation of both numerically and physically meaningful solution [2,3].  
GMS proposed by Park [8] is used to determine an appropriate regularization factor. 

In real situation, measurement data suffer from the measurement noises.  When the 
measurement data are polluted with noise, it is very difficult to distinguish whether the 
damage is caused either by real damage or by noise in measurement data.  Since measurement 
noise is inevitable in the real situation, the estimated system parameters from SI may be easily 
meaningless in the damage detection and assessment. To overcome this drawbacks, data 
perturbation scheme proposed by Hjelmstad and Shin [5] and statistical approach proposed by 
Yeo [9] are incorporated with SI for damage detection and assessment. 

PARAMETER ESTIMATION 

In this study damage is defined as the reduction of a system parameters from its baseline 
value which is assumed as a priori information.  System parameters are estimated by the 
output error estimator using modal data such as Eq. (1). 
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where x, iφ , iφ̂ , nmd, R(x) are system parameter vector, calculated mode shape vector of i-th 
mode, measured mode shape vector of i-th mode, the total number of the measured modes and 
constraints of system parameters, respectively. 

REGULARIZATION 

The parameter estimation with the output error estimator is typically ill-posed inverse 
problem.  Ill-posed problems suffer from three instabilities: nonexistence of solution, non-
uniqueness of solution and/or discontinuity of solution when measured data is polluted by 
noise [2].  So far, many authors have attempted to overcome an instability problem by 
imposing upper and lower constraints on the system parameters.  However, Neuman [6] and 
Hjelmstad [4] have shown that constraints are not sufficient to guarantee a meaningful 
solution. 

In this study it is utilized regularization technique in order to overcome ill-posedness in 
optimization processing.  The following regularization function is used for the current 
identification of a structure.   
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where β  and x0 denote the regularization factor and the system parameters representing 
baseline stiffness properties of a structure, respectively.  

T
  ⋅  is the Tikhonov norm of a 

matrix. 

The regularization effect in parameter estimation process is determined by the regularization 
factor.  Some rigorous methods to find an optimal regularization factor have been proposed 
for linear inverse problems.  The geometric mean scheme (GMS) proposed by Park is adopted 
to determine the optimal regularization factor [8].  In the GMS, the optimal regularization 
factor is defined as the geometric mean between the maximum singular value and the 
minimum singular value of the Gauss-Newton hessian matrix of the error function given in Eq. 
(1). 

minmax SS ⋅=β  (3)

where β , maxS , minS  denote regularization factor, maximum singular value and minimum 
singular value which is not zero, respectively. 

By adding the regularization function to the error function, the regularized output error 
estimator is defined as follows : 



x
Minimize 0)(  subject to   

2
 +ˆ)(

2
1 2

0
1

2
≤−−=Π ∑

=

xRxxx
T

nmd

i
ii

β
φφ  (4)

SENSITYVITY 

To solve the constrained nonlinear optimization problem expressed by Eq. (4), the recursive 
quadratic programming (RQP) and the Fletcher active set strategy are employed [1].  In RQP 
we need the sensitivity of the Eq. (1) with respect to system parameters.  The sensitivity is 
shown in Eq. (5) 
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where the subscript x),(  denotes the partial derivative with respect to a system parameter. 

In case where the mode shape vector is normalized by mass matrix of the structural system, 
several methods to calculate the sensitivity are already proposed, such as the modal method, 
the modified modal method, and the Nelson’s method [6] and so on.  When the mode shape 
vector is normalized by mass matrix, the sensitivity matrix of the vector is as follows: 
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where λ , M, and x,K  denote eigen value, the mass matrix, and the sensitivity matrix of the 
stiffness matrix of a structural system with respect to a system parameter, respectively.  
However, in the system identification where the partially measured mode shape is used to 
determine design variables we cannot use the sensitivity of the normalized mode shape by the 
mass matrix. 

If we assume that φ  is normalized by arbitrary matrix C, then we can express its sensitivity 

x,φ  as follows: 
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If we substitute mc for i
T
i φφ C , the Eq. (5) can be represented as the following equation. 
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MEASURED DATA PERTURBATION SCHEME 

If a sufficient number of measured data sets are available for the same measurement condition, 
the effect of measurement noise on identification results may be reduced by averaging the 
measured data.  In real situations, however, only limited sets of noisy measurement data are 
available.  Therefore, it is usually difficult to determine whether the changes of the system 
parameters are caused by measurement noise or by actual damage. 

The data perturbation method, which has been proposed by Hjelmstad and Shin [5] for a 
numerical simulation study, is employed.  In the data perturbation method, a series of the 
system identification is performed with generated data sets around a given set of measured 
displacements by perturbing the given data with a small magnitude.  As a result, the identified 
system parameters are interpreted statistically with their distributions. 

To obtain samples of a system parameter for its statistical distribution, the measured data 
perturbation iteration is performed with the following perturbed measurement data.  
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where k
iju )(  and k

jη  are a perturbed displacement for load case i and a random number, 
respectively, for the j-th component of the measured displacement at the k-th iteration. 

DAMAGE SEVERITY 

After mean and standard deviation are evaluated using the measured data perturbation scheme, 
it is the next progression to determine which member is damaged.  Because baseline value of 
the system parameter is a prior knowledge, it is possible to define damage by comparing the 
estimated mean value of a member with its baseline value.  When any estimated system 
parameter value is less than its baseline value, it is regarded that the system parameter 
encounters damage.  According to the statistical interpretation proposed by Yeo [9], we can 
calculate the damage severity as follows : 
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where 0x  and x  are the baseline value and the estimated mean value of a design system 
parameter.  

 
EXAMPLE 

The numerical example structure is 2-story frame structure as shown in Fig. 1.  Since the axial 
rigidity can be neglected in a frame structure, the only flexural rigidity EI of each member is 
selected as the system parameter.  The damage is assumed that the rotational rigidity of 



support 11 is lost perfectly by any severe load.  It is assumed that the damage is reflected as 
the reduction of the flexural stiffness of the member connected to the support.  

Fig. 1 and Fig. 2 show the geometry condition and boundary conditions and the finite element 
model of the structure, respectively.  It is assumed that the structure is made of steel.  
Therefore Young’s modulus of each element is assumed uniformly 206Gpa.  A cross-section 
of each element is 0.02 m × 0.02 m rectangle.  Moment of inertia from the neutral axis is 
1.33×10-8 m4.  5% proportional random noise for each mode shape is added to the noise-free 
mode shape vector.  The baseline values of all the system parameters are 2746.67 N⋅m2 , and 
which is used as the initial values for design parameters.  A posteriori information used as the 
measurement is modal displacement including horizontal and vertical displacement, and 
rotational displacement at nodes 3,5,13 and 15.  The total number of degrees of freedom of 
the structure is 48, and the number of measured degrees of freedom is 12.  First three modes 
are used in the ROEE in Eq. (4).  

Fig. 3 represents the estimation result as the normalized values of system parameters.  The 
figure shows that system parameters of several members is reduced than their baseline values. 
However only the three members (5, 9, 10) are assessed as damaged members using the 
statistical approach of Yeo [9].  Their damage severities are shown in Fig. 4.  The two 
members are just ones connected with the hinged support and the other member is the side 
bay  member.  Maybe the reason that the member 5 is assessed to a damaged member is the 
sparseness of measurement data in parameter estimation. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Geometry and boundary condition Fig. 2 FEM modeling 
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Fig. 3 Estimated result                                             Fig. 4 Damage severity 

CONCLUSION 

The damage detection and assessment algorithm using mode shape vector is proposed.  The 
Tikhonov regularization technique is employed to alleviate the ill-posedness of the inverse 
problem in SI.  The GMS is utilized to determine the optimal regularization factor.  The 
method to calculate the sensitivity matrix of the mode shape vector, which is normalized by 
an arbitrary matrix, is presented.  Data perturbation scheme is used to assess the structural 
damage statistically.  Statistical approach is used to determine damaged members and assess 
the damage severity. 

In spite of successful detection of the deterioration of the frame is assessed as the reduction of 
flexural rigidity of the member connected to the support but the proposed algorithm still has 
many problems.  Because the system identification scheme using modal data contains 
drawbacks caused by insensitiveness of lower mode shape to changes of structural properties, 
proposed algorithm needs to higher mode shape to distinguish the mode shape by changes of 
structural properties but it can’t be obtained in real situation.  So it is needed to update 
proposed algorithm to overcome these problems. 
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