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This paper presents a system identification (SI) scheme in time domain using
measured acceleration data.  The error function is defined as the time integral of
the least square errors between the measured acceleration and the calculated accel-
eration by a mathematical model.  Damping parameters as well as stiffness prop-
erties of a structure are considered as system parameters.  The structural damping
is modeled by the Rayleigh damping.  A new regularization function defined by
the L1-norm of the first derivative of system parameters with respect to time is
proposed to alleviate the ill-posed characteristics of inverse problems and to ac-
commodate discontinuities of system parameters in time.  The time window con-
cept is proposed to trace variation of system parameters in time.
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1. Introduction

Immediate safety assessment structures after an
earthquake is extremely important in evaluating service-
ability and functionality of social infrastructures.
Nowadays, not only ground acceleration but also accel-
eration of important social infrastructures is monitored
during earthquakes.  It would be very helpful for quick
restoration of social activities if structural damage
caused by an earthquake is accessed with the measured
acceleration during an earthquake in real time or near
real time.

Various damage assessment schemes based on sys-
tem identification (SI) have been extensively investigat-
ed for social infrastructures during the last few dec-
ades1),2),3),4).  The modal analysis approaches,2),3) have
been widely adopted to detect structural damage using
measured acceleration of structures. The modal analysis
approaches, however, suffer from drawbacks caused by
insensitiveness of modal data to changes of structural
properties.

To overcome the drawbacks of the modal analysis
approaches, this paper presents a system identification
scheme in time domain using measured acceleration

data.  The error function is defined as the time integral
of the least square errors between the measured accel-
eration and the calculated acceleration by a mathemati-
cal model.  The structural damping is modeled by the
Rayleigh damping.  A regularization technique1),4),5) is
employed to overcome the ill-posedness of inverse
problems.  A regularization function defined by the L1-
norm of first time derivatives of stiffness parameters is
proposed to accommodate abrupt changes of system
parameters in time.  The L1-truncated singular value
decomposition (TSVD) 5) is adopted to optimize the error
function with the L1-regularization function.  To trace
the variation of stiffness parameters in time, a time win-
dowing technique is introduced.  In the time window-
ing technique, SI is performed sequentially within a
finite time interval, which is called a time window.
The time window advances forward at each time step to
identify changes of system parameters in time.  The
validity and accuracy of the proposed method are de-
monstrated through two numerical simulation study.

2. Parameter Estimation Scheme In Time Domain

The discretized equation of motion of a structure



subjected to ground acceleration ag caused by an earth-
quake is expressed as follows.
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where M, C and K represent the mass, damping and
stiffness matrix of the structure, respectively, and a, v
and u are the relative acceleration, velocity and dis-
placement of the structure to ground motion, respec-
tively. The damping parameters and the stiffness
parameters of the structure are denoted by xc and xs in
(1), respectively.  Newmark β-method is used to inte-
grate the equation of motion.  Since the operational
vibrations of a structure are negligible compared to tho-
se induced by an earthquake, the initial condition of (1)
is set to zero.

In case ground acceleration as well as accelerations
of a given structure at some discrete observation points
are measured, the unknown system parameters of a
structure including stiffness and damping properties are
identified through minimizing least squared errors be-
tween computed and measured acceleration.  In case
the system parameters are invariant in time, the
parameter estimation procedure is represented by the
following optimization problem4).
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where a~ , a , x and R are the calculated acceleration
and the measured acceleration at observation points
relative to ground acceleration, system parameter vector

and constraint vector, respectively, with 
2

  ⋅  repre-

senting the 2-norm of a vector.  Linear constraints are
used to set physically significant upper and lower
bounds of the system parameters.  The minimization
problem defined in (2) is a constrained nonlinear opti-
mization problem because the acceleration vector a~  is

a nonlinear implicit function of the system parameters.
In case the system parameters vary with time, the

time window technique is proposed.  Fig.1 illustrates
the time window concept.  In this technique the mini-
mization problem for the estimation of the system
parameters is defined in a finite time interval, which is
referred to as a time window.
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Here, t and dw is the initial time and the window size of a
given time window.  It is assumed that system
parameters are constant in a time window, and that sys-
tem parameters estimated by (3) represent the system
parameters at time t.  As the time window advances
forward sequentially in time, the variations of system
parameters in time are identified.

3. L1-Regularization Scheme

The parameter estimation defined by the minimiza-
tion problems is a type of ill-posed inverse problems.
Ill-posed problems suffer from three instabilities: non-
existence of solution, non-uniqueness of solution and
discontinuity of solution5) when measured data are pol-
luted by noise.  Because of the instabilities, the optimi-
zation problem given in (2) and (3) may yield meanin-
gless solutions or diverge in optimization process.
Attempts have been made to overcome instabilities of
inverse problems merely by imposing upper and lower
limits on the system parameters.  However, it has been
demonstrated by several researchers that the constraints
on the system parameters are not sufficient to guarantee
physically meaningful and numerically stable solutions
of inverse problems5).

The regularization technique proposed by Tikhonov
is widely employed to overcome the ill-posedness of
inverse problems.  In the Tikhonov regularization
technique, a positive definite regularization function is
added to the original optimization problem.
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where ΠR and λ are a regularization function and a
regularization factor, respectively. Various regulariza-
tion functions are used for different types of inverse
problems.  Kang et al4) proposed the following regu-
larization function defined by the L2-norm for the SI in
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time domain.
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The regularization function defined in (5) is able to
represent continuously varying system parameters in
time.  Since, however, the system parameters may vary
abruptly (Fig.2) with time during earthquakes due to
damage, a regularization function that can accommodate
piecewise continuous functions in time is required to
access damage that occurs during an earthquake.  To
represent discontinuity of system parameters in time,
this paper proposes an L1-regularization function of the
first derivative of system parameters with respect to
time.
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where 
1

  ⋅  representing the 1-norm of a vector.

Since the error function is nonlinear with respect to
stiffness parameters, a Newton-type optimization algo-
rithm, which requires gradient information of an objec-
tive function, is usually employed in SI.  As the L1-
regularization function is non-differentiable, the objec-
tive function in the Tikhonov regularization scheme
defined in (4) contains a non-differentiable function, and
thus a Newton-type optimization algorithm cannot be
applied.  To avoid this difficulty, this paper employs
the L1-TSVD to impose the L1-regularization function in
the optimization of the error function5),6).  In the pro-
posed method, the incremental solution of the error
function is obtained by solving the quadratic sub-
problems without the constraints.  The noise-polluted
solution components are truncated from the incremental
solution.  Finally, the regularization function is im-

posed to restore the truncated solution components and
the constraints.  The above procedure is defined as
follows.
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The error function and the regularization function are
easily discretized in time domain using simple numeri-
cal methods.  The truncated solution of the minimiza-
tion problem of the error function is obtained by the
truncated singular value decomposition, while the sim-
plex method is employed to solve the minimization
problem of the L1-regularization function with con-
straints.  Detailed solution procedures are presented in
Ref. 5 and 6.

4. Damping Model

It is a difficult task to model damping properties of
real structures.  In fact, existing damping models can-
not describe actual damping characteristics exactly, and
are approximations of real damping phenomena to some
extents7).  Since the damping has an important effect on
dynamic responses of a structure, the damping properti-
es should be considered properly in the parameter esti-
mation scheme.  In most of previous studies on the
parameter estimation, the damping properties of a
structure are assumed as known properties, and only
stiffness properties are identified.  However, the
damping properties are not known a priori and should be
included in system parameters in the SI.

Among various classical damping models, the modal
damping and the Rayleigh damping are the most fre-
quently adopted model.  In the modal damping, a
damping matrix is constructed by using generalized
modal masses and mode shapes.  In Rayleigh damping,
a damping matrix is defined as a linear combination of
the mass matrix and stiffness matrix as follows.

KMC 10 aa += (8)

The damping coefficients of the Rayleigh damping can
be determined when any two modal damping ratios and
the corresponding modal frequencies are specified.

In case the modal damping is employed in the
parameter estimation, the number of the system
parameters associated with the damping is equal to that
of the total number of DOFs, which increases the total
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number of unknowns in the optimization problem given
in (8).  Since neither modal damping nor Rayleigh
damping can describe actual damping exactly, and the
modal damping requires more unknowns than the Ray-
leigh damping in the parameter estimation, this study
employs the Rayleigh damping for the SI.  The Ray-
leigh damping yields a linear fit to the exact damping of
a structure.  To approximate actual damping of a
structure more accurately, Caughey damping, which is
the general form of the rayleigh damping7), may be
adopted.
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where ndof is the total number of degrees of freedom of
the given structure.  For J=2, the Caughey damping
becomes identical to the Rayleigh damping.

5. Examples

Two numerical simulation studies are presented to
illustrate validity of the L1-regularization function and
the time window technique.

5.1 two-span continuous truss

The validity of the proposed L1-regularization func-
tion is examined through a simulation study with a two-
span continuous truss shown in Fig. 3. Typical material
properties of steel (Young’s modulus = 210 GPa, Speci-
fic mass = 7.85Kg/m3) are used for all members. The
cross sectional areas of top, bottom, vertical and di-
agonal members are 112.5 cm2, 93.6 cm2, 62.5 cm2 and
75.0 cm2, respectively. The natural frequencies of the
truss range from 6.6 Hz to 114.7 Hz.  Damage of the
truss is simulated with 40%, 50% and 34 % reductions
in the sectional areas of member 7, 16 and 31, respec-
tively. The damaged members are depicted by dotted
lines in Fig. 7. It is assumed that the stiffness and the
damping properties of the truss do not vary during the

measurement.  Accelerations of the truss are measured
from a free vibration induced by a sudden release of
applied loads of 10 KN shown in Fig. 7.  The meas-
urement errors are simulated by adding 8% random
noise generated from a uniform probability function to
accelerations calculated by the finite element model.
The observation points are located at 12 bottom nodes of
the truss. Both x- and y- direction accelerations are
measured in the time period from 0 sec to 0.2 sec with
the interval of 1/200 sec. The modal damping ratios
used in the calculation of measured accelerations are
shown in Fig. 6.

In case either the regularization scheme or damping
estimation is not included in the SI, the optimization
procedure does not converge or converges to meanin-
gless solutions. Therefore, only the results with the
regularization scheme and damping estimation are pre-
sented here.  Fig.4 and Fig.5 show the variation of the
identified stiffness properties of damaged member 7 and
undamaged member 46 by the L1- and L2-regularization
function, respectively. Although rather large measure-
ment noise of 8% is presented, both regularization func-
tions are able to identify the severity of damage of the
damaged member accurately, and yield no significant
differences in identified results.  Estimated stiffness
properties of the other damaged members are similar to
those of damaged member 6, which are not presented in
this paper. For a undamaged member, however, the L1-
regularization function yields much faster convergence
rate in time than the L2-regularization function.  Since
the parameter estimation is performed in finite time
interval in the time window technique, the identification
results of all system parameters should converge within
a given time window.  Therefore, fast convergent char-
acteristic of the L1-regularization function is extremely
important in the time window technique.  Fig. 6 shows
the exact modal damping ratios used for the calculation
of measured accelerations together with identified mo-
dal damping ratios by the Rayleigh damping. The initial
modal damping ratios calculated by the assumed Ray-
leigh damping coefficients are also drawn in the same
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figure. Both regularization functions yield almost identi-
cal results for the damping ratios, and well approximate
the real modal damping. The identified stiffness proper-
ties of all members at the final time step are shown in
Fig. 7. Since stiffness properties of the damaged mem-
bers reduce prominently compared with the oscillation
magnitudes of the other members, the damaged mem-

bers are clearly assured by both regularization functions.
Since the L1- and the L2-regularization function specify
different continuity conditions in time domain only,
identified results at the final time by the two regulariza-
tion schemes are very similar to each other.

5.2 SDOF system

Fundamental investigations on the time window
technique are performed in this example through a
SDOF system.  Since it is difficult to apply a regulari-
zation scheme in a SDOF system, a regularization func-
tion is not applied to the error function.  Fig. 8 shows
the SDOF system used in this example.  The initial
stiffness of spring, the mass and the damping ratio of the
SDOF system are 297.88 N/m, 10.24 Kg and 3 %, re-
spectively.  A free vibration of the system is introduced
by sudden release of an applied load of 100 N.  Dam-
age of the spring occurs at time 5 sec and the stiffness of
the spring reduces by 50%.  The acceleration of the
system is measured for 20 sec at the sampling rate of
40/sec.  Noise in measurement is not considered, and
the stiffness of the spring is the only system parameter
in this example.

Fig.9 shows the estimated stiffness of the spring with
time window size of 0.25 sec and 1.0 sec.  The time
window size of 0.25 sec yields severely oscillatory re-
sults after damage, which are suppressed by the longer
time window size of 1.0 sec.  At the current stage of

Fig.5 Variation of stiffness property of member 46

Fig.6 Estimated damping ratio

Fig.4 Variation of stiffness property of member 7 Fig.7 Estimated stiffness properties at the final time step
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research, it is believed that the oscillations are caused by
inaccurate estimation of the acceleration at the time of
damage that acts as noise in the initial condition.  In
case that a longer time window is used, the effect of
noise in the initial condition is smeared out by larger
amount of measured data included in the window.
Therefore, the regularization scheme proposed in this
paper can suppress the oscillations of identified results
after damage if properly applied.  Fig. 10 shows accel-
erations calculated by the estimated stiffness.  The
accelerations after damage are underestimated.

6. Conclusion

The L1-regularization function and the time window
technique are proposed for SI in time domain using
measured acceleration data is proposed. The system
parameters include the damping parameters as well as
the stiffness parameters of a structure. The Rayleigh
damping is used to estimate the damping characteristics
of a structure. The least square errors of the difference

between calculated acceleration and measured accelera-
tion is adopted as an error function.  The regularization
technique is employed to alleviate the ill-posedness of
the inverse problem in SI.  The L1-TSVD is utilized to
optimize a non-differential object function.

The L1-regularization function exhibits very com-
promising characteristic of fast convergence, which is
very crucial in the time window technique.  Although
the time window technique has not been fully developed
yet, the example presented in this paper shows capabil-
ities of the time window technique for the identification
of damage caused by earthquakes.
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Fig.9 Estimated spring stiffness by time window

Fig.10 Measured and calculated acceleration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

Exact stiffness of spring
Time window size of 0.25 sec
Time window size of 1.0 sec

N
or

m
al

iz
ed

 s
tif

fn
es

s 
of

 s
pr

in
g

Time (sec)

-10

-5

0

5

10

0 5 10 15 20

Measured Acceleration
Calculated Acceleration

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Time (sec)


