
1 INTRODUCTION 

Over the last few decades, there has been a significant increase in the health monitoring and 
safety management field of the complex structure. The primary goal of the structural health 
monitoring is to find changes of system parameters and to decide its soundness at earliest possi-
ble stage. There are two categories in structural health monitoring and damage assessment 
whether structural model, such as stiffness, damping and mass information exist or not. One is 
model based scheme and the other is non-model based scheme. In model based scheme, system 
parameters are estimated by inverse analysis based on the sensitivity method from a mathemati-
cal model. In non-model based scheme, structural soundness is evaluated by pattern recognition 
and statistical approach from only measured signals without a structural model. 

Model based system identification problem is a type of inverse problems, which are usually 
ill-posed problem. An ill-posed problem is characterized by the non-uniqueness, non-continuous 
and instability of solutions. Various regularization techniques have been developed to overcome 
this ill-posedness of inverse problem. In spite of ill-posedness can be alleviated by regulariza-
tion techniques successfully, model-based system identification schemes are not applied in real 
situation because of modeling error that difference between mathematical model and real struc-
tural model. Recently, a lot of structural health monitoring researches with statistical pattern 
recognition using purely measured signals has been attempted in the center of Los Alamos na-
tional laboratory in USA. Autoregressive model is widely used in time series pattern analysis 
(Box, 1994). 

The sequence of non-model based structural health monitoring system is divided into six 
steps that Data acquisition, prediction modeling, feature extraction, control distribution con-
struction, monitoring and decision making. Measured signals are obtained from sensors and a 
prediction model is made of the autoregressive model. Coefficients of the autoregressive model 
and residual errors are estimated by a prediction model. Statistical treatments of obtained resid-
ual errors must be done for more reliable structural health monitoring. Finally, the decision 
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making of soundness of considered structure in real time by monitoring residual errors continu-
ously will be performed. 

Various algorithms for structural health monitoring using static or dynamic responses are 
proposed. But the main problem of structural health monitoring system is how to handle noises, 
whereas measured signals contain a mix of information related to both the damage in the struc-
ture and the perturbations due to the environment. A new structural health monitoring algorithm 
with time window technique (Kang, et al, 2005) is employed. In time window technique, the re-
sidual errors are predicted sequentially within a finite time period which called time window. 
The time window advances forward at each time step to predict residual errors repeatedly. Per-
turbations of environment are commonly changed gradually during long time period and time 
window size is relatively very smaller than environmental perturbation period so it is assumed 
that perturbation of environment can be neglected within the time window. 

Decision whether the considered structure is sound or not using residual errors in every time 
step is also very important. Extreme value distribution (Castillo, 1988) is utilized for making 
decision boundary of soundness of the target structure. Extreme value distribution is utilized to 
detect outliers because damage information almost lie on the tail of distribution and extreme 
value distribution is well established in tail distribution. A generalized extreme value distribu-
tion(GEV) (Park, et al, 2005) which unify three known extreme value distributions, Gumbel, 
Weibull and Flechet is utilized for simplicity. 

The validity and accuracy of the proposed algorithm is demonstrated through a numerical 
simulation studies on a two-span truss bridge. The numerically generated acceleration data with 
noise under Kobe earthquake ground acceleration are utilized as measured signals for the nu-
merical simulation example. 

2 AUTOREGRESSIVE MODEL 
2.1 Definition 
Autoregressive(AR) model is utilized to evaluate structural health monitoring system using ac-
celeration signals during a long period. Autoregressive model is widely used stochastic model 
that can be extremely useful in the representation of certain practically occurring series. And 
autoregressive model has a great merit that white noises pass through the autoregressive proc-
ess. So autoregressive model respond to only changes of system. 

In this model, the current value of the process is expressed as a finite, linear combination of 
previous values of the process and a random error et. Let us denote the values of a process at 
equally spaced times t, t-1, t-2, … by xt, xt-1, xt-2, …. Then 

tptpttt exxxx ++++= −−− φφφ L2211  (1) 

is called autoregressive model of order p. Where, φ  is coefficients of autoregressive model, 
te  is random error in the measured signal at time t and p is order of autoregressive model. 

2.2 Least square method 
Autoregressive model is expressed with coefficients as weighted regressive form. There are sev-
eral methods to calculate coefficients of the autoregressive model. Least square method is util-
ized because it is very simple and clear. From Equation 1, residual error between estimated 
value from autoregressive model and measured value at time t is as follows. 

( )ptptttt xxxxe −−− +++−= φφφ L2211  (2) 

The first term in the right side of Equation 2 is a measured signal at time t and the second 
term is the estimated value from autoregressive model at time t. After expansion of Equation 2 
into considered time periods and minimize residual errors, the linear object function by least 
square method is obtained as shown in Equation 3. 
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Where, T
pttt xxx ][)( 1 −− −−= Lψ , T

p ][)( 1 φφφ L=φ  and N is total number of measured 
signals in considered time period. N must be greater than twice of the order p of the autoregres-
sive model. The optimal solution of Equation 3 is obtained like Equation 4 by least square 
method. 
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After decision of coefficients of autoregressive model, foregoing signals can be predicted by 
using definition of autoregressive model in Equation 1. If there is no damage in the structure 
then residual errors are very small. Residual errors will be highly increased when some problem 
occurs in the structure. By using this phenomenon, autoregressive model can be utilized in 
structural health monitoring system. 

3 TIME WINDOW TECHNIQUE 
3.1 Objective 
The key difficulty in structural health monitoring is perturbation of measured signals by un-
known effects such as environmental and instrumental effects. Measurement errors can be re-
duced according to improvement of sensor technology but perturbation of environment cannot 
be reduced. Measured signals are gradually changed according to various factors of environ-
ment such as day and night, season, temperature and humidity and so on. Even if there is no 
changes in the considered structure, measured signals can be swayed by this environmental 
situation. Almost previous methods suffer from this difficulty of environmental factors. Though 
a algorithm is performed well in experimental data in laboratory, it cannot be applied in real 
structure because of perturbations of environment. 

Various pattern recognition algorithms attempt to solve this problem, but they still have some 
problems to apply in real structures. The reasons are accuracy and economical efficiency. Pat-
tern recognition technique requires so many base solutions. The more base solutions we have, 
the more accuracy pattern recognition algorithm has. Learning process which called finding 
suited solutions from the base solutions takes so long time. Because environmental conditions 
cannot be exactly same in previous time, solutions obtained by learning process still have mod-
eling errors. And the final goal of structural health monitoring is finding defects as soon as pos-
sible, so the process must be fast in order to apply in real systems. 

Time windowing technique is adopted to solve this problems. Environmental factors are 
commonly gradually changed during very long time period. In autoregressive model with time 
window technique, the residual errors are predicted sequentially within a finite time period, 
which is called a time window. The time window overlaps and advances forward at each time 
step to predict residual errors step by step. Time window size is relatively very smaller than 
time period of environmental perturbations so it is assumed that changes of environment within 
the time window cannot happen. 

 

 
Figure 1. Outline of Time window technique and variation of residual erros 
 



3.2 Procedure of time window technique 
The optimal solution of coefficients of autoregressive model with time window technique can 
be obtained by following the same sequence in previous mentioned thus the final form is shown 
in Equation 5. 
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Where, ti, is the start time of each time window and tf is the end time. iφ  is time varying coef-
ficients which is modified according to advances of time window. 

There is outline of the time window technique in Figure 1. Residual errors are estimated se-
quentially by using autoregressive model in moving time window. Let us assume that an abrupt 
change is occurred at time td by sudden effects. Before time td, there is no change in the system 
so residual errors between measured signals and estimated data by prediction model remain 
small. As time goes on, measured signals changed by abrupt change will be included in time 
window. Measured signals after time td discord from predicted value from previous estimated 
autoregressive model so residual errors are highly increased. After more time elapsed, time win-
dow fully passed td, all the measured signals in time window are filled with damaged informa-
tion so residual errors return to small because of recalculated coefficients of autoregressive 
model with signals of damaged information. Figure 1 show schematic diagram of time window 
technique that time window advances forward at each time step to predict residual errors repeat-
edly and variation of residual errors according to time axis. 

4 DECISION MAKING 
4.1 Extreme value distribution 
To decide whether the considered structure is sound or not using estimated results from predic-
tion model is also very important. No matter how prediction model may work perfectly, it is 
useless without support of rigorous decision making algorithm. It is unreasonable to decide 
health of the structure by merely the magnitude of residual errors. For more reliable decision 
making of structural health monitoring, statistical approach is inevitable. Distribution of the re-
sidual errors must be found statistically from sparse residual errors and pick up outliers from the 
distribution in a given significant level. 

Outliers almost lie in the tail of the distribution of residual errors. Extreme value distribution 
is utilized for an more accurate selection of outliers because extreme value distribution is well 
established for tail distribution. 

4.2 Generalized extreme value distribution 
Generally, it is known that any distribution follows one of three extreme value distributions, 
Gumbel, Weibull and Flechet distribution. It is very annoyed to find what the best distribution 
in three distributions to estimate the distribution of residual errors is. The three types of distribu-
tion can be expressed in one single form, called von-mises form as shown in Equation 6. Equa-
tion 6a and 6b expresses distribution for maxima and minima, respectively. According to the 
value of c, von-mises form can change to the three extreme value distribution forms. c > 0, c < 
0, c = 0 we get Frechet, Weibull and Gumbel distribution, respectively. 
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Figure 2. Outline of outlier detection 

4.3 Optimization 
Optimization process is utilized to find three coefficients, λ , δ  and c of generalized extreme 
value distribution. By minimizing difference between generalized extreme value distribution 
and empirical cumulative density function like Equation 7, optimal three coefficients can be ob-
tained. 
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Where, G is generalized extreme value distribution, p is empirical cumulative density function 
of the calculated residual errors and W is the weighting matrix. 

4.4 Outlier detection 
From the optimized distribution of the residual errors, threshold value of maxima and minima 
can be found by one to one match from given significant level. Residual errors which are greater 
than threshold value of maxima are defined as outliers of maxima and smaller than threshold 
value of minima are defined as outliers of minima. It can be judged that some abrupt change oc-
curs in the considered structure by detected outliers. A brief outline of this process is shown 
with graph in Figure 2. A real-time structural health monitoring system can be consisted by re-
peating this sequence continuously. 

5 EXAMPLE 
5.1 Two-span continuous truss 
The validity of the proposed structural health monitoring algorithm is verified through a simula-
tion study with a two-span continuous truss shown in Figure 3. Typical material properties of 
steel (Young’s modulus = 210 GPA, Specific mass = 7.85 Kg/m3) are used for all truss mem-
bers. The cross sectional areas of top, bottom, vertical and diagonal members are 112.5 cm2, 
93.6 cm2, 62.5 cm2 and 75.0 cm2, respectively. The natural frequencies of the truss range from 
6.6 Hz to 114.7 Hz. Sampling rate is 200 Hz to involve all of the high frequency modes infor-
mation. The damping characteristics are simulated by modal damping ratio 3%~30% in each 
mode, continuously. 
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Figure 3. two-span continuous truss 
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Figure 4. Input ground acceleration by Kobe earthquake 
 

It is assumed that accelerations are measured with Kobe earthquake ground acceleration at 
centered hinge support in the horizontal direction for simulating under earthquake situation. In-
put ground acceleration is shown in Figure 4. This ground accelerations which is a maximum 
magnitude part are extracted from 40 second full data. Sensing points are center of the both span 
in bottom nodes of the truss. It is assumed that abrupt change occurs in the considered structure 
at 3 second. Damage is implemented as reduction of cross sectional area. The cross sectional ar-
eas of Upper member 7 and lower member 16 are reduced by 40% and 50%, respectively. Dam-
aged members are represented as dotted line in Figure 3. Vertical direction accelerations are 
measured numerically in the time period from 0 sec to 4 sec. The measurement errors are simu-
lated by adding 5% random proportional noise to accelerations calculated by the finite element 
model. 

Residual errors estimated from autoregressive model using measured accelerations with time 
window technique are shown in Figure 5. Dotted lines in Figure 5 are threshold values of out-
liers in given 99.9% significant level. Upper dotted line is threshold values of maxima and 
lower dotted line is threshold values of minima. Outlier detection process is performed in both 
direction maxima and minima. Residual errors around 3 second are greatly distinguished from 
other time steps in the result from sensor A. It is definitely represented that some abrupt change 
occurs in target structure around 3 second. There are also some small peaks around 1.25 and 2.5 
second. They might be false alarms affected by large magnitude of input ground motion de-
scribed in Figure 4. By the way, it cannot be detected abrupt changes by the result of outlier de-
tection using signals from sensor B. The damage information of member 7 and 16 cannot carry 
to location of sensor B. Therefore health monitoring system must be consisted by multi sensors 
to detect localized abrupt changes. 
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Figure 5. Result of outlier detection from sensor A and sensor B 
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Figure 6. Result from sensor A according to noise and maximum noise level 

 
The very important characteristic of autoregressive model is that white noises pass through 

the autoregressive model. This means that autoregressive model cannot react to white noises be-
cause regressive model has no relationship with white noises. There is a comparison with noise 
levels in Figure 6. In case without noise, estimation result is almost perfect along all the time 
period even if the magnitude of ground motion is huge. In case with 5% proportional random 
noise, there are some perturbations around 1.25, 1.75 and 2.5 second. The maximum noise level 
of 5% proportional noise is shown in right side of Figure 6. The perturbations due to 5% ran-
dom noise are lager than possible maximum perturbations from given 5% noise. This means 
there are some amplification factors by noise in the algorithm. A regularization technique is 
needed to alleviate this amplification. Various regularization techniques are proposed to allevi-
ate instabilities or amplification. Almost of them try to regularize the estimation system. But this 
case is quite different. Decision making is decided not by autoregressive model but by residual 
errors. Even if regularization of autoregressive model is well worked, residual errors cannot be 
stabilized. So new regularization technique which can alleviate the amplification by noises is 
needed. 
 



6 CONCLUSION & FURTHUR STUDY 

New structural health monitoring algorithm which is free from perturbations of environment is 
proposed. Residual errors are estimated using an autoregressive model with a time window 
technique. Perturbations of environment can be neglected within time window relatively smaller 
than time period of data acquisition. Generalized extreme value distribution is utilized for more 
reliable decision making of soundness of the structure. The validity of proposed algorithm is 
demonstrated by numerical simulation example in two-span continuous truss. Residual errors 
are greatly increased at the time that abrupt change occurs and it is available to find abrupt 
change by outlier detection of residual errors. Residual errors can be amplified by noises, so it 
might be proposed new regularization technique to alleviate perturbation of residual errors due 
to noises. 
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