
1 INTRODUCTION 
Cable-supported structures are appropriate structural type for large-scale structures such as 
long-span suspension bridges and cable-stayed bridges. As cable-supported structures become 
larger and longer, dynamic problems caused by the rain-wind induced vibration and vortex vi-
bration can be an important issue to design the bridges. This is because the inherent cable damp-
ing ratio is very low. Since the damping characteristics of the cable are different from other 
members, the accurate estimation of the cable damping ratio is important in designing damper 
and dynamic analyzing of cable-structures. 

Logarithm decrement method and energy based estimation method are only applied in free 
vibration test. However, the damping ratio may be changed with respect to applied loading con-
dition. Therefore, the damping ratio under forced vibration should be estimated accurate as well 
as the damping ratio under free vibration for designing cable structure. 

This paper describes a study to estimate the damping ratio of the stay-cable, based on a sys-
tem identification scheme in time domain using reconstructed displacement. Since the accelera-
tions have instabilities with loading condition and are very sensitive compared with the 
displacements, the direct use of measured acceleration data to SI problem is difficult. However, 
the displacements of the cable are difficult to measure caused by support problem to fix the 
measuring device. The displacements are reconstructed using measured acceleration data 
through displacement reconstruction technique proposed by Hong et al. Displacement is calcu-
lated by linearization of equation of motion and discretization by finite element method. Lin-
earized incremental equation of motion is integrated by Newmark-β method. Displacement is 
defined as the relative position between the current position and the position when the cable is 
loaded by its own self-weight. The validity of the proposed method are demonstrated through a 
laboratory test of the stay-cable. The damping ratios of force vibration and that of free vibration 
are estimated. 
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ABSTRACT: This paper proposes a method to estimate the damping ratio of the cable, based on 
a system identification scheme in time domain using measured acceleration data. The displace-
ment is reconstructed by using measured acceleration data. The error function is defined as the 
time integral of the least square errors between the reconstructed displacement and the calcu-
lated displacement by a mathematical model. The Rayleigh damping model is adopted to esti-
mate the damping parameters. Rayleigh damping yields a linear fit to the actual damping of a 
structure. A regularization technique is used to alleviate the instabilities of SI. The validity of 
the proposed method is demonstrated by an experimental study. 
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2 DYNAMIC ANALYSIS OF CABLE 
2.1 Dynamic equation of cable and variational statement 
Figure 1 illustrates two-dimensional cable element with unstrained length 0l . The Lagrangian 
coordinates s of undeformed shape moves to the Lagrangian coordinates p(s) of deformed shape 
when the cable element undergoes deformation due to the self weight ws. A particle located in 
Lagrangian coordinate s at undeformed state is located in Cartesian coordinate xe after deforma-
tion. p(s) is defined as a cable length from origin to Lagrangian coordinate s after deformation. 
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The relation of p and s can be obtained by differentiation of Eq. (1). 
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Figure 2 shows the free body diagram of cable segment. Equilibrium equation is expressed by 
cable tension as follows. 
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where, T is a tension at p(s) and 11 , yx FF  represent x- and y- component of e
1F , respectively. 

xf , yf  and q represent external loads and self-weight of the cable per unit unstrained length. 
In case the cable strain is relatively small, the cable strain is defined as follows. 
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By Hook’s law, cable tension is expressed as follows. 
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where E and A represent Young’s Modulus and cross-sectional area of cable. ) ( ′  represents a 
differentiation with respect to Lagrangian coordinate s. Substitution of Eq. (5) into the differen-
tiate of Eq. (3) yields the following equilibrium equation expressed by tension and unstrained 
length. 
 
 
 
 

 
Figure 1. Coordinates of elastic catenary cable element. 
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Figure 2. Free body diagram of cable segment. 
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Using the variational approach, Eq. (6) can be expressed by weak form as follows. 
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Integration by parts of the first term of Eq. (8) and boundary condition yields the following final 
variational statement of equation of motion as follows. 
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2.2 Linearization and discretization of dynamic equation 
Dynamic responses of cable such as acceleration and coordinate are calculated by solving non-
linear equation of motion Eq. (8) and using given initial condition. At time t+Δt, Eq. (8) is ex-
pressed as follows. 
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Assuming all parameters of time t are already known. To derive linearized incremental form of 
equation of motion, coordinate and tension are expressed by incremental form. 
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The term related to tension of Eq. (9) can be linearized by Taylor expansion. 
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Substitution Eq. (10) and Eq. (11) into Eq. (9) yield the linearized incremental equation of mo-
tion. 
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where, I is a identity matrix, ),( yx=x  and Dc represents tangent stiffness matrix. 
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Coordinates are interpolated by finite element method as follows. 
eeeeee XX NxNx δ≅δΔ≅Δ    ,  (14) 

Final incremental equation is expressed by substitution Eq. (14) into Eq. (12) and assemble of 
all elements. 
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where, XΔ  and X&&Δ  represents a nodal coordinate and a nodal acceleration, respectively. 
cM , cK  and fΔ  is mass matrix, tangent stiffness matrix and unbalanced force of cable as 

follows. 
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The equation of motion Eq. (15) is integrated with the Newmark-β method. The integration con-
stants of the Newmark-β method, β=1/2, γ=1/4, are used. 

3 SYSTEM IDENTIFICATION 
3.1 Displacement Reconstruction scheme 
In this research, reconstructed displacement is utilized to system identification scheme instead 
of measured acceleration. In case the cable is excited by sudden release of concentrated load, 
measured accelerations include many high frequency components caused by bending motion. 
Because the applied cable model in chapter 2 can not be considered the bending motion of ca-
ble, the accelerations calculated by mathematical model may not be accurate. In contrast, The 
measured acceleration only includes lower modes, the applied cable model can be proper. Since 
the displacements caused by bending motion are relatively small compared with accelerations, 
reconstructed displacement is used instead of measured acceleration in this study. Reconstructed 
displacement can be obtained by solving minimization problem as follows. 
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where, u , Δt, a  and 2  ⋅  represents reconstructed displacement, time interval, measured 
acceleration and 2-norm of a vector, respectively. La denote linear algebraic operator matrix and 

caLLL = . La, Lc and u  are shown in reference by Hong. λ represents a regularization factor, 
which adjusts the degree of the regularization in the minimization problem. Well-balanced regu-
larization factor should be selected to obtain physically meaningful and accurate displacements. 
Optimal regularization is determined by the following power function. 
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where N=n+1 is the number of data points. 
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The minimization problem in Eq. (17) forms a quadratic problem with respect to the unknown 
displacement vector, and thus the solution of Eq. (17) is given analytically as 

212
opt )()λ( ta

TT Δ+= − aLLILLu  (19) 

where I is the identity matrix of order (n+3). 
The reconstruction of displacement is performed sequentially in each time window. The re-

constructed displacement at the middle of each time window is taken as the solution of the cur-
rent time window. Once the solution of the current time window is determined, the time window 
advances forward to reconstruct the displacement at the next time step. 

3.2 System Identification Scheme 
Damping coefficient can be estimated by solving optimization. 
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where u~ , u , Xc and RΠ  denote calculated displacement by a mathematical model, recon-
structed displacement with measured acceleration, system parameter vector and regularization 
function, respectively. System parameter vector consists of a0 and a1 in Rayleigh damping 
model. In general, displacement can not be defined because no unique undeformed configura-
tion corresponding to the equilibrium configuration. In this study, displacement is defined as the 
relative position between the current position and the position when the cable is loaded by its 
own self-weight. The initial conditions and applied load should be known to calculate a dis-
placement by a mathematical model. 

First term of the Eq. (20) represents the error function and second term represents the regu-
larization function. The SI scheme defined by the minimization problem Eq. (20) is a type of ill-
posed inverse problem. In case measured data are polluted by noise, ill-posed problems suffer 
from instabilities. To overcome these instabilities, the regularization technique is employed. In 
this paper, Tikhonov regularization scheme is used and the regularization function is defined as 
follows. 
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where λ is regularization factor, which adjust the degree of regularization effect. (Xc)0 is a base-
line values of the system parameters. Determination of the regularization factor is very impor-
tant in obtaining stable and physically meaningful solution. Regularization factor is determined 
by using geometric mean scheme as follows. 

minmaxopt SS ⋅=β  (22) 

where, Smax and Smin is the maximum singular value and the smallest non-zero singular value of 
sensitivity matrix of the object function. 

The optimization problem Eq. (20) is nonlinear with respect to parameters, the recursive 
quadratic programming is utilized. 

3.3 Damping modeling 
It is a difficult task to model real damping properties of real structures. In Rayleigh damping 
model, a damping matrix is defined as a linear combination of mass matrix and stiffness matrix 
as follows. 

saa KMC 10 += . (23) 

where, M and Ks represents mass matrix and tangential stiffness matrix subjected to its own 
self-weight, respectively. Tangent stiffness matrix of cable structure is not uniquely defined be-
cause the cable shows nonlinear behavior with respect to position. In the case of free vibration, 
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stiffness repeats increase and decrease based on stiffness subjected to self-weight. However the 
stiffness and the damping matrix can be assumed approximately constant in the case of taut ca-
ble. That’s reason why it is reasonable that usage of tangential stiffness matrix subjected to self-
weight. 

Once a0 and a1 are estimated by system identification scheme, modal damping ratios of each 
modes can be calculated as follows. 
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where, nω  represents natural frequency of nth mode. 

4 EXAMPLE 
The validity of the proposed method is demonstrated through a laboratory test. The stay-cable 
for experiment and the experimental setups, the geometry and the boundary conditions of cable 
are shown in Figure 3. The material properties of cable are given in Table 1. The tension of ap-
proximately 300KN is applied to the cable, and the first natural frequency is 1.48Hz. The ex-
citer generates vertical forces by two rotating masses. The mass of exciter and the rotating mass 
are 14.58Kg and 0.46Kg, respectively. The cable is excited by its fundamental frequency to in-
duce the resonance of the cable for 41.25sec, and the cable is vibrated freely until 150sec. Three 
accelerometers and one LVDT are installed as Figure 3. The acceleration is measured at the 
sampling rate of 100Hz. 

The estimation of damping ratio is performed by two part. The accelerations of excited vibra-
tion part are used in first estimation, and those of free vibration part are used in second estima-
tion. It is because that damping ratio during excitation can be different from the damping ratio 
during free vibration. Once the damping parameters of force vibration part are identified, the 
displacement and velocity at t=41.25sec are evaluated, and used as the initial conditions of free 
vibration part. The experiment is carried out three times. The estimated modal damping ratio is 
compared with the damping ratio estimated by logarithmic decrement method as follows. 
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where ζ and uj represents the modal damping ratio and displacement of jth peak. 
Figure 4 represents measured acceleration at the center of the cable and Figure 5 represents the 
reconstructed displacement and calculated displacement by using estimated damping coeffi-
cients at the middle point of cable. To distinguish two data, the calculated displacement is 
shown as the envelop curve. The calculated displacement agrees well with the reconstructed 
displacement. 

Table 2 shows modal damping ratio calculated by Eq. (24) using estimated Rayleigh damping 
coefficients. The damping ratios for forced vibration are about 72% of those of free vibration. 
This fact should be considered carefully for the design of cables against wind. The damping ra-
tios for free vibration is similar with the damping ratios estimated by logarithmic decrement 
method.  
 
 
Table 1. Cable Property.  

Young’s Modulus 
(KN/mm2) 

Mass per unit length 
(Kg/m) 

Effective sectional area
(mm2) 

Unstrained length 
(m) 

200 20.3 2348 44.304 
 

 
Table 2. Modal damping ratio from estimated Rayleigh damping coefficients.  

 Exciting 
(%) 

Free Vibration 
(%) 

Logarithmic Decrement 
Method (%) 

test #1 0.108 0.139 0.140 
test #2 0.084 0.147 0.155 
test #3 0.082 0.138 0.139 
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Figure 3. Cable experimental setup of a stay cable and its numerical model. 
 
 

 
Figure 4. Measured acceleration at middle point of cable (test 2). 
 
 

 
Figure 5. Reconstructed displacement and calculated displacement at middle point of cable (test 2). 
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5 CONCLUSION 
This paper presents a system identification scheme to estimate the damping characteristics of 
cable using measured acceleration data. The damping properties are estimated through the 
minimization of the least squared errors between reconstructed displacement with measured ac-
celeration and calculated displacement by a mathematical model. The displacement reconstruc-
tion scheme proposed by Hong is employed to reconstruct the displacement with the measured 
acceleration. Displacement is calculated by linearization of equation of motion and discretiza-
tion by finite element method. Linearized incremental equation of motion is integrated by 
Newmark-β method. Displacement is defined as the relative position between the current posi-
tion and the position when the cable is loaded by its own self-weight. Rayleigh damping is em-
ployed to approximate the damping properties of the cable. Regularization scheme is used to 
overcome the instabilities of inverse problems. The optimal regularization factor is determined 
by geometric mean scheme. 

The validity of the propose method is demonstrated through laboratory experiment. The 
forced vibration test is performed. The estimated modal damping ratio is compared with the 
damping ratio by logarithmic decrement method. The damping ratio is estimated using dis-
placement for forced vibration and free vibration, separately. The damping ratios for forced vi-
bration are low compared to those of free vibration. This means that the damping ratio estimated 
by free vibration may be overestimated. This fact should be considered very carefully for the 
design of cables against wind. 
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