
1 INTRODUCTION

Cable-stayed bridges have been recognized as one of the appealing structural type for large-
scale structures due to the various structural advantages of cables as well as their aesthetic ap-
pearances. With the recent advances of structural analysis techniques and construction tech-
nologies in Korea, Incheon Bridge with a main span length reaching 800m emerges into reality.
As cable-stayed bridges become larger and longer, more accurate and precise analysis tech-
niques are required to control the cable tension and geometry during construction.

Structural system changes according to the progress of construction. Then errors in geometry
and cable force may be accumulated and amplified through complicated construction steps. Alt-
hough the design is accurate and correct construction is done, a certain amount of errors in cable
tension and geometry is inevitable. Since the load intensity, modulus of elasticity and erection
themselves have errors to some extent. Thus, the feedback process of measurement and control
system is required for more accurate construction. In this study, the feedback process of meas-
urement and control system is referred as geometry control system.

The purpose of the geometry control system is eliminating deviation between the object and
actual structure. By applying the geometry control system to the cable-stayed bridge during the
construction and completion, the structure satisfies the target configuration. To control the con-
figuration and cable tensions under the construction of Incheon Bridge, two different methods
will be applied.

The first one is cable length adjustment. Since the cable-stayed bridges resist the external
force almost by the cable member force, adjusting the length of cables is one of the simplest
ways to control the configuration of the bridge. The amount of cable length adjustment is cal-
culated using an optimization method, which minimizes the errors between the measured con-
figuration and target configuration. The adjustment for minimizing configuration errors may
yield meaningless solutions in optimization process due to the instability, which is triggered the
measured configuration polluted by noise. The regularization technique is considered to over-
come the instability.
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ABSTRACT: A geometry control system for cable-stayed bridge, which can effectively control
the cable tension and geometry during construction, is developed. The geometry control system
is consisted of two methods that are cable length adjustment and system identification. The ca-
ble adjustment system can bring the geometry and cable tension to remain within the allowable
limits by adjusting the cable lengths for the error occurred during production, installation and
tensioning process. And the system identification minimizes the differences between theoreti-
cally estimated values and real ones. The system parameter of system identification is chosen as
the unstrained length of cable members. The sensitivity of displacement with respect to the un-
strained length of cables is derived to solve the above problem. And the proposed method will
be applied to the Incheon Bridge to verify the validity and effectiveness.
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And the other one is system identification. In case the only cable adjustment system can not
control the cable tension and geometry within the allowable limits due to the inaccuracy of the
assumed analysis model of the bridge, the system identification scheme is utilized to update the
properties of analysis model. The system parameters such as section moduli of cables, self-
weight of girders are estimated by solving minimization problem. The error function is defined
as the least square errors between calculated configuration by assumed analysis model and
measured ones. A regularization scheme is adopted to alleviate the instability of minimization
problem.

The sensitivity analysis for cable length adjustment and system identification is evaluated by
the direct differentiation of the equilibrium equation of nonlinear structural system. The sensi-
tivity of displacements with respect to the unstrained cable length is derived in this paper.

2 GEOMTRY CONTROL SYSTEM
2.1 Cable length adjustment
The cable length adjustment represents the method which eliminates deviation between the ob-
ject and actual structure by changing the length of cables. After adjusting the cable length, the
residual displacement error at the i-th node can be expressed like this:
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where ei , c
ix  and A

ix  represent the residual configuration error, the target configuration and the
configuration of actual structure generated after adjusting the length of cables, respectively, and

0L  and 0LΔ  denote the design values of unstrained cable length and the adjusting amount of
unstrained cable length vector, respectively. The amount of unstrained cable length is the thick-
ness of the shim plate to be added or removed at the end of the cables. In equation (1), the su-
perscript A represents the unknown model that can describe the behavior of the actual structure.

The amount of the adjusting cable length that can minimizes the residual configuration errors
overall is calculated by solving the following optimization problem.
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where nm, min0 )( LΔ  and max0 )( LΔ  denote the number of measured points, lower bound and up-
per bound of the shim plate thickness, respectively.

The minimization problem given in equation (2) may yield meaningless solutions in optimi-
zation process due to the instability, which is triggered the measured configuration polluted by
noise. In other words, the solution that minimize the residual configuration errors can give the
tension of cables out of the target range. The regularization technique is considered to overcome
the instability. In the regularization technique, adding a positive definite regularization function
modifies the original objective function. In the next section, the regularization scheme will be
introduced in detail. A modified minimization problem with the regularization function is de-
fined as follows:
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where λ is the regularization factor and 2|||| ⋅ .represents the 2-norm of a vector. The regulariza-
tion effect is controlled by the magnitude of the regularization factor. Among the solutions ob-
tained from the some regularization factors, the engineer’s decision is required to choose the
best solution.

Since the optimization problem is the non-linear problem, the quadratic sub-problem of (3) is
defined as
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Figure 1. The procedure of the cable length adjustement

0
0

00000

2

max00min0000

))((),)((

)()( tosubject])(
2
1[Min

0

L
L

L
G

LLLL
H

LLLLGLIHL
L

∂
∂

−=
∂
Π∂

=
∂
∂

∂
∂

=
∂∂
Π∂

=

Δ≤Δ≤ΔΔ+Δλ+Δ=Π
Δ

A
ic

i
A
i

A
i

A
i

T

xxxxx
(4)

where H and G are the Gauss-Newton Hessian matrix and the gradient vector of the error func-
tion, respectively.

The Gauss-Newton Hessian matrix in equation (4) consists of the sensitivity of displacement
with respect to the current unstrained cable length. The sensitivity of displacement has to be
obtained from the model that can express the actual response of the bridge, but the exact model
of the bridge is unknown model. So, this study assumes that the displacement sensitivity of the
actual model is almost same with the sensitivity of the analytical model. And the gradient vector
in equation (4) requires the initial configuration before adjusting cable length. It can be obtained
by measuring the actual behavior of the structure.
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where m
ix  represents the measured configuration of the structure.

Because of the assumption in equation (5), the actual displacements after adjusting the cable
length can have the difference with the ones that becomes to be. In that case, additional cable
length adjustment is required. Figure 1 shows the series of the process to adjust the cable length.

2.2 System identification
In cable length adjustment, there is an assumption that the behavior of a bridge is almost same with
the behavior of the analytical model. That assumption also contains the errors and the errors are
accumulated and amplified through complicated construction steps. In case only the cable length
adjustment can not control the configuration of a cable-stayed bridge because of the assumption in
equation (5), error factors can be identified and quantified by the system identification method.
This permits the prediction of the final construction state for the bridge and thereby makes cable
tension adjustment precise, reducing camber error or member force error.
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The unknown system parameters of the system identification are identified through the fol-
lowing minimization of the least-squared error between calculated and measured configuration
at observation points.
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where ix , X , min)(X  and max)(X  are the configuration which is calculated by the analytical
model, system parameter vector, the lower bound of the system parameters and the upper bound
of the system parameters, respectively. Although the equation (6) seems to be similar with
equation (2), there is definite difference. In equation (2), i.e. the cable length adjustment, the
unknown variable is the cable length adjustment of actual cable-stayed bridge, not the cable
length adjustment of analysis model. But in equation (6), i.e. the system identification, the un-
known variable is the system parameter (e.g. the cable length) of analysis model. The system
parameter will be modified to describe the actual behavior of the bridge by the system identifi-
cation.

The parameter estimation method defined by a minimization problem as (6) is a type of ill-
posed inverse problem, which suffers from instabilities such as non-existence, non-uniqueness
and discontinuity of solutions. The instabilities are triggered when measured data are incom-
plete and polluted by noise. Because of the instabilities, the minimization problem given in
equation (6) may yield meaningless solutions or diverge in optimization process. The regulari-
zation technique is considered to be a rigorous way to overcome the ill-posedness of inverse
problems. In the regularization technique, the original objective function is modified by adding
a positive definite regularization function. For successful system identification, a proper regu-
larization function, which clearly defines characteristics of problems, should be selected.

The regularization can be interpreted as a process of mixing the a priori estimates of system
parameters and the a posteriori solution. The baseline properties are selected as the a priori es-
timates of the system parameters in this study. The a priori estimates are taken into account in
the problem statement of inverse problems by adding a regularization function with the a priori
estimates of the system parameters to the error function. The regularity condition of the solution
space can be weakly imposed by adding the following regularization function to the output error
estimator of equation (6).
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where 0X  denote the a priori estimates of system parameters. Equation (7) is referred as the
standard Tikhonov regularization function.

By adding the regularization function normalized by the a priori estimates to the minimiza-
tion problem of equation (6), a regularized system identification problem is written in the fol-
lowing form.
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where λ is the regularization factor. The regularization effect diminishes for a small regulariza-
tion factor while the regularization function dominates for a large regularization factor. In either
case, the minimization problem (8) is unable to find meaningful system parameters due to insta-
bilities or dominant regularization effects on the system parameters. Therefore, the selection of a
proper regularization factor is very critical for the stability and accuracy of the solution of equa-
tion (8). The optimal regularization factor can be determined by the geometric mean scheme
(GMS) proposed by Park et al. 2001. In the GMS, the optimal regularization factor is defined as
the geometric mean between the largest and the smallest non-zero singular value of the sensitiv-
ity matrix.

It is important to decide which one will be the system parameter that is unknown variables in
system identification problem of the cable-stayed bridge. The system parameter of a cable–stay-
ed bridge can be the elastic modulus of tower and girder or the tension of stayed cable. By the
sensitivity analysis of the displacement at the girder, it is identified that the elastic modulus of
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tower and girder has little effects on the behavior of the bridge. Since the cable structures like
cable-stayed bridges resist the external force almost by the cable member force, the tension of
cable is a dominant variable to define the configuration of a cable structure. And the tension of
cables is affected by the unstrained length and elastic modulus of the cable. Because it is esti-
mated that the unstrained length of cable has a little fabrication error, this study defines the sys-
tem parameter as the elastic modulus of the cable in the system identification problem.

Now the system identification to estimate the elastic modulus of the cable is defined as fol-
lowing minimization problem.
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where L , 0L  and 1  represents the cable length to estimate, the design cable length and a co-
lumn vector which has unit values in all the components, respectively, and min)(L  and max)(L
denote the constraints of the minimization problem in equation (9). 2

2|||| m
ix  is normalizing factor

to make error function have non-dimensional value. Although the system parameter to estimate
is the elastic modulus of the cable, the minimization problem in equation (9) is evaluated to es-
timate the length of cable members. This has an advantage to use the same sensitivity analysis
results which is used to solve the problem of cable length adjustment. And the a priori estimates
of the cable length are imposed as the design cable length.

The equation (9) is written in the following form by using the normalized quantity ξ .
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Figure 2. The procedure of the system identification
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where ξ  represents the 0/LL . And equation (10) can be expressed in matrix form as follows
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After calculating the length of cable by solving the optimization problem in equation (11), the
elastic modulus of cable member is obtained from solving the equilibrium equation of cable
element with calculated cable length. With updated elastic modulus of cable members, solve the
equilibrium equation of the cable-stayed bridge and the optimization problem in equation (11)
again until the convergence criteria enters the tolerance (see Fig. 2.).

The proposed system identification of cable-stayed bridge brings the modified elastic modu-
lus of cable. After calculating the cable length to satisfy the target configuration with the modi-
fied properties of the cable, the difference with designed length of cable will be the amount of
adjusting cable length.

2.3 Sensitivity analysis
To solve the above optimization problem, the sensitivity analysis has to be evaluated. The sen-
sitivity of displacement with respect to the unstrained length of cable is evaluated by direct dif-
ferentiation of equilibrium equation. The direct differentiation method will give the accurate
sensitivity to help get the exact solution and converge rapidly in the optimization problem.

The equilibrium equation of steel cable-stayed bridge can be expressed by

( ) PLuLFuK =+ )(, 00
cF (12)

where FK , u , cF  and P  are stiffness matrix of a frame structure, displacement vector, cable
member force vector and the load vector, respectively. The tension of cable members is defined
as an unstrained length of cable element and the displacement which is generated by the un-
strained cable length. In case of the steel cable-stayed bridge, the stiffness matrix of the frame
structure is not affected by the unstrained length of cables.

The sensitivity of the displacement is obtained by the direct differentiation of Eq. (12) with
respect to the unstrained length of the cable.
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The sensitivity of the external load with respect to the unstrained cable length is zero because
the external load is not a function of cable length. From the Eq.(13), the sensitivity of the dis-
placement is expressed as follows:
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where cK  is stiffness matrix of a cable structure.

3 APPLICATION
The proposed method is applied to the construction of the cable-stayed bridge part of the
Incheon Bridge do demonstrate its validity and effectiveness.

The Incheon Bridge, which will link the recently completed Incheon International Airport
(based on Yongjong island) and the international business district of New Songdo City (second
bridge crossing), started construction in June 2005. When the bridge is completed in 2009 (52
months) it will be longer than the current Seohae Bridge (the first bridge crossing) and will be
among the five longest bridges of its kind in the world.
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Figure 3. General view of the Incheon Bridge

The bridge will be a 12.3km (7.4-mile) toll bridge that will link the Seoul–Incheon express-
way with the Seohaean expressway, to shorten the journey time from Incheon airport to the me-
tropolitan districts of Seoul by 40 minutes. The bridge is expected to cost over $1.4 billion but
is expected to stimulate economic development by improving logistics for Northeast Asia.

The most difficult part of the construction will be the cable-stayed bridge portion lying over
the main sea route in and out of Incheon Port. The main span of the bridge will measure 800m
and the height of the main tower will stand at 230.5m. The main bridge will have a vertical
clearance of 74m (242ft) and five span lengths of 80m, 260m, 800m, 260m and 80m like Figure
3.

Under the construction of the cable-stayed bridge, the geometry of the bridge is controlled by
applying the cable length adjustment. Every construction step will check the geometry of the
bridge. At each side spans, there are 9 points to measure the configuration and there are 7 points
to measure the configuration of tower. The tension of the 8 cables which is included the 4 cables
which is constructed in this step and the 4 cables which is constructed lately before step will be
measured. In case the error of geometry exceeds the tolerance, the 4 cables which is constructed
in this step will be adjusted as much as the calculated amount by the equation (4).

In case the errors of the assumption in equation (5) are accumulated and amplified through
the construction steps, the system identification will apply to update the analytical model. Ac-
cumulated information over the prior construction steps will be used for system identification.

The results applied the construction of the cable-stayed bridge part in Incheon Bridge will be
introduced the presentation in the IABMAS’08.

4 CONCLUSION
An integrated system for the construction error control of cable-stayed bridges is developed in
this study. The geometry control system is consisted of two methods which are cable length
adjustment and system identification. Just by adjusting the length of cables, the configuration of
the cable-stayed bridge can satisfy the target configuration easily. The amount of cable length
adjustment is calculated by optimization method to minimize the errors between the designed
and measured configuration overall. And system identification modifies the system parameter of
the analysis model. Then, the updated analysis model can describe the behavior of the actual ca-
ble-stayed bridge.

The proposed method will be applied to the construction of the Incheon Bridge. The con-
struction of the cable-stayed bridge part in the Incheon Bridge is in progress. Erecting girders
and tensioning cables will starts at March 2008 and the proposed method will be applied under
the construction.

The proposed method is formulated as optimization problems. And to solve the optimization
problems, sensitivity analysis is evaluated. Therefore the proposed can be applied to the differ-
ent type of bridges but also steel cable-stayed bridges once the sensitivity analysis of the bridge
is evaluated.
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