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ABSTRACT 

 
This paper presents a system identification (SI) scheme in time domain using measured acceleration 
data.  The error function is defined as the time integral of the least square errors between the measured 
acceleration and the calculated acceleration by a mathematical model.  Damping parameters as well 
as stiffness properties of a structure are considered as system parameters.  The structural damping is 
modeled by the Rayleigh damping.  A regularization function defined by the L1-norm of the first 
derivative of system parameters with respect to time is proposed to alleviate the ill-posed 
characteristics of inverse problems and to accommodate discontinuities of system parameters in time.  
The time window concept is proposed to trace variation of system parameters in time.   Fisher 
Information Matrix is formulated in terms of acceleration sensitivity with respect to structural system 
parameters.  A scheme of an effective independence distribution vector has been applied to determine 
optimal locations of accelerometers.  Numerical simulation study is performed through a two-span 
continuous truss. 
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INTRODUCTION 
 

Immediate safety assessment structures after an earthquake is extremely important in evaluating 
serviceability and functionality of social infrastructures.  Nowadays, not only ground acceleration but 
also acceleration of important social infrastructures is monitored during earthquakes.  It would be 
very helpful for quick restoration of social activities if structural damage caused by an earthquake is 
accessed with the measured acceleration during an earthquake in real time or near real time. 

Various damage assessment schemes based on system identification (SI) have been extensively 
investigated for social infrastructures during the last few decades.  The modal analysis approaches 
have been widely adopted to detect structural damage using measured acceleration of structures. The 
modal analysis approaches, however, suffer from drawbacks caused by insensitiveness of modal data 
to changes of structural properties. 

To overcome the drawbacks of the modal analysis approaches, this paper presents a system 
identification scheme in time domain using measured acceleration data.  The error function is defined 
as the time integral of the least square errors between the measured acceleration and the calculated 
acceleration by a mathematical model.  The structural damping is modeled by the Rayleigh damping.  
A regularization technique is employed to overcome the ill-posedness of inverse problems.  A 
regularization function defined by the L1-norm of first time derivatives of stiffness parameters is 
proposed to accommodate abrupt changes of system parameters in time.  The L1-truncated singular 
value decomposition (TSVD) is adopted to optimize the error function with the L1-regularization 
function.  To trace the variation of stiffness parameters in time, a time windowing technique is 
introduced.  In the time windowing technique, SI is performed sequentially within a finite time 
interval, which is called a time window.  The time window advances forward at each time step to 
identify changes of system parameters in time. 

Design of sensor layout is an important task to provide useful measurement information on 
structural monitoring but its importance has not been seriously acknowledged in the field application 
yet.  Although diverse types of sensors are applied in the actual applications the main focus of any 
sensor is to provide information useful for guaranteeing the structural safety as efficient and 
economical as possible.  Since a civil structure is huge and complex requiring many degrees of 
freedom (DOF) in its analytical model, such SI results are influenced by the measurement locations 
and measured DOFs.  Through mathmatical manipulations with assumptions on measurement noise, 
a Fish information matrix (FIM) is obtained by the Cramer-Rao inequality as the inverse of the lower 
bound of the estimation error.  Each column of the formulation FIM is a vector of acceleration 
sensitivity with respect to structural parameters.  Since it is generally known that optimal locations of 
accelerometers can be determined by maximizing characteristic properties of FIM with a possible 
minimum covariance of the estimation error, a scheme of an effective independence distribution 
vector has been applied to determine optimal locations of accelerometers.  Numerical simulation 
study is performed through a two-span continuous truss. 
 
 
PARAMETER ESTIMATION SCHEME IN TIME DOMAIN 
 

The discretized equation of motion of a structure subjected to ground acceleration ag caused by an 
earthquake is expressed as follows. 
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where M, C and K represent the mass, damping and stiffness matrix of the structure, respectively, 
and a, v and u are the relative acceleration, velocity and displacement of the structure to ground 
motion, respectively. The damping parameters and the stiffness parameters of the structure are 
denoted by xc and xs in (1), respectively.  Newmark β-method is used to integrate the equation of 
motion.  Since the operational vibrations of a structure are negligible compared to those induced by 
an earthquake, the initial condition of (1) is set to zero. 

In case ground acceleration as well as accelerations of a given structure at some discrete 
observation points are measured, the unknown system parameters of a structure including stiffness 
and damping properties are identified through minimizing least squared errors between computed 
and measured acceleration.  In case the system parameters are invariant in time, the parameter 
estimation procedure is represented by the following optimization problem. 
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where a~ , a , x and R are the calculated acceleration and the measured acceleration at observation 
points relative to ground acceleration, system parameter vector and constraint vector, respectively, 
with 

2
  ⋅  representing the 2-norm of a vector.  Linear constraints are used to set physically significant 

upper and lower bounds of the system parameters.  The minimization problem defined in (2) is a 
constrained nonlinear optimization problem because the acceleration vector a~  is a nonlinear implicit 
function of the system parameters. 

In case the system parameters vary with time, the time window technique is proposed.  Fig.1 
illustrates the time window concept.  In this technique the minimization problem for the estimation of 
the system parameters is defined in a finite time interval, which is referred to as a time window. 
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Here, t and dw is the initial time and the window size of a given time window.  It is assumed that 
system parameters are constant in a time window, and that system parameters estimated by (3) 
represent the system parameters at time t.  As the time window advances forward sequentially in time, 
the variations of system parameters in time are identified. 
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Figure 1.  Time window concept 
L1-REGULARIZATION SCHEME 
 

The parameter estimation defined by the minimization problems is a type of ill-posed inverse 
problems.  Ill-posed problems suffer from three instabilities: nonexistence of solution, 
non-uniqueness of solution and discontinuity of solution when measured data are polluted by noise.  
Because of the instabilities, the optimization problem given in (2) and (3) may yield meaningless 
solutions or diverge in optimization process.  Attempts have been made to overcome instabilities of 
inverse problems merely by imposing upper and lower limits on the system parameters.  However, it 
has been demonstrated by several researchers that the constraints on the system parameters are not 
sufficient to guarantee physically meaningful and numerically stable solutions of inverse problems. 

The regularization technique proposed by Tikhonov is widely employed to overcome the 
ill-posedness of inverse problems.  In the Tikhonov regularization technique, a positive definite 
regularization function is added to the original optimization problem. 
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where ΠR and λ are a regularization function and a regularization factor, respectively. Various 
regularization functions are used for different types of inverse problems.  Kang et al proposed the 
following regularization function defined by the L2-norm for the SI in time domain. 
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The regularization function defined in (5) is able to represent continuously varying system 

parameters in time.  Since, however, the system parameters may vary abruptly (Fig.2) with time 
during earthquakes due to damage, a regularization function that can accommodate piecewise 
continuous functions in time is required to access damage that occurs during an earthquake.  To 
represent discontinuity of system parameters in time, this paper proposes an L1-regularization 
function of the first derivative of system parameters with respect to time. 

 

∫
+

=Π
wdt

t
R dt

dt
dt

12
1)( x                                                                    (6) 

 
where 

1
  ⋅  representing the 1-norm of a vector. 

Since the error function is nonlinear with respect to stiffness parameters, a Newton-type optimization 
algorithm, which requires gradient information of an objective function, is usually employed in SI.  
As the L1-regularization function is non-differentiable, the objective function in the Tikhonov 
regularization scheme defined in (4) contains a non-differentiable function, and thus a Newton-type 
optimization algorithm cannot be applied.  To avoid this difficulty, this paper employs the L1-TSVD 
to impose the L1-regularization function in the optimization of the error function.  In the proposed 
method, the incremental solution of the error function is obtained by solving the quadratic 
sub-problems without the constraints.  The noise-polluted solution components are truncated from 



the incremental solution.  Finally, the regularization function is imposed to restore the truncated 
solution components and the constraints.  The above procedure is defined as follows. 
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Figure 2.  Continuous and piecewise-continuous function 
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The error function and the regularization function are easily discretized in time domain using 

simple numerical methods.  The truncated solution of the minimization problem of the error function 
is obtained by the truncated singular value decomposition, while the simplex method is employed to 
solve the minimization problem of the L1-regularization function with constraints.  Detailed solution 
procedures are presented in References. 
 
 
FISHER INFORMATION MATRIX 
 

To estimate unknown structural parameters x by minimizing the error function Π(x,t) of (2), the 
measured information by an experimental should be maximized.  In other words, optimal parameters 
can be obtained by minimizing the estimation errors.  By the Cramer-Rao inequality, the estimation 
error has a lower bound of F-1, where F is the Fisher information matrix expressed in terms of the 
probability density function by (8). 
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C is covariance matrix of the measurements of accelerations.  By substituting the probability 

density function of  (9) into (8), the FIM can be formulated by (10). 
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where, nt, Si and Ti are number of timestep, sentivity matrix and trace matrix defined by (11), 
respectively. 
 

x
aS
∂
∂

= i
i

~
, ⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

= −

x
C

C
x

C
CT i

i
i

ii tr 1

2
1                                                (11) 

 
If we can assume the variance of measurement  is the same for all measuring locations, the 

covariance matrix can be expressed as  so that 

2−
nσ

IC 2−= nσ 0/ =∂∂ xCi .  In other words, it is assumed 
that all sensors are exposed to the same but uncorrelated noise so that covariance of noise is 
independent of the parameters. 
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EFFECTIVE INDEPENDENCE DISTRIBUTION VECTOR 
 

A usual approach to determine optimal locations of accelerometers is to maximize characteristic 
properties of FIM of (12).  One of the methods proved as efficient is the scheme of effective 
independence distribution vector (EIDV).  The original idea of EIDV was to determine sensor 
locations with the information of mode shapes.  The current approach is to determine location of 
accelerometers with the computed acceleration sensitivities.  The each value of EIDV represents the 
efficiency of each DOF. 
 

)~]~~[~( 1 TT
d diag SSSSq −=                                                        (13) 

 
where, TT

nt
TT ][~
21 SSSS L= , qd is effective independence distribution vector. 

 
 
DAMPING MODEL 
 

It is a difficult task to model damping properties of real structures.  In fact, existing damping 
models cannot describe actual damping characteristics exactly, and are approximations of real 
damping phenomena to some extents.  Since the damping has an important effect on dynamic 
responses of a structure, the damping properties should be considered properly in the parameter 
estimation scheme.  In most of previous studies on the parameter estimation, the damping properties 
of a structure are assumed as known properties, and only stiffness properties are identified.  However, 
the damping properties are not known a priori and should be included in system parameters in the SI. 

Among various classical damping models, the modal damping and the Rayleigh damping are the 
most frequently adopted model.  In the modal damping, a damping matrix is constructed by using 



generalized modal masses and mode shapes.  In Rayleigh damping, a damping matrix is defined as a 
linear combination of the mass matrix and stiffness matrix as follows. 

 
 KMC 10 aa +=                                                                     (14) 

 
The damping coefficients of the Rayleigh damping can be determined when any two modal 

damping ratios and the corresponding modal frequencies are specified. 
In case the modal damping is employed in the parameter estimation, the number of the system 

parameters associated with the damping is equal to that of the total number of DOFs, which increases 
the total number of unknowns in the optimization problem given in (14).  Since neither modal 
damping nor Rayleigh damping can describe actual damping exactly, and the modal damping 
requires more unknowns than the Rayleigh damping in the parameter estimation, this study employs 
the Rayleigh damping for the SI.  The Rayleigh damping yields a linear fit to the exact damping of a 
structure.  To approximate actual damping of a structure more accurately, Caughey damping, which 
is the general form of the rayleigh damping, may be adopted. 
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where ndof is the total number of degrees of freedom of the given structure.  For J=2, the Caughey 

damping becomes identical to the Rayleigh damping. 
In case either the regularization scheme or damping estimation is not included in the SI, the 

optimization procedure does not converge or converges to meaningless solutions. Therefore, only the 
results with the regularization scheme and damping estimation are presented here. 
 
 
EXAMPLE 
 

Two numerical simulation studies are presented to illustrate validity of the optimal sensor 
placement technique.  Numerical simulation study is performed through a two-span continuous truss 
subjected to earthquake-induced ground motion.  Newmark integration is used for obtaining the 
acceleration.  The integration constants of the Newmark β-method, β=1/2, γ=1/4, are used for all 
cases. 

The validity of the proposed optimal sensor placement technique is examined through a 
simulation study with a two-span continuous truss shown in Fig. 3.  Typical material properties of 
steel (Young’s modulus = 210 GPa, Specific mass = 7.85×103Kg/m3) are used for all members.   
The cross sectional areas of top, bottom, vertical and diagonal members are 250 cm2, 300 cm2, 200 
cm2 and 220 cm2, respectively.  The natural frequencies of the truss range from 6.6 Hz to 114.7 Hz.  
Damage of the truss is simulated with 40% and 50% reductions in the sectional areas of member 7 
and 16, respectively.  The damaged members are depicted by dotted lines in Fig. 3.  It is assumed 
that the damage suddenly occurs at t=0.5 sec.  Accelerations of the truss are measured from a 
vibration induced by a ground motion (Fig. 3).  The measurement errors are simulated by adding 3% 
random noise generated from a uniform probability function to accelerations calculated by the 
finite element model.  The observation points and directions are determined by optimal sensor 
placement technique.  Determined observation points and directions are represented in figure 4.  The 
total numbers of selected DOF are 22. 



  Both x- and y- direction accelerations are measured in the time period from 0 sec to 2 sec with 
the interval of 1/200 sec.  To filter high frequency mode, the interval of inverse analysis is 1/100 
sec.  The truncation number of the TSVD is selected as 17. The size of time window is 0.2 sec.  
Figure 5 represents a ground acceleration induced by the Kobe earthquake. 

The variations of axial rigidities of the two damaged members and one undamaged member with 
time are drawn in Figure 6.  From the figure, it is clearly seen that the damage occurs at t=0.5 sec, 
and that the estimated stiffness parameters of damaged members 7 and 16 converge to the actual 
values as time steps proceed.  Figure 7 shows the axial rigidity of each member identified at the 
final time t=2.0 sec.  The vertical axes of both Figure 6 and Figure 7 represent the normalized axial 
rigidity with respect to the initial value of each member.  The identified axial rigidities oscillate 
moderately within the range of ±10 % for 50 undamaged members out of 52, while the oscillation 
magnitudes of the other 2 undamaged members are a little higher than 10%.  Since, however, axial 
rigidities of the damaged members are reduced prominently compared with those of the other 
members, the damaged members are clearly distinguished from undamaged members. 
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Figure 3.  2-span continuous truss 
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Figure 4. Observation points and directions by optimal sensor placement technique 
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Figure 5.  Ground acceleration induced by the Kobe earthquake 
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CONCLUSION 
 

The time window technique and optimal sensor placement technique are proposed for SI in time 
domain using measured acceleration data is proposed.  The system parameters include the damping 
parameters as well as the stiffness parameters of a structure.  The Rayleigh damping is used to 
estimate the damping characteristics of a structure.  The least square errors of the difference between 
calculated acceleration and measured acceleration is adopted as an error function.  The regularization 
technique is employed to alleviate the ill-posedness of the inverse problem in SI.  The L1-TSVD is 
utilized to optimize a non-differential object function. 

The proposed method exhibits very compromising characteristics in detecting damage, and is 
able to estimate the stiffness properties accurately even though the damping characteristics are 
approximated by the Rayleigh damping.  The example presented in this paper shows capabilities of 
the time window technique for the identification of damage caused by earthquakes. 
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