
1 INTRODUCTION 

Numerous attempts have been made to reconstruct displacement with measured acceleration 
based on the definition of acceleration, that is, acceleration is the second-order derivative of dis-
placement in time domain. Time integration schemes based on time-marching algorithms such 
as the Newmark-β method are probably the most straightforward and easiest way to obtain dis-
placement from measured acceleration. However, the time marching algorithms yield erroneous 
displacement. First of all, initial conditions on velocity and displacement required in the time 
marching algorithms are usually unavailable or inaccurate in real situations. Moreover, random 
noise in measured acceleration data causes physically inadmissible errors in the reconstructed 
displacement. Particularly, low-frequency spectral components in random noise are amplified 
during time marching procedures, which severely deteriorate the accuracy of the reconstructed 
displacement. This undesirable effect becomes a critical issue in the displacement reconstruction 
for large-scale civil infrastructures, which usually exhibit very low fundamental frequencies.  

Several remedies to overcome the drawbacks of the time-marching algorithms have been pro-
posed for the displacement reconstruction with measured acceleration. A baseline correction 
technique used in seismology applications is a well-known approach to eliminate the erroneous 
components in the reconstructed displacement by the time-marching algorithms. In this ap-
proach, polynomial functions approximately representing the inadmissible errors are con-
structed, and are subtracted from the reconstructed displacement. However, the baseline correc-
tion depends on an engineer’s decision, and thus is inadequate to structural health monitoring 
(SHM) and structural control (SC) applications in which measured acceleration should be auto-
matically processed in real-time. Moreover, this approach corrects erroneous results obtained by 
the time-marching algorithms, and is not completely free of the aforementioned drawbacks.  

ABSTRACT: This paper present a new displacement reconstruction scheme using only accel-
eration measured from a structure. For a given set of acceleration data, the reconstruction prob-
lem is formulated as a boundary value problem in which the acceleration is approximated by the 
second-order central finite difference of displacement. The displacement is reconstructed by 
minimizing the least squared errors between measured and approximated acceleration within a 
finite time interval referred to as a time window. An overlapping time window is introduced to 
improve the accuracy of the reconstructed displacement. The displacement reconstruction prob-
lem becomes ill-posed because the boundary conditions at both ends of each time window are 
not known a priori. Furthermore, random noise in measured acceleration causes physically in-
admissible errors in the reconstructed displacement similar to the conventional time integration 
schemes. A Tikhonov regularization scheme is adopted to alleviate the ill-posedness. The valid-
ity of the proposed method is demonstrated through a stay cable experiment. 
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This paper formulates a new class of the displacement reconstruction scheme as a boundary 
value problem rather than an initial value problem using measured acceleration without any in-
formation on initial conditions. In case measured accelerations are given over a finite time inter-
val referred to as a time window, the relation between the measured acceleration and the defini-
tion of acceleration forms a boundary value problem. As the second-order time derivative of 
displacement is acceleration, the displacement is reconstructed through the minimization of the 
least squared errors between measured acceleration and the second-order time derivative of dis-
placement in a time window. The second-order time derivative is approximated by the central 
finite difference. 

As the reconstruction problem of displacement is defined as a boundary value problem in a 
time window, boundary conditions at both ends of the domain should be specified to solve the 
minimization problem, but neither displacement nor velocity is known at the boundaries. There-
fore, the minimization problem for the reconstruction of displacement becomes ill-posed or 
rank-deficient, and can not be solved for unknown displacement in a time window. Furthermore, 
a small amount of low-frequency spectral noise in measured acceleration data may significantly 
pollute the reconstructed displacement as in the time-marching algorithm. To overcome these 
two difficulties, the Tikhonov regularization scheme, which has been widely employed to alle-
viate the ill-posedness of inverse problems, is adopted. The 2-norm of the displacement to be re-
constructed in a time window is chosen as the regularization function. 

An overlapping time-window concept proposed by Part et al. is adopted to enhance the accu-
racy of reconstructed displacement. The reconstructed displacement only at the center of a time 
window is taken as the solution of the time window so that the error by inaccurate estimation of 
boundary conditions should be minimized. Considering the accuracy and computational effort 
of displacement reconstruction, the optimal time-window size is proposed through a parameter 
study of SDOF systems. 

The validity of the proposed method is demonstrated through displacement reconstructions 
using raw acceleration data measured from laboratory vibration test of a stay cable. It is shown 
that the proposed displacement reconstruction scheme does not suffer from any instability 
caused by low-frequency spectral noise, and yields accurate and reliable results. 

2 DISPLACEMENT RECONSTRUCTION SCHEME 
2.1 Displacement reconstruction scheme as an initial value problem 
Dynamic structural responses such as acceleration, velocity and displacement are calculated by 
solving the following discretized equation of motion of a structure with proper initial condi-
tions. 

)()()()( tttt pKuCvMa =++ , 0)0( vv =  and 0)0( uu =  (1)  

where M, C, K, and p represent the mass, damping, stiffness matrix of a structure and a load 
vector imposed on the structure, respectively, while a, v and u denote the acceleration, velocity 
and displacement of the structure, respectively. The prescribed initial conditions for velocity 
and displacement are given as v0 and u0, respectively. The equation of motion given in Eq. (1) is 
the system of an initial value problem in time domain, and represents a physical phenomenon 
that the specified initial conditions propagate through time. 

To solve Eq. (1) numerically, a time integration scheme based on a time marching algorithm 
is employed to express displacement and velocity in terms of acceleration. The propagating 
characteristics of Eq. (1) should be properly considered in a time integration scheme. Several 
well-formulated time integration schemes have been proposed and successfully applied to vari-
ous types of dynamic problems. Among them, the most popular one may be the Newmark-β 
method, which utilizes the following expressions. 
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where subscript i denotes a discrete time step, and β and γ  represent numerical parameters de-
fining the variation of acceleration over a time step. Δt is a step length for the time marching al-
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gorithm, which is often referred to as a time increment. Once displacement and velocity are ex-
pressed in terms of acceleration using Eq. (2) for current time step i, Eq. (1) is solved for accel-
eration. As the above procedure is applied stepwise, the entire histories of dynamic responses of 
a structure are calculated. 

To investigate propagating characteristics of Eq. (2), the velocity is eliminated from the equa-
tions, and the displacement is expressed in terms of the initial conditions and measured accelera-
tion. 
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From Eq. (3), it is clearly seen that noise in the initial displacement propagates though time 
while noise in the initial velocity and acceleration are amplified linearly and quadratically, re-
spectively. In case noise components in measured acceleration are random with zero mean, 
noise in term 1−kS  may vanish. However, the last term in Eq. (3) causes the accumulation of 
noise, which is explained by expressing the term for measured accelerations.  

2.2 Displacement reconstruction scheme as a boundary value problem 
A new approach to reconstruct displacement with measured acceleration is presented. Suppose 
acceleration at a fixed material point is completely measured during a time period 21 TtT ≤≤ , 
and known. By definition, the acceleration of a fixed material point is expressed in terms of dis-
placement through a second order ordinary differential equation. 

212
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where )(ta is the measured acceleration. In case proper boundary conditions on displacement or 
velocity at 1Tt =  and 2Tt =  are given, Eq. (4) becomes a boundary value problem, and dis-
placement is easily obtained by integrating Eq. (4) twice and applying two boundary conditions. 
Since, however, the boundary conditions for Eq. (4) are generally not known, the displacement 
field cannot be determined by integrating Eq. (4) twice. Furthermore, random noise components 
included in the measurement should be taken care of in the displacement reconstruction with 
Eq. (4). This study utilizes the following minimization problem rather than attempts to solve Eq. 
(4) directly. 
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As acceleration is measured discretely by a uniform time interval tΔ  in actual, the object func-
tion in Eq. (5) is discretized by the trapezoidal rule. 
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where n, ka~ , ka  and   ⋅ 2 are the number of the time intervals in period 21 TtT ≤≤ , the calcu-
lated acceleration, the measured acceleration at the k-th time step and the 2-norm of a vector, re-
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spectively, and the bold-faced variables denote the corresponding vectors. aL  is a diagonal 
weighting matrix of order )1( +n  defined as follows. 
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The calculated acceleration, ka~ , is discretized by the central finite difference of Eq. (4), which 
is the proper approximation of the second-order boundary value problems. 
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where ku is displacement at the k-th time step. Eq. (8) is rewritten in a matrix form for all k. 
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where cL and u denote the linear algebraic operator matrix of order )3()1( +×+ nn and the vec-
tor of displacements at the discrete time steps, respectively, and are defined as follows. 
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Substitution of Eq. (9) into Eq. (6) leads to the following discretized minimization problem of 
Eq. (5). 
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where caLLL = . As the time increment is considered as a constant in this study, the term on 
the time increment outside the 2-norm has no effect on the solution of the minimization prob-
lem, and thus is omitted from the object function in Eq. (11). 
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The minimization problem of Eq. (12) is unable to yield a unique displacement for given meas-
ured acceleration due to the rank-deficiency in linear algebraic operator L , which is caused by 
the fact that only )1( +n  finite difference equations are defined in Eq. (9) for )3( +n unknown 
displacement. The two additional displacements at time step –1 and )1( +n outside the time 
window are included in Eq. (10) to define the second-order central finite difference at the two 
boundaries. The time steps denoted by –1 and )1( +n  play the same role as fictitious nodes that 
are usually employed to solve elliptic partial differential equations by the finite difference 
method. 
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As proper boundary conditions are not specified for Eq. (4), the minimization problem of Eq. 
(12) becomes ill-posed. To solve ill-posed problems such as inverse problems, the regularization 
techniques, in which a priori estimates of solutions are defined by a regularity condition as addi-
tional information, are widely adopted. The reconstructed displacement with Eq. (12) should 
stay around the static displacement of a given system, which is expressed by the following 
equation. 

∞<≤−=Π 22
22

1 rstR uu  (13) 

where RΠ  is a regularization function, and r  defines a solution bound. As the static displace-
ment has no effect on the acceleration defined in Eq. (4), only the dynamic component in the to-
tal displacement can be reconstructed. Therefore, the displacements in Eq. (12) and (13) repre-
sent the dynamic displacement measured from the static equilibrium position of a structural 
system, and the static displacement in Eq. (13) should be set to zero, which leads the following 
expression  
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Since the solution bound is not known a priori, the regularity condition Eq. (14) is enforced as a 
penalty function to the original minimization problem. 
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The above minimization problem is generally known as the Tikhonov regularization. The pen-
alty number in Eq. (16) is usually referred to as the regularization factor that adjusts the degree 
of the regularization in the minimization problem. As the regularization factor becomes larger, 
the solution bound approaches to zero, and zero displacements are reconstructed. Meanwhile a 
small regularization factor yields an ill-conditioned Hessian matrix for Eq. (16), which may re-
sult in a meaningless and/or unstable solution. Therefore, a well-balanced regularization factor 
should be selected to obtain physically meaningful and accurate displacements. The selection of 
the optimal regularization factor will be presented in the next section. The minimization prob-
lem in Eq. (16) forms a quadratic problem with respect to the unknown displacement vector, 
and thus the solution of Eq. (16) is given analytically as  

212 )()λ( ta
TT Δ+= − aLLILLu  (17) 

where I is the identity matrix of order )3( +n . Note that the regularization function not only pro-
vides the minimization problem defined in Eq. (16) with the sufficient rank, but also suppresses 
noise-polluted solution components in the reconstructed displacement. The role of the regulari-
zation function for ill-posed problems is presented in detail in references. 

3 TIME WINDOW TECHNIQUE AND OPTIMAL REGULARIZATION FACTOR 
3.1 Time-window technique 
The accelerations of a real structure are usually continuously monitored in real time by a time 
marching fashion, but the displacements have to be reconstructed within a finite time interval, 
which will be referred to as a time window hereafter, in the proposed method. After the recon-
struction of displacement is completed for a time window, the time window advances forward 
by time increment Δt. The reconstruction of displacement is performed sequentially in each time 
window then the reconstructed displacement at the middle of each time window is taken as the 
solution of the current time window. The reconstructed displacements at the other time in the 
time window are discarded, and the time window advances to reconstruct the displacement at 
the next time step. In this way, the error caused by inaccurate estimation of boundary conditions 
is minimized in the reconstructed displacement, and the accuracy of the reconstructed displace-
ment is maintained at the same level for all time steps. 
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To reduce computational effort, the time window size should be kept as small as possible. In 
case the time-window size is too small, however, the error in the estimated boundary conditions 
is not damped out sufficiently at the center of a time window, and thus inaccurate results are ob-
tained. Based on aforementioned discussions, the optimal time-window size is defined as the 
smallest time interval that does not affect the accuracy of the reconstructed displacement. Inten-
sive numerical simulation tests on various systems are performed in this study, and it is found 
that the time-window sizes larger than three times the longest period of a system do not improve 
the accuracy of solutions. The optimal time-window size is set to three times the longest period 
of a given system, which is obtained by the Fast Fourier Transform (FFT) of measured accelera-
tion, throughout this study. 

3.2 Optimal regularization factor 
A robust and efficient scheme is formulated to select the optimal regularization factor for the 
proposed method. The compositions of the system matrices in Eq. (17) do not vary with prob-
lems, but only the orders of the system matrices, which are determined by the number of data 
points in a time window, depend upon specific problems. Therefore, the optimal regularization 
factor for Eq. (17) should be a function of the number of data points in a time window and the 
noise level in measurement, and is defined as the solution of the following minimization prob-
lem. 
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where 1+= nN  is the number of data points in a time window, and An, )(λu  and exactu  are the 
noise level in measurement, reconstructed displacement for a regularization factor λ and the ex-
act displacement, respectively. The number of the data points in a time window is calculated us-
ing the time-window size (three times the longest period) and the sampling rate of measurement. 

To investigate fundamental characteristics of the optimal regularization factor, the solutions 
of Eq. (18) are calculated for the free vibrations of the SDOF systems with different frequencies 
and noise levels. Five SDOF systems with the natural frequencies of 1Hz, 2Hz, 4Hz, 6Hz, 8Hz 
and 10Hz are tested, and the sampling rate for measurement is fixed at 100 Hz. As the time-
window size is fixed to three times the natural period, the numbers of data points for the five 
cases are 301, 151, 76, 51, 39 and 31, respectively. Proportional random noise is generated by 
the uniform probability density function with maximum amplitudes of 5%, 10% and 20% for 
each SDOF system, and added to the exact acceleration obtained by solving the exact governing 
equation. The initial condition for displacement and the velocity are set to 1m and 0 m/sec, re-
spectively, for all cases. Since it is difficult to obtain the optimal solution of Eq. (18) directly, 
displacement is reconstructed for different regularization factors, and the regularization factor 
that minimizes the object function during the second period in the time window is selected as 
the optimal value. To simulate actual situations of non-zero initial conditions at the beginning of 
a time window, the measurement begins at 8/T in each case, where T denotes the natural period 
of a system. As a result of parameter study using SDOF system, the regularization factor is ex-
pressed in terms of window size.  

95.1
opt 81.46 −= Nλ  (19) 

4 EXPERIMENTAL VERIFICATION 
4.1 Forced vibration of a stay cable 
A forced vibration test of a stay cable is performed at Structural Laboratory of Hyundai Institute 
of Construction, Kyungki-do, Korea. The geometry and the boundary conditions of the cable are 
shown in Fig. 1. 
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Figure 1. Setup of Forced vibration experiment of a stay cable. 
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Figure 2. Setup of Forced vibration experiment of a stay cable. 

 
 

The tension of approximately 300 kN is applied to the cable, and the fundamental period is cal-
culated as 1.5Hz. The forced vibration of the cable is introduced with the cable exciter devel-
oped by Hyundai Institute of Construction at the center of the cable. The exciter generates verti-
cal exciting forces by two rotating masses in the opposite direction. The total mass of the exciter 
and the rotating mass are 14.58 kg and 0.46 kg, respectively. The cable is excited by its funda-
mental frequency, i.e. 1.5Hz to induce the resonance of the cable for 40 sec. An accelerometer is 
installed at the center of the stay cable and the vertical acceleration is measured at the sampling 
rate of 100 Hz. A linear variable differential transformer (LVDT) is installed at 20cm away 
from the accelerometer to avoid interference between the exciter and the LVDT. The LVDT 
measured vertical displacement at the same sampling rate as the accelerometer. The FFT of the 
measured acceleration yields the dominant frequency of 1.48 Hz, which is slightly smaller than 
the excitation frequency. The window size is set to 2.04 sec and the optimal regularization fac-
tor is selected as 1.45×10-3. 
The reconstructed results are shown in Fig. 2 for the period around the beginning of the excita-
tion. In the figure, the reconstructed displacement agrees with the measured displacement from 
the LVDT well except for a small, constant phase difference. It is believed that the phase differ-
ence is caused by the difference in positions between the accelerometer and the LVDT. In Fig. 
2, the displacement reconstructed by the Newmark-β method is drawn together with the others. 
The Newmark-β method yields diverging displacement after 2 sec even though the exact initial 
conditions are specified. 

Cable exciter
43.866m 

6.266m
44.311m 
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5 SUMMARY AND CONCLUSION 

This paper presents a new class of the displacement reconstruction scheme with the measured 
acceleration. The proposed method is formulated as a boundary value problem rather than an 
initial value problem. That is, the displacement is reconstructed in a finite time interval with two 
boundaries called as a time window through the minimization of the least squared errors be-
tween measured accelerations and calculated accelerations by displacement. The acceleration is 
approximated by the second-order central finite difference of displacement. To improve the ac-
curacy of the reconstructed displacement, the overlapping time-window technique is adopted. 
As the boundary conditions at both ends of a time window are not known a priori, the minimi-
zation problem for the reconstruction of displacement becomes rank-deficient by 2. To over-
come the rank-deficiency, the Tikhonov regularization scheme is employed. The regularization 
function is defined as the 2-norm of the discretized displacements to be reconstructed in a time 
window. An equation to determine the optimal regularization is proposed. 
The validity of the proposed method is demonstrated through laboratory experiment of the stay 
cable. The reconstructed displacements with the measured acceleration agree well with the 
measured displacements in an overall sense. Even though small errors at the peaks are observed 
in the results, they neither propagate nor are amplified, and are in an acceptable range from the 
viewpoint of engineering. Moreover, the proposed method is numerically stable and efficient, 
and does not require any initial or boundary conditions at all. 
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