
VARIOUS REGULARIZATION FUNCTIONS IN
SYSTEM IDENTIFICATION PROBLEMS FOR SOLIDS

Hae Sung LEE 1

1) Department of Civil Engineering, Seoul National University, Seoul 151-742, KOREA

Corresponding Author: Hae Sung LEE, chslee@plaza.snu.ac.kr

ABSTRACT

This paper presents various regularization functions, which are employed to overcome insta-
bilities of system identification problems. Since a regularization function define the solution
space of a given problem, it should well represent both mathematical and physical character-
istics of the original problem.  The regularization function can be derived from the integrabil-
ity condition of the solution in conjunction with physical consideration. The L1-norm as well
as L2-norm of system parameters is used to define the regularity functions.  Various types of
regularization functions and their characteristics are discussed.

INTRODUCTION

System identification (SI) algorithms have been widely used for the last few decades in the
area of structural engineering to identify mechanical systems and to detect damage in struc-
tures.  However, SI algorithms based on the minimization of the least squared error between
measured and computed responses suffer from inherent instabilities caused by the ill-
posedness of inverse problems [1,2].  The instabilities are characterized by the non-
uniqueness and discontinuity of solutions.  In particular, when measured data are polluted
with noise or when a finite element model used for the SI does not represent actual situations,
the instabilities become very severe.

To overcome the instabilities of inverse problems, the regularization technique has been
utilized [3].  In a regularization technique, a regularization function is introduced as addition-
al constraints to define the solution space of a system identification problem.  Therefore, the
regularization function should be selected so that physical and mathematical characteristics of
the given problem can be properly represented.  This paper reviews various types of regulari-
zation functions that have been successfully applied to structural system identification prob-
lems.  Both the L1-norm [4] and the L2-norm are utilized to define regularity conditions of
solutions of SI problems. Two different regularization techniques – Tikhonov regularization
scheme and truncated singular value decomposition – are considered to impose the regulari-
zation functions.

SYSTEM IDENTIFICATION PROBLEMS

The system properties of a solid are estimated in SI by minimizing the least squared errors
between measured and calculated responses under known input conditions.
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Here, iu~ , iu , X, R and nlc are calculated responses by the mathematical model, measured
responses at observation points for input case i, a system parameter vector, a constraint vector
for the system parameters and the number of load cases, respectively, while 

2
  ⋅  denotes the

2-norm of a vector. The system parameter vector X represents the discretized system proper-
ties.  The responses of a solid are calculated by using the FEM or similar discretization meth-
ods.
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where Pi is the nodal input vector  for input case i.
The SI problems defined by the minimization problem (1) exhibit strong instabilities

characterized by the discontinuity and non-uniqueness of solutions. The instabilities become
severe when the measured responses contain noise and/or the number of measured responses
are smaller than that of the degrees of freedom in the mathematical model.  To avoid the in-
stabilities of SI problems, a proper solution space for a SI problem should be supplied along
with the minimization problem (1).

REGULARIZATION FUNCTIONS

The solution space of the optimization problem (1) is defined by a regularization function.
The L2-norm is widely employed in various engineering problems to represent piecewise
continuous  system parameters.
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where  ΠR, x and x0 denote the regularization function, the system parameter and its a prior
information, respectively, and V represents the structural domain.  The L2-norm based regu-
larization functions effectively stabilize ill-posedness of SI.  However, they may produce
smeared solutions due to smoothing characteristics of 2-norm minimization in case the actual
distribution of the system parameters being estimated is discontinuous in a given domain.  To
overcome the smearing effect of the L2-norm, and represent the discontinuity of system
parameters more accurately, the L1-norm of the system parameter is often utilized.
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The regularity condition of a piecewise continuous function can be given alternatively by the
L1-norm of the gradient of the system parameter parameters.

∞<−∇=−∇ ∫
V

VL dVxxxx )()( 0)(0 1 (5)

where ∇ is gradient operator.  In case the domain of a structure is discretized by finite ele-
ments and the system parameters are constant within elements, the L1-regularity condition (5)
is discretized as follows.
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where nB, and lk are the number of inter-element boundaries and the length of the k-th inter-
element boundary, respectively, while 1

kX  and 2
kX are system parameters of two elements

sharing the k-th inter-element boundary.  Since the system property is assumed to be constant
in an element, the domain integral in (6) vanishes.  The second term of (6) represents jumps
of the system parameters across inter-element boundaries.

Lee et al [3] applied a SI algorithm to identify a boundary curve of an inclusion in a finite
body.  Since the boundary curve of an inclusion is continuous in the curve parameter space,
the proper solution space of a boundary curve can be defined as
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Here, Cx, Cy, Γ, and s are x-component, y-component of the boundary curve, the boundary
curve and the curve parameter, respectively, and nelem is the number of elements in the dis-
cretized boundary curve.

For the system identification in time domain, two types of regularization functions have
been proposed by Lee et al [5,6].  In case system parameters are continuous in time, the first-
order time derivative of the system parameter should be piecewise continuous, and thus the
following regularization function based on the L2-norm is appropriate [5].
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where t denotes time.  When the system parameter changes abruptly or piecewise continuous
fashion in time, the regularization function may be defined by the L2-norm of the system
parameters as follows.
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To avoid the smearing effect of the L2-norm defined in (9), the L1-norm of the first order time
derivative may be employed [6].
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IMPOSITION OF REGULARITY CONDITIONS

The regularity conditions presented in the previous section are imposed to the original mini-
mization problem (1) by the regularization techniques, among which the Tikhonov regulari-
zation technique and the truncated singular value deposition (TSVD) are widely used [2].  In



the Tikhonov regularization technique, the regularity condition is added to the original error
function, and the optimization is performed for the regularized error function as follows.
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where λ is the regularization factor, which adjusts the degree of regularization, and ΠR repre-
sents a proper regularity conditions.  The minimization problem defined in (11) is nonlinear
with respect to the system parameters.  However, a Newton type algorithm, which requires
the gradient information of Π, cannot be applied to solve (11) in case a non-differentiable 1–
norm is adopted for the regularization function.

For the SI with a non-differentiable L1-regularization function, the TSVD is utilized to
impose the regularity condition iteratively in the optimization of the error function.  In this
method, the incremental solution of the error function is obtained by solving the quadratic
sub-problems without the constraints.  The noise-polluted solution components are truncated
from the incremental solution.  Finally, the regularity condition is imposed to restore the trun-
cated solution components and the constraints.  The above procedure is defined as follows.
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Detailed solution procedures of the TSVD are found in references [2] and [4].

CONCLUSIONS

Various regularization functions, which are used to alleviate the ill-posedness of inverse
problems in solids, are reviewed.  Each regularization function is derived so that it represents
proper integrability conditions of system parameters of a given problem.  To obtain a mean-
ingful solution of a given SI problem, a proper regularization function should be selected.
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