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Abstract 

Muhammad Tahir Bashir 

Department of Civil and Environmental Engineering 

Seoul National University 

A structure can observe severe loading conditions during its life span which 

can cause damage to the structure. It has become very important to study the 

behavior of structures under normal and abnormal conditions to monitor the 

health of the structure. There is a lot of research going on the damage 

identification, localization and assessment. Autoregressive model is used to 

detect the damage in the structure. Covariance between autoregressive 

coefficients and residual of measured and calculated acceleration is proposed 

as a damage feature. 

Non Modal based Scheme is used for structural health monitoring and 

measured acceleration data from the sensors is utilized here. Initially data is 

in time domain which is then converted to frequency domain by applying the 

transfer function. Non Causal filter is designed to filter the lower frequencies 

which are resulted by perturbations, operational and over loading conditions 

of traffic. 
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As we have the measured signals from the structure, which contains some 

noise and perturbation resulted by environmental effects, so to remove those 

perturbations time Windowing Technique is employed. Because those 

environmental changes occur in long duration of time, while the time 

window size is so small that, it remains constant in each time window. 

An algorithm has been developed to find the damage feature in real time. 

Two span truss bridge is analyzed for damage detection; a damage scenario 

is created by reducing the area of the truss members. Loading of the truck, 

car and bus is applied normally and then increasing the loading to study the 

damage. Algorithm captured both the damage location and timing.  

Extreme value distribution is utilized for an accurate selection of outliers 

because extreme value distribution is well established for tail distribution. 

Threshold value based on optimal sample size and significance level is 

determined. Some mistakes in previous study to determine the threshold 

value are also highlighted in this paper. 

A simplified approach is adopted to get the optimal sample size against each 

significance level. Observation and monitoring time is also studied to see the 

effects on the threshold value. Limited available data cannot predict the 

actual situation of the bridges, which are designed for hundred years. So at 
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least one year observation period should be taken to predict the behavior of 

bridge which is designed for a century. 

 

Keywords: Damage Detection, Time window, Autoregressive Model, 

Damage Feature, Non Causal Filter, Threshold value,  Extreme value 

distribution.  

Student Number: 2008-23538  
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1 Introduction 

1.1 Problem Statement 
 
A structure can observe a severe loading condition in its life span which can 

cause damage to the structure. It has become important to study the behavior 

of structures under normal and abnormal conditions to monitor the health of 

the structure. Significant work has been done in the area of detecting damage 

in the structure and its health monitoring by using the changes in the dynamic 

response of structure. Because natural frequency and mode shapes of structure 

are dependent on the mass and stiffness distributions, many subsequent 

changes in them should theoretically, be reflected in frequency and mode 

shape of structure.  

Structural damage may be defined as any deviation of geometric or 

material property defining a structure that may result in unwanted response of 

the structure. A solution to this problem is important for at least two reasons, 

firstly damage localization and severity estimation are first two steps in the 

broader category of damage detection, secondly, a timely damage assessment 

could produce desirable consequences such as saving of lives, reduction of 

human suffering, protection of property, increased reliability, increased 

productivity of operation and reduction in maintenance cost. 

 Despite these research efforts, however, many problems related to 

vibration based damage detection remain unresolved today. Outstanding need 

remain to locate and estimate the severity of damage in the following cases 

 

a) In structures with only few available modes  

b) In structures with many members  

c) In structures for which baseline modal responses are not available and  
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d) In environment of uncertainty associated with modeling, 

measurement and processing errors. 

Many designed structures don’t consider the unexpected severe loading and 

structural defects in material which can result the damage of the structure 

during its use. Some times improper intention to local damages or improper 

maintenance can also cause failure of the structure. So it is important to 

constantly monitor the structure and pay the attentions to the changes while its 

service life. 

Until now the structural damage was accessed by visual inspection by experts 

or some non destructive methods were used, but due to emergence and 

development of new technologies some automated damage assessment 

techniques and systems are becoming more popular. It also decreases the 

maintenance cost and especially for the cable supported bridges it is not 

possible physically to monitor each component of structure. So automated 

systems are being developed and employed to monitor the health and behavior 

of the structures. 

Basically for damage detection of the structure there are two modeling 

techniques 

(1) Structural Model Based Scheme (SMBS) 

(2) Non -Structural Model Based Scheme (NMBS) 

In structural model based scheme stiffness, damping and mass information are 

used and system parameters are estimated by inverse analysis based on the 

sensitivity method from a mathematical model. Structural model based system 

is a type of inverse problems, which are usually ill posed problem. An ill-

posed problem is characterized by the non-uniqueness, non- continuous and 

instability solutions. Various regularization techniques have been developed 

to eliminate this ill-posedness of inverse problem. In spite of this, ill-

posedness can be alleviated by regularization techniques successfully, model 

based system identification schemes are not applied in real situation because 
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of modeling error i.e.  Difference between mathematical model and real 

structure. In regularization technique an additional constraint on the system 

parameters is imposed which is referred to as regularization function, which is 

imposed to the original minimization problem defined by the error function.. 

It is very important to define a proper regularization function that is able to 

describe characteristics of a SI problem in hand. Recently, a lot of structural 

health monitoring algorithms with statistical pattern recognition using purely 

measured signals has been attempted in center of Los Almos National 

Laboratory in USA. System identification is further divided into time domain 

and frequency domain. Mostly structural dynamic behavior is measured in the 

form of acceleration in time domain and then it is transformed to frequency 

domain. Due to the ease in handling the frequency domain SI algorithms are 

developed and applied. Actually both approaches have some merits and de 

merits and limitations. 

Non structural model based health monitoring consists of four steps which is 

Data acquisition from sensors of structure, data transmission, data analysis 

using measured data for damage detection and decision making, whether the 

considered structure is sound or not. In spite of rapid progress of sensor and 

IT technology, rigorous damage detection algorithm did not be proposed. 

Therefore so many measured signals obtained from various structures cannot 

be used for structural health monitoring. This study is based on non model 

based damage detection. 

The autoregressive model is utilized to study the non structural model based 

problem. Autoregressive model was used by Yule for the first time to explain 

the changes and periods of sunspot from simple trigonometric identity. 

Autoregressive model can be extremely useful in the representation of certain 

practically occurring time series. In this model current value of the process is 

expressed as a finite, linear aggregate of previous values and shock. 
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Various non structural models based structural health monitoring algorithms 

using static or dynamic responses have been proposed. But the main problem 

of structural monitoring is how to handle noises in measured signals, whereas 

measured signals contain a mix of information related to both the damage in 

the structure and the perturbations due to the environmental changes. The 

autoregressive modal with time windowing technique is employed to 

overcome the perturbations of measured signals. Auto regressive model with 

self assessment of the general process of structural soundness is shown in fig 

1.1. First the sensor is placed in the target structure and data is acquired in 

time series. Measured data may include displacement, velocity, acceleration 

and strain etc but here we are only using acceleration data. That acceleration 

data contains the information about the structural behavior which is analyzed 

by algorithm developed on autoregressive technique and damage indication 

are made by setting the level of significance. 

As mentioned before that measured acceleration data may contain some white 

noise which should have to be a parted from the true response of the structure. 

It is noted that the environmental effects are related to some time lapse, so a 

time windowing technique is employed. In this technique the auto regressive 

model is estimated sequentially using measured data within a finite time 

period. Time window advances forward at each time step to update 

autoregressive model repeatedly. Perturbation due to environment changes, 

take places gradually during a long time period and time window size is 

relatively smaller so environmental changes can be neglected within time 

window. 
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Figure 1.1 Autoregressive Model Based Damage Detection Scheme 

 
Making decision whether the considered structure is sound or not using 

damage features from each sensor in every time step is also very 

important. The extreme value distribution is utilized to detect outliers 

because damage information almost lies in the tail of distribution and 

extreme value is well established for tail distribution. Threshold value 

which 

1.2 Previous Research 
 
Previous research on the damage detection by autoregressive model was done 

by kang [PhD thesis Feb 2008] and Park [MS thesis 2010] their approach to 

the topic is mentioned below 

1- Causal filter in time domain 

Kang done his study on the damage detection by measured acceleration data 

in time domain and he utilized the causal filter for damage detection. In his 

study he utilized the previous value of acceleration data to predict present 
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value He used covariance between the autoregressive coefficients and residual 

between measured and calculated acceleration as a damage feature. He 

worked to get some reasonable sample size which can be used in real time 

monitoring and also give prominent damage feature.  

2- Non Causal filter in frequency domain. 

Park used the same damage feature i.e. covariance between autoregressive 

coefficients and residuals but he used the transfer function to convert the kang 

proposed damage feature in frequency domain. In non causal filter present 

value of the function is determined by previous and future value of the 

measured data. He improved the damage feature and damage instant from 

where one can get the location of the damage. He suggested the sample size of 

600 for damage feature.  

1.3 Goal and objective 
 
In non structural model based damage detection technique, the biggest 

problem is to handle the noise in measured data. The causes of noise may be 

due to temperature or environmental factors, error from measurement of data 

and sensors functionality problem. Many researchers are finding it difficult to 

isolate the wrong signals sent by noise and they are providing better 

techniques to tackle this issue. Although there is a rapid development and 

improvement of sensor technology, yet the presence of noise in the measured 

signals cannot be removed perfectly. 

Autoregressive model in time domain and frequency domain will be used to 

study the damage feature and similarly Causal and non casual filter will be 

studied and comparison of the results will be made to follow the unique 

technique. Time windowing technique will be used to nullify the effect of 

noise. 
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So this study is mainly related to autoregressive model base damage detection 

and finding the threshold value and try to establish some decision making 

about the damage by studying the threshold value. There is also some 

discussion about observation and monitoring time and false alarm which 

occurs due to non damaged signals. 

1.4  Organization of the Thesis 
 
In chapter 1, introduction about the topic and the previous studies is given and 

the goals and objectives for my studies are set. In chapter 2 time series 

analysis, autoregressive model, impulse response function (transfer function), 

covariance as a damage feature is discussed and mathematical modeling is 

done. In chapter 3 frequency domain autoregressive model is studied. 

Formulation is developed for design of non causal filter and damage feature is 

improved in frequency domain. 

In chapter 4 extreme value theory and extreme value distribution is studied to 

get the threshold value and decision making about damage or non damage of 

the structure.  In chapter 5 damage detection algorithm is applied to 2 span 

bridge  and results are obtained, which shows the detection of damage and 

threshold value for different sensors, set at different nodes at the truss bridge. 

In chapter 6 conclusion about the study are derived and some discussion is 

made on further studies.  
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2 Time Series Analysis 
 
Time series is a sequence of data points, measured at successive times spaced 

at uniform time intervals. time series analysis comprises methods for 

analyzing time series data in order to extract meaningful statistics and other 

characteristics of the data, by using time series analysis we can forecast future 

events based on known past events to predict data points before they are 

measured. They are basically two methods for time series analysis one is 

based on time domain and the other is on frequency domain. So we will study 

both of them to see the effect on the damage feature and other system 

parameters. Frequency domain includes spectral analysis and wavelet analysis 

while the time domain analysis include auto-correlation and cross co- relation 

analysis. The ultimate goal of the time series analysis is to predict the future. 

As shown in the figure 2.1 based on time series data from the previous pattern 

we can predict function for future values within the limits. To assess degree of 

confidence in predictions based on time series statistical distribution can be 

best estimated. 

     Estimates are made on the desired confidence level while setting the upper 

and lower limits on the both sides of the forecasting function. Previous time 

series data to identify patterns of input data and output data indicating the 

relationship between advancing transfer function will be used. There are 

different approaches to model the time series, which depends upon the nature 

of the problem. 
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Lower limit 

 
 
There are obviously numerous reasons to record and to analyze the data of a 

time series. Among these is the wish to gain a better understanding of the data 

generating mechanism, the prediction of future values or the optimal control 

of a system. The characteristic property of a time series is the fact that the data 

are not generated independendetly, their dispersion varies in time, they are 

often governed by a trend and they have cyclic components. Statistical 

procedures that suppose independent and identically distributed data are, 

therefore, excluded from the analysis of time series. This requires proper 

methods that are summarized under time series analysis. 

2.1 Autoregressive Model ( AR Model) 
 
The major episode in the history of development of time series analysis took 

place in the time domain, and it began with the two articles of 1927 by Yule 

and Slutsky. In both articles, we find a rejection of the model with 

deterministic harmonic components in favor of models more firmly rooted in 

the notion of the random causes. In a wonderfully fugrative exposition , Yule 

 

 

Top limit 

 

time 

Prediction 
value 

Reference Time 

Figure 2.1.1 Prediction Function and Boundaries for Ttime Series data 
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invited his readers to imagine a pendulum attached to a recording device and 

left to swing .Then any deviations from perfectly harmonic motion which  

might be recorded must be the result of errors of observations which could be 

all but eominated if a long sequence of observations were subjected to a 

peridogram analysis . Next, Yule enjoined the reader to imagine that the 

regular swing of pendulum is interrupted by small boys who get into the room 

and start pelting the pendulum with peas sometimes from one side and 

sometimes from the other. The motion is now affected not by superposed 

fluctuations but by true disturbances. 

Simple trigonometric functions such as expression 2.1 and the autoregressive 

model which Yule was proposing takes the form as shown in equation 2.2.   

sin( ) 2cos( )sin( 1) sin( 2)kx x k x k x= − − −  (2.1) 

 

( ) ( 1) ( 2 ) ( )y k a yk y k kε= − − − +  (2.2) 

 
Where ( )kε  is a white noise sequence. Now, instead of making the regular 

periodicity of the pendulum, the white noise has actually become the engine 

which drives the pendulum by striking it randomly in one direction and 

another. Auto regressive model for the time series data and statistical analysis 

is the most popular model, in which the combination of current and past value 

at a time step is represented as a white noise  

2.2 Formula for Autoregressive Model 
Regular time interval listed in the time series data for each time 

, 1,......t t t p− −    corresponding to measurement data y(t), y(t-1),  , y(t-p). 

Autoregressive model of order p  can be written as  
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1 2( ) ( 1) ( 2 ) ( ) ( )py t a y t a y t a y t p e t= − + − + + − +  (2.3) 

Here 1 2, , , pa a a  are the coefficients of autoregressive model and ( )e t  is a 

white noise  
 

[ ] [ ] [ ] [ ]1 2( ) ( 1) ( 2 ) ( ) ( )py t a y t a y t a y t p e tµ µ µ µ− = − − + − − + + − − +  (2.4) 

 
Backward shift operator 
 

( ) ( )nq y t y t n− = −  (2.5) 

 
Operational polynomial is given by Equation 2.6 
 

1 2
1 2( ) 1 p

pA q a q a q a q− − −= − − − −  (2.6) 

Operator expression is given by 
( ) ( ) ( )A q y t e t=  (2.7) 

 

2.2.1 Impulse Response Function  and transfer Function  

 
Let u(t) be an input signal and y(t) be the  output signal then the impulse 

response function can be defined as 
 

 0
( ) ( ) ( )y t g u t d

τ
τ τ τ

∞

=
= −∫  (2.8) 

 

∑
∞

=

=−=
1

,2,1,0,)()()(
k

tktukgty   (2.9) 
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( )
1 1

1

( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( )

k

k k

k

k

y t g k u t k g k q u t

g k q u t G q u t

∞ ∞
−

= =

∞
−

=

= − =

 = =  

∑ ∑

∑

 (2.10) 

Where )(qG  is called the transfer function )(tv  

∑
∞

=

−=
0

)()()(
k

ktekhtv  (2.11) 

Where e(t) at time t represents the white noise. Expression 2.11 when applied 

to the output data, it can be expressed in the form of transfer function as 

follows  

)()()()()(
0

teqHteqkhtv
k

k ==∑
∞

=

−  (2.12) 

Finally the expression of transfer function 2.10, 2.12 can be written as follows 

)()()()()( teqHtuqGty +=  (2.13) 

 
 

2.2.2 Transfer Function Model 

 
More generalized transfer function can be expressed as 

)(
)(
)()(

)(
)()()( te

qD
qCtu

qF
qBtyqA +=  (2.14) 

Equation 2.14 is the expression for transfer function model that can be 

generated by the model number of regular expressions A, B, C, and D 

depending upon the combination of five transfer functions which can generate 

32 branches which are mentioned in table 2.1. The model shown in table 2.1 

indicates the weak among the auto regressive process, x is the external input 

component (exogenous input) and MA indicates moving average process. 

ARMA  is the Autoregressive moving average model it is also called box-



 

13 
 

jenkins models and are applied to autocorelated time series. Given a time 

series of data Xt, the ARMA model is a tool for understanding and perhaps, 

predicting future in this series? The model consists of two parts autoregressive 

(AR) part and moving average (MA) part and is written as ARMA(pq). Where 

p is the order of autoregressive part and q is the order of the moving average 

part. 

 

Table 2.1 commonly used transfer function models 

Used polynomials Name of model structure 

A AR 

AB ARX 

ABD 
ARMAX 

AC ARMA 

ABD ARARX 

ABCD ARARMAX 

B FIR (Finite Impulse Response) 

BF OE (Output Error) 

BFCD BJ (Box-Jenkins) 

 

2.2.3 Order of Autoregressive Model 

To determine the order of the autoregressive model is the top priority issue. If 

the order for autoregressive model is small then the model and data can not be 

represented properly. If the order of the autoregressive model is high then it 
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Cana represents the data adequately but gives numerically unstable results. 

Therefore optimal order of autoregressive model adequately represents the 

measured data and model changes. 

While selecting the order of the AR model we should find that order which 

has the minimum residual error between measured and calculated values i.e. 

the minimum value of residual variance is the best way to determine the order. 

However variance of the model generally increases the order of the model 

which cannot give optimal value for the AR order. 

To determine the order of AR model the most commonly used method is auto 

correlation function or partial auto correlation function. These functions 

especially in time series models are useful for identification and diagnosis. 

Continuous Random Variables in time series 2 1, ,t tX X X− −   

tttttt XXXXXX 2112
,,

−−−−
ρρρ  (2.15) 

htthhhthhthht XXXX +−+−++ ++++= εφφφ 2211  (2.16) 

)()2()1()( 21 hkkkk XhhXhXhX −++−+−= ρφρφρφρ   (2.17) 

1 (1) (2) ( 2) (1)
(1) 1 (1) ( 3) (2)

( 1) ( 2) ( 3) (1) ( )
1 (1) (2) ( 2) ( 1
(1) 1 (1) ( 3) ( 2

( 1) ( 2) ( 3) (1) 1

X X X X

X X X X

X X X X X
hh

X X X X

X X X X

X X X X

h
h

h h h h
h h
h h

h h h

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ ρ ρ
ϕ

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ ρ

−
−

− − −
=

− −
− −

− − −





     







     



 

(2.19) 

To determine the optimal order of autoregressive model many researchers have 

proposed various criteria like Akaike final prediction error (FPE) (Akaike 1969), 

Akaike information criteria (AIC) (Akaike ,1974) suggested two ways. AIC is a 

number of measurement data Rissanen AIAc is the number of measurement data, 
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where N is the infinitely large residual variance may occur because of 0 , and is not a 

problem to solve a numerical minimum description length (Rissnen,1983) proposed 

method 

( 1)ˆ[ ]
( 1)p

N pFPE p
N p

σ  + +
=  − + 

 (2.20) 

pNpAIC p 2ˆln][ 2 +σ=  (2.21) 

2ˆ[ ] ln lnpMDL p N p Nσ= +  (2.22) 

Here pσ̂ ,  N,  p  are the residuals , maximum likelihood estimator of the 

variance,  the number of measurement data and order of autoregressive model 

respectively Figure 2.2 is the typical example of correlation function, which 

shows the partial correlation and threshold values for 2 span continuous truss 

structure under the Kobe  ground  earthquake data. Partial correlation function 

which is normally distributed is shown and threshold values are set at 5% 

significance level. 

Fig 2.3 shows the graph between Ardor and RMS of residuals,  from here we 

can see that increasing the order of autoregressive model the RMS values of 

residual values decreases sharply unto order 2 and becomes stable for higher 

values so optimal order can be selected , for example 4 is suitable for the 

above case. 
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Figure 2.3 Residual Mean Square 

2.2.4 Estimation of Autoregressive coefficients 

There are several methods to calculate coefficients of autoregressive model 

which are least square d method, moment method, maximum likelihood, 

Bayesian theory and so on. Least square method is used here because it is very 

simple and clear. Lets the values of the process at equally spaced times t, t-1, 

t-2 .. t-p be y(t),  y(t-1), y(t-2)…….y(t-p). The prediction value from 

autoregressive model of order p can be defined as given below 

 

1 2

ˆ( \ ) [1 ( )] ( )
( 1) ( 2) ( )

( ) ( )
p

T T

y t A q y t
a y t a y t a y t p

t t

= −
= − + − + + −

= =



θ

θ φ φ θ

 (2.23) 

Where  ŷ  represents prediction value from autoregressive model, θ  

represents system parameter vector and φ  represents regression vector 

respectively. 

1 2   [ ]

( ) [ ( 1) ( 2) ( )]

T
p

T

a a a

t y t y t y t p

=

= − − −





θ

φ  (2.24) 

The residuals can be defined as the difference between measured signals and 

prediction values using autoregressive model at each time step 

( ) ( ) ( )Te t y t t= − φ θ  (2.25) 
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The linear object function by least squared method can be obtained as shown 

below 

 2

1

1( ) ( ) ( )
2

N
T

k p
V y k k

= +

 = − ∑θ φ θ  (2.26) 

Where N represents the total number of measured signals. The optimal 

solution of equation 2.26can be obtained by least squared method as shown 

below 
1

1 1

ˆ ( ) ( ) ( ) ( )
N N

T T
N

k p k p
k k k y k

−

= + = +

 
=  
 
∑ ∑θ φ φ φ  (2.27) 

The above equation can be written as ( )NR  which is a PxP matrix and  ( )Nf  

which is vector of order p. 

1
( ) ( ) ( )

N
T

k p
N k k

= +

= ∑R φ φ  (2.28) 

 

1
( ) ( ) ( )

N
T

k p
N k y k

= +

= ∑f φ  (2.29) 

)()(ˆ 1 NNN fR −=θ  (2.30) 

Multiplying equation 2.3 by  y(t-k) on both sides we get 

1 2( ) ( ) ( ) ( 1) ( ) ( 2 )
( ) ( ) ( ) ( )p

y t k y t a y t k y t a y t k y t
a y t k y t p y t k e t

− = − − + − − +
+ − − + −


 (2.31) 

[ ]
1 2( ) ( 1) ( 2 )

( ) ( ) ( ) 0p

k a k a k
a k p E y t k e t k

γ γ γ
γ

= − + − +

+ − + − >


 (2.32) 

[ ] ∑
−

=

+
−

=+=
kN

t

ktyty
kN

ktytyEk
1

)()(1)()()(γ  (2.33) 

0)()2()1()( 21 >−++−+−= kpkakakak pρρρρ   (2.34) 

 
For k=1,2,3……..,p putting the value in equation 2.35 we get  

 
(2.35) 
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 (2.36) 

Equation 2.36 is a Yule- walker equation from there we can get the coefficient 

of autoregressive model  
 

1−= Pρθ  
(2.37) 

Where Pρ   ,  ,θ  are given by the following expressions 

 

1 2

T

pa a a =  θ ,  1 2

T

pρ ρ ρ =  ρ   
(2.38) 
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p

p

ρρρ

ρρρ
ρρρ

P  (2.39) 

This method is suitable for the sufficient amount of data and but generally 

moment method is difficult to use on a small data. In this paper least square 

method is used to estimate the parameter of autoregressive model. 

 

2.3 Time Window Technique 
 

In non structural model based damage detection scheme the main focus is on 

the reliability of the data obtained from the measurement equipments such as 

accelerometer and sensors. The key difficulty in structural health monitoring 

is perturbation of measured signals by unknown effects such as environmental 

and instrumental effects. Measurement errors can be reduced by improvement 

in the sensor technology but perturbation of environment cannot be reduced 

by this way. The change in measured signals occurs gradually due to 

environmental effect such as temperature effect. Even if there is no damage in 
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the considered structure, measured signals can be swayed by environment. 

Every previous method suffered from this difficulty of environmental data in 

laboratory. 

A time window technique is utilized to overcome this problem. Environmental 

perturbations are commonly changed during relatively long time period. In 

autoregressive model with time window technique, the autoregressive model 

is estimated sequentially within a finite time window period. The time 

window overlaps and advances forward at each time step to update 

autoregressive model. Time window size is very small as compared to the 

period of environmental changes so it can be assumed that perturbations of 

measured signals from environment within the time window cannot be 

happened. 

In autoregressive model with time windowing technique , the autoregressive 

model will be estimated sequentially not using all of the signals but measured 

signals within a finite time period which is called time window as shown in 

figure 2.4. 
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Figure 2.4 Outline of Time Window Technique 
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2.3.1 Application of Time Window Technique  

 Time windows as shown in the fig 2.4 are set at each time step and data 

points are included in each time window. Time window contains the time data 

at equal time steps. Number of data points in each time window shows the 

size of time window.  It is also very important to select the optimal size of 

time window, as small time window will take more calculation time, while 

longer time window cannot remove the perturbation of environmental effects. 

So time window moves each time step and predicts the value for next step. So 

at each time step new autoregressive coefficients are predicted as time 

window moves ahead which are τθ̂, 1
ˆ, +τθ ,ˆ, 2+τθ . 

From equation 2.39 we have the object function for the autoregressive model 

i.e. 

 2

( ) 1

1( ) ( ) ( )
2

t
T

k t nw p
V y k k

= − + +

 = − ∑θ φ θ  (2.39) 

Where nw denotes the time window in this time windowing technique which 

is also called causal filter, we predict present value of the autoregressive 

coefficients from the previous values of time data 
1

( ) 1 ( ) 1

ˆ ( ) ( ) ( ) ( )
t t

T T
t

k t nw p k t nw p
k k k y k

−

= − + + = − + +

 
=  
 

∑ ∑θ φ φ φ  (2.40) 

So in autoregressive model with time windowing technique the present values 

of the system is determined when the time window moves ahead, so this 

procedure is repeated for the whole data. In this study time window of size 

hundred is selected which has the size of 2.5seconds, as the data used in this 

study is sampled at the frequency of 400 Hz. 

ˆˆ( 1) ( 1) ( 1 | te t y t y t+ = + − + θ )  (2.41) 
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2.3.2 Time Window size and effect on damage feature 

Unstable AR coefficients are obtained by the minimization of LSE, so for 

removing the instability and noise from the data it’s very important to select 

the optimum size of time window and small amount of data. So therefore for 

the stability and sensitivity to the changes, appropriate time window size is 

determined. In the figure 2.5, 2.6, 2.7 damage features for a two span truss 

structure is shown which is under the Kobe earthquake loading as shown 

below. We have used different time window size and we can see while 

comparing the damage feature that, increasing the time window size  
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Figure 2.5 Damage Feature for the Truss under Kobe earthquake loading (tw=50) 
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Figure 2.6 Damage Feature for the Truss under Kobe Earthquake loading 

(tw=100) 
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Figure 2.7 Damage feature for the truss under Kobe earthquake loading (For 

time window size=200) 
 
Gives the distinct damage feature and we can reduce the white noise from the 

given signals. From this we can see that increasing window size, reduces the 
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sensitivity of damage feature to perturbations and we can separate white noise 

from damage feature. 

 

2.4 Regularization Technique 
 
The autoregressive coefficients which are estimated by the minimization of 

least squared errors are extremely unstable. Since the number of measured 

signals within time window cannot be increased, regularization technique 

must be adopted to alleviate instability of autoregressive coefficients. The 

regularized least square estimator is shown in equation 2.42. The 

regularization function is added to the error function to overcome ill- 

posedness of inverse problems.  

2*

22R t t
β

Π = −θ θ  (2.43) 

Where *, ttβ θ,θ  are regularization factor, autoregressive coefficient and mean 

value of autoregressive coefficient respectively. 

2 2*

2
( ) 1

1( ) ( ) ( )
2 2

t
T

R t t
k t nw p

βV y k k
= − + +

 = − + Π + − ∑θ φ θ θ θ  (2.43) 

The regularization factor has critical effect on the stability of the solution. The 

optimal regularization factor is determined by the geometric mean scheme 

(gms) as given below 

min maxβ S S= ⋅  (2.44) 

Where S is a singular value obtained from singular value decomposition of 

system matrix maxmin , SS  is minimum and maximum singular value 

respectively. It has been proved by Kang  that without proper regularization 

and time window technique we cannot get the distinct damage feature due to 

noise and instability of autoregressive coefficients. So proper regularization 

technique is very important to get the clear and distinct damage feature. 
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2.5 Damage Feature 
 
All the damage detection models and techniques are required to detect the 

changes in the structural response in case of any abnormal loading or 

earthquakes. As non structural model based scheme is based on the vibration 

of the structure. So any change in both frequency and amplitude should be 

captured by damage detection schemes. There are two possible damage 

features using autoregressive model. One is residual and the other is 

autoregressive coefficients. Residual has good characteristic which is very 

stable and sensitive to both amplitude and frequency change of measured data. 

But the main draw back of residual is that, we cannot identify the sources of 

changes. 

The autoregressive coefficients are system parameters of autoregressive 

model. They are sensitive to frequency change and insensitive to amplitude 

change. The main drawback of autoregressive coefficient is that they suffer ill 

posedness while minimization of least square error. 

The covariance between residuals and autoregressive coefficients is proposed 

as a new damage feature as shown in equation 2.46 in order to use the 

information of residuals and autoregressive coefficients instantaneously. The 

absolute value of residuals and autoregressive coefficients are used because 

the directional information of damage feature is not necessary 
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Figure 2.8 Harmonic curve during 46 seconds 

 
In figure 2.17 a harmonic curve is shown it can be seen that there are three 

locations where changes have occurred. At instant one amplitude have been 

doubled from 1 to 2, in instant two, frequency have been changed and at third 

instant both frequency and amplitude have been changed. Now by using the 

Autoregressive model and damage features such as residual, autoregressive 

coefficients and covariance, we will try to detect the changes in above 

mentioned case.  

Now as shown in the figure 2.18 that residual is sensitive to both frequency 

and amplitude changes, which the algorithm catches successfully, and we can 

see in figure 2.19, that  Ist order autoregressive coefficients are sensitive to 

frequency changes. While covariance shown in figure 2.20 can detect the 

changes in both frequency and amplitude 
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Figure 2.9 Residual as Damage Feature 
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Figure 2.10 AR Coefficients as Damage Feature 
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Figure 2.11 Covariance between Residual and AR Coefficients 
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3 Transfer Function and Filter Design 
 
As discussed in previous chapters that damage detection can be done by using 

the autoregressive model in both time and frequency domain. Structures at 

damage instant shows high frequency value, so an algorithm can be developed 

easily to detect those high frequencies and decision about the damage then can 

be made by statistical treatment. In the previous studies. In the previous 

studies the high frequency effects on the damage detection was not explained 

clearly. So frequency domain analysis is carried out by using autoregressive 

model to detect the damage. 

3.1 Frequency Domain Analysis. 
 
As in previous chapter we studied the autoregressive model in time domain 

here we will transfer the function from time domain to frequency domain and 

for this purpose Fourier transforms are used    

( )2( ) if tX f e x t dtπ∞ −

−∞
= ∫  (3.1) 

Fourier transform is an operation that transforms one complex-valued function 

of a real variable into another. The domain of the original function is typically 

time and is accordingly called the time domain, that of the new function is 

frequency and so the Fourier transform is often called the frequency domain 

representation of the original function. So by applying the transfer function 

we will get the data in frequency domain and then frequency spectrum can be 

utilized for our damage detection purposes 
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3.1.1 Transfer function   

Transfer function are commonly used in the analysis of single input single out 

put filters and it is referred to linear time invariant systems(LTI). In its 

simplest form for continuous time input signal x(t) and out put   y(t), the 

transfer function is the linear mapping of the Laplace transform of the input   

X(f), to the output  Y(f). 

( )( ) ( )Y f H f X f=  (3.2) 

Then the output is related tot input by the transfer function |)(| fH                                         

( )
|)(|
|)(|||

fX
fYfH =  (3.3) 

arg[ ( )] arg[ ( )] arg[ ( )]H f Y f X f= −  (3.4) 

 

3.2  Transfer function for Autoregressive model  
 
The autoregressive model for damage detection studied in time domain by 

Kang only used the past data of time invariant system. So it can be said as a 

causal filter as it utilized previous values to predict the present value, 

mathematically it can be written as follows 

1 2ˆ( / ) ( ( 1)) ( ( 2)) ( ( ))py t n a y t n a y t n a y t n pθ∆ ⋅ = ∆ − + ∆ − + + ∆ −  
(3.5) 

By taking the Fourier transform of equation 3.5we get the transfer function of 
casual filter, and frequency fπω 2=   

))(()())/(ˆ( 2
21 ntyFeaeaeantyF tpi

p
titi ⋅∆+++=⋅∆ ∆−∆−∆− ωωωθ   (3.6) 

tpi
p

titi eaeaeaH ∆−∆−∆− +++= ωωωω 2
21)(  (3.6b) 

Equation 3.6b is the autoregressive model equation in frequency domain 

where 1a . 2a ……… pa  are the coefficients of autoregressive model. In order 

to develop causal filter for the autoregressive model acceleration data of 2 
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span trusses is utilized. So we use 400 Hz frequency and fourth order 

autoregressive model. Figure 3.1 and 3.2 shows  
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Figure 3.1 Casual filter and its absolute value 

 
Figure 3.2 Phase Shift for Truss Structure data 
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In this dissertation non causal filtering technique is utilized to get the damage 

feature and finally decide for the threshold value for the acceleration data and 

using frequency domain. In Equation 3.7 a non causal autoregressive model is 

shown, from the expression we can see that in non causal filter the present 

value is accessed by the previous and future values of measured acceleration. 

 

))(())1((

))1(())(()(ˆ

1

1

pntyantya
ntyapntyanty

p

p

−∆++−∆+

+∆+++∆=∆ −−




 (3.7) 

 

We can see from the equation 3.7 that autoregressive process works for the 

data from )( pnt −∆  to )( pnt +∆ ,expression for the non causal filter in 

frequency domain can be given as follows 

 

1 1( ) ( )piw t iw t iw t piw t
p pH a e a e a e a eω ∆ ∆ − ∆ − ∆

− −= + + + + +   (3.8) 

 

Fig 3.3 and 3.4 shows the non causal filter for the figure 3.1 and 3.2; we can 

compare the changes in both phase shift and transfer function 
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Figure 3.3 Transfer function for truss structure for non causal filter 
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Figure 3.4 Phase shift for acceleration data of truss structure in non casual filter 
  
As we have to remove the noise frequency we use frequency band filter, 

which is a device that passes frequencies within certain range and rejects 

frequencies outside that range. An ideal band pass filter would have a 

completely flat pass band (e.g., without no gain / attenuation thought) and will 

completely attenuate all frequencies outside the pass band. Additionally the 

transition out of the pass band would be instantaneous I frequency. Generally, 

the design of filter seeks to make the roll-off as narrow as possible, thus 

allowing the filter to perform as close as possible to its intended design. Often 

this is achieved at the expense of pass band or stop band ripple. The 

bandwidth of the filter is simply the difference between the upper and lower 

cut off frequencies. A filter pass band test was conducted by using non casual 

filter for frequencies 6Hz, 15Hz, 30Hz and for the frequency of 400Hz by 

using fourth order autoregressive model. 
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Figure 3.5 Frequencies of 6Hz, 15Hz, and 30Hz applied to the transfer function 

of autoregressive model 
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Figure 3.6 Phase shift of AR model which applies 6Hz, 15Hz, and 30Hz 

frequencies 
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3.3  Damage feature in Frequency Domain 
 
Transfer function of the autoregressive model can be used for the damage 

detection of the structures. Using transfer function in frequency domain and 

its sensitivity to frequency are discussed in detail in the previous section. 

Transfer function can give us good damage feature as from previous 

discussion, the location where the phase difference is zero. And transfer 

function of autoregressive model spreads more widely where the transfer 

function has the value equal to one. When we get coefficients of AR model 

we get one transfer function here we use absolute value of transfer function. 

As residual is sensitive to amplitude change and coefficients are sensitive to 

frequency change, we apply covariance between them as damage feature. It 

should be noted that when there is damage in the structure both frequency and 

amplitude gets changed. In fig 3.11, it is shown that when the vehicle enters 

the structure there is abrupt change in the frequency of vibration of the bridge 

which can be seen in the frequency spectrum. So we have to make distinction 

between the frequency increase due to vehicle and damage frequency of the 

structure. From the frequency spectrum it can be seen that the structural 

frequency after entering of the vehicle ranges from 5HZ ~ 15 Hz and 

including other environmental effects frequency can be in the range of 20Hz 

~60Hz 
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Figure 3.7 Normal Frequency Spectrum for 2span Truss Bridge 
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Figure 3.8 Damage Frequency of the Truss Bridge 

 

In fig 3.8 for the truss bridge we can see that frequency for the damaged 

reaches to 100 HZ.  
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Figure 3.9 Frequency spectrum for normal, overloading and damaged conditions 
 
As shown in the fig 3.9 that signal contain mix type of frequencies, for 

different loading conditions of the bridge. For damage feature we have to 

filter the lower frequencies, as damage shows higher value of frequency 

which are usually 100Hz and more. When we have mixed signals we can see 

for normal state frequency is 20 Hz, for overloading it is upto 60 Hz, so when 

we draw the transfer function for this frequency we will see that it will be 

constant at one. So when there is no change in transfer function there will be 

any change in residual and hence there will be no change in covariance.  So it 

will be same upto 60Hz in our example. As we are using FFT which is only 

sensitive to frequency or ratio of frequency, when we have the signal of 100 

Hz there will be change in Transfer function and we will get residual which 

will result the damage feature. Damage index or feature which is the 

covariance between the autoregressive coefficients and residual is given by 

the following relation 
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|]|,|[||]|,|cov[| 1

11

tt tetttt eEeD
θ

µθµθ −−==  (3.9) 

 

3.4  Damage Detection Algorithm 
For damage detection we have developed algorithm which can detect the 

damage and it’s instant. As discussed before there are two parameters which 

are to be determined to develop the algorithm. One is AR coefficients and the 

other is residual. AR Coefficient changing to have filter pass band that exists 

around dominant frequency, while residual error occurs out of filter pass band. 

Covariance of residual and coefficients is taken is damage feature, which is 

activated while the frequency out of filter pass band of non- damage state 

occurs. An ideal transfer function is that which include non damaged 

frequency and must not include damage frequency in its filter pass band of 

non damage transfer function. If the length of the filter pass band is small it 

will show the truck loading as damage, which is the wrong signal. While if the 

length of the filter passes band is more and include the damage frequency, it 

will not give the damaged signal which is very dangerous situation. So 

appropriate length of filter pass band should be selected. I deal transfer 

function is one which filters the white noise and detect the damage feature. So 

damage algorithm should be developed in such a way that it is activated by 

damage, not by overloading or other noises. 

3.5  Sampling Rate and AR Order 
These are two very important parameters to get real time or close to real time 

health monitoring of the structure. We are using simulated acceleration data 

for this study. When the sampling rate is increased the range of filter pass 

band is increased. As discussed before that for the damaged structure 

frequency reaches upto 180 Hz , so let we take it as 200 which is said Nyquist 
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Frequency. But for setting the sampling rate Aliasing effect should be 

considered, i.e. the sampling frequency should have to be two times the 

Nyquist frequency, otherwise we will not be able to detect the damage in the 

given structure. While determining sampling rate ( t∆/1 ) aliasing is important 

because too low sampling rate cannot draw a line between damage and non 

damage signal. So in this study we are using 400 sampling rate.  

 

 

Similarly AR Order is important for damage detection, if we have higher AR 

Order the range of filter pass band is increased. So optimal order should be 

selected for damage detection algorithm. In this study it is determined as 8 

and can be seen in the following figure 3.11. 
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4 Extreme Value Theory 
 
 

4.1 Extreme Value Analysis 
 
Extreme value theory has emerged as one of the most important statistical 

disciplines for the applied sciences over the last 50 years. This theory deals 

the statistical distributions which deviates from the median of probability 

distribution. Extreme value theory is important to study the highly unusual 

events, or extreme events such as earthquakes, extreme floods, high wind 

speeds, rain fall, extreme temperatures, extreme sea waves, etc. 

The distinguishing feature of an extreme value analysis is the objective to 

quantify the stochastic behavior of a process at unusually large – or small 

scale. In particular, extreme value analysis usually requires estimation of 

probability of events that are more extreme than any that have already been 

observed. This theory is based on the extremal type’s theorem, also called 

three types theorem, stating that there are only three types of distributions that 

are needed to model the maximum or minimum of the collection of random 

variables from the same distribution. In other words if you generate N data 

sets from the same distribution, and create a new data set that includes the 

maximum values from theses N data sets, the resulting data set that includes 

the maximum values from these data sets, the resulting data set can only be 

described by one of the three models- specifically, the Gumbel, Frechet, and 

Weibull distributions. 
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4.2 Extreme value distribution 
 
Extreme value distribution is the limiting distributions for the minimum and 

maximum of a very large collection of independent and identically distributed 

random variables from the same arbitrary distribution. Damage values as 

shown in the Fig 4.1 are the extreme values which lies at the tail of 

distribution , which are called outliers, so this prompts us to study the extreme 

value theory for this  damage detection scheme. 

In this study we used extreme value distribution and selected optimal sample 

size. One extreme value was extracted from each sample size and number of 

total extreme values were called as observation time. We used 4000 and 

10,000 sec. observation time for our threshold value determination and for 

higher values of sample size and pseudo significance level. 

 
 

 

time 

Undamaged state 

Extremes of undamaged state 
outlier 

Damaged  state 

distribution 
dam

age feature 

Figure 4.1 showing the outlier in damage feature 
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4.2.1 Extracting extreme Values and Sampling Technique 

As we are treating the extreme values as random variables, so to get the 

extreme value distribution it is important that random variables should be 

identically and independently distributed. As original signal is in the form of 

continuous time series. So we divide the signal (Damage Feature) into sub sets 

which is called sample size. And from each sub set we will get one extreme 

value as shown in Fig 4.2  

 
In this study we are using the sample size 700 and to get the reliable threshold 

value we are using 4000, 10000 extreme values. In practical sense total 

number of extreme values are called observation time which is equal to 5 hour 

for 10,000 extreme values.. So as shown in the fig 4.2 w have to randomly 

mix the continuous time series data. 

 
 
 

Table 4.1 shows the results of i.i.d condition for extreme value distribution, 

and continuous time series signal for different values of significance level. 

time 
- Get One  extreme value 
from each sample 

Sample Size 

- Extreme values should                                
be  I.I.D. 

dam
age feature 

Figure 4.2 I.I.D Random Variables 
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Table 4.1 Significance level and Threshold values 
 

  
Time Dependent Dynamic 

Data I.I.D Condition 

Threshold 
Percent over 
the Threshold Threshold 

Percent over 
the Threshold 

0.1%  7.38 x 10-8 8.5336%  1.35 x 10-6 0.1075% 

0.05%  1.67 x 10-7 4.7704%  1.58 x 10-6 0.0504% 

0.01%  7.79 x 10-7 0.4089%  2.05x 10-6 0.0096% 

 

4.2.2 Origional and Extreme Value Distribution 

 A relationship between original (or parent) distribution and 

independent and identically distributed random variables (extreme values) can 

be established as given by equation 4.1  

 (4.1) 

  
 
As we can see from the fig 4.3, that when we want to use the extreme value 

distribution we have raise the power of CDF of original distribution to the 

power of sample size (n). To get the threshold value we will use extreme 

value distribution curve Hn(X). Usually the extreme values lie at the extreme 

( )nH X

( )F X

X

n

: CDF for original distribution 

: CDF for EV distribution 

: I.I.D random variable 

: Sample size 

 

( ) ( )n
nH X F X=

α̂
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positions of the distribution, which are not clearly known. So in this study we 

propose to use the data of those extreme values in CDF, which are closer to 

the mean position and will give us more reliable threshold value from EV 

curve as shown in the fig 4.2. 

                                             

 
 

4.2.3 Optimal sample size for threshold value 

Optimal sample size to determine threshold value is also important , as shown 

in the above equation that abundant data lies near the mid of extreme value 

distribution curve so we use that part to get the optimal sample size, which is 

given by the following relation  

 (4.2) 

In Fig 4.4 it is shown that for different values of sample size we have 

threshold values, which becomes stable near the optimal sample size 700. So 

in our study we are using 700 sample sizes to determine threshold value. 

 

 

 

CDF 

  

1 

ξ wrongξ

0.5 

( )F X

ˆ1 α−

( ) ˆ 1 
n 

α − ( )nH X

ˆ(1 )log 0.5n α−=

Figure 4.3 CDF and Threshold Value 
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4.3 Threshold Value 
 
Threshold value is the level which separates or divides the feature into 

damage and undamaged parts. We know that when the structure is damaged, 

the distribution of the data for those damaged point lies at the right extreme 

location, those values are called outliers and monitoring system should find 

those outliers or damage points at real time or close to real time to assure the 

safety of the human life. And when there is damage the feature crosses the 

threshold value, so we can easily find the damage instant. 

 Extreme value theory is well established to find those outliers. 

Extreme value distribution is utilized in our study, sampling technique which 

imposes i.i.d condition while extracting extreme values from continuous time 

series signal. Those damage feature values are treated as random variables and 

are randomly mixed to get extreme values from each sample size. So sampling 

is very important which is optimized in our study and then comes the decision 

making about those extreme values to decide for damage or undamaged 

( )nH X

-2.00E-07

-1.00E-07

0.00E+00

1.00E-07

2.00E-07

3.00E-07

4.00E-07

5.00E-07

1 10 100 1000 10000

Sample size (n)

Th
re

sh
ol

d 
va

lu
es

Figure 4.4 Optimal sample size for threshold value 
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situation of the structure. For that purpose original Hypothesis was modeled in 

different way and a pseudo significance level is determined. Because we don’t 

know about the actual damage area of the structure. Above methodology is 

verified for generated acceleration data for 2 span continuous truss. Based on 

extreme value theory and optimal size of sample threshold values are derived 

which shows the results according to the theory.  

4.4 Algorithm for Threshold Value 
 
An algorithm is developed to determine the threshold value which uses the 

cunane distribution for the extreme values and by interpolation we can get the 

threshold value, from that distribution. 

          
Cunane Distribution          =         (4.3) 

In Threshold value algorithm we have three parameters as input which 

includes sample size, significance level and observation time or number of 

extreme values.  

 

[ ] [ ] 11 )ˆ1())ˆ1(( −−
−=−= αα nn

ncr FHD  (4.4) 

We used randomly mixed damage feature data to get threshold value, in this 

study we have fixed sample size and we determine threshold value for 

different values of significance level.  

  

4.5 Decision making and Hypothesis Testing 
 
To decide whether the considered structure is sound or not using estimated 

results from prediction model is also very important. No matter how 

prediction model may work perfectly, it is useless without support of rigorous 

0.40,
0.2i

ix
n
− 

 + 
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decision making algorithm. It is unreasonable to decide health of the structure 

by merely the magnitude of residual errors. For more reliable decision making 

of structural health monitoring, statistical approach is inevitable. Distribution 

of the residual errors must be found statistically from sparse residual and pick 

up outliers from the distribution in a given significance level. Outliers almost 

lie in the tail of distribution of residual errors extreme value distribution is 

utilized for more accurate selection of outliers because extreme value 

distribution is well established for tail distribution. 

Hypothesis testing is a method of making decision using experimental data it 

is also sometimes called confirmatory data analysis. In frequency probability , 

these decisions are almost always made using Null hypothesis tests i.e. the test 

that answer the question assuming that the null hypothesis is true, what is the 

probability of observing a value for the test statistic that is at least as extreme 

as the value that was actually observed. Statistical hypothesis testing is a key 

technique of frequentist statistical inference, and is widely used.  

While hypothesis testing and decision making we have to use the significance 

level. We have defined the hypothesis in our study that if there is damage 

there is alarm and null hypothesis as if there is damage there is no alarm. Now 

significance level which is defined as incorrectly rejecting the null hypothesis 

or measure of the probability of Type 1 error is defined from the fig 4.5 by the 

relation 

 (4.5) 

   

b
b c

α =
+
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But the problem is that in our original structure we don’t know the damage 

area, so we cannot define the significance level as the measure of type one 

error because we don’t know the actual damage in the structure. We propose 

another significance level called as pseudo significance level and defined by 

the relation  

 (4.5) 

 
Which is the measure of the probability when there is no alarm so in this study 
this pseudo significance level is used  
 
 
 

 
 
 
 
 
 

c 

  Undamaged area Damaged 
A  

ξ 

  

 

a b a : undamaged area 
 
b : false alarm 
 
c : damaged area 
 

ˆ b
a b

α =
+

Figure 4.5 Hypothesis testing 
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5 Numerical Example 
 

5.1 Example 2 Span Truss Bridge 
 
The validity of the proposed structural health monitoring is verified through a 

two span continuous truss shown in the fig 5.1. The sensors are cross located 

each other in order to avoid loss of information because of symmetry. Typical 

material properties of steel (young modulus=210 Gpa, specific 

mass=7.85kg/m3) are used for all truss members. The cross sectional area of 

top, bottom, vertical and diagonal members is 1122.5 m2 , 93.6 m2 ,  62.5 m2 

respectively. 

 
 

 
 
 
The natural frequencies of the truss range from 6.6Hz to 114.7Hz. The 

damping characteristic are simulated by 5% Rayleigh damping. Sampling rate 

400 Hz and the duration of simulated acceleration is 1 hour (3600 seconds). 5% 

proportional noise is put on measured data to consider measurement noise. 

 

12@10m=120m 

12m 

Figure 5.1 two span Truss Bridge 
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5.2 Loading Scenario and Damage Scenario 
 
It is assumed that accelerations are measured under normal operational 

condition. The moving vehicles are classified into three types’ car, bus and 

truck and assumed that distribution of weight follows normal distribution. The 

car, bus and truck follows N (2.3,0.22 ), N (13.5,3.22) and N (33.8,2.92) 

respectively. The limit speed of universal road 60km/h is applied for speed of 

vehicle load and 20% reduction of speed for truck is applied. The car, bus and 

truck vehicle loads are generated by 77%, 15% and 7% respectively. The 

overloading condition is also generated three times at 2244 second, 2474 

second and 3401 second in order to compare with changes due to damage. 

It is assumed that sudden damage occurs twice in the considered structure at 

2730 second and 3002 second. Damage is implemented as reduction of cross 

sectional area. The cross sectional area of upper member “B” and lower 

member A are reduced at first damage instant 40%, 50 % respectively and 

lower member “A” are reduced additionally at second damage instant by 20%. 

Damaged members are represented by dotted lines in the fig 5.2. 

 

 
 

Minimum sampling rate should be fixed as 400Hz because 200Hz signal 

comes from damage state (figure5.3). AR model must draw a line on 60Hz 

because normal and overloading condition must be considered as non-damage 

and 8th order AR model is employed because it can draw a line on 60Hz. 

S02 S04 S05 

S07 S08 S10 

S12 S13 S15 

S17 S19 S20 

A 

B 

12@10 m 

Figure 5.2 Structure with the location of sensors and damage 
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Pseudo Significance Level α̂  is 0.0001 and the best sample size ( n ) for 

0001.0ˆ =α  is 7000, which is determined by equation 4.2. 

The results for the damage detection and threshold values are shown for the 

sensors which are deployed in Fig 5.2 

 
Figure 5.3 Frequency spectrum and AR Order 

 

 

In the following pages we are showing the results for damage feature which 

are taken for sample size 100, and AR Order 8 which is determined by the 

filter design. And for threshold value we have used sample size 7000 and 

observation time 5 hours with significance level of 0.01%. Which means that 

there will be 0.01 % of values above Threshold. Those values can give false 

alarm and also contains damage feature. To differentiate these two signals, 

sensitivity level of sensors should be adjusted such that it ignores false alarms. 
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Figure 5.4 Damage Feature for Sensor  S02 

 

 
Figure 5.5 Threshold Value for Sensor  S02 
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Figure 5.6 Damage Feature for Sensor  S04 

 

 
Figure 5.7 Damage Feature for Sensor  S04 
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Figure 5.8 Damage Feature for Sensor  S05 

 
Figure 5.9 Threshold Value for Sensor  S05 
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Figure 5.10 Damage Feature for Sensor  S07 

 

 
Figure 5.11 Threshold Value for Sensor  S07 
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Figure 5.12 Damage Feature for Sensor  S08 

 

 
Figure 5.13 Threshold Value for Sensor  S08 
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Figure 5.14 Damage Feature for Sensor  S10 

 

 
Figure 5.15 Threshold Value for Sensor  S10 
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Figure 5.16 Damage Feature for Sensor  S12 

 

 
Figure 5.17 Threshold Value for Sensor  S12 
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Figure 5.18 Damage Feature for Sensor  S13 

 
Figure 5.19 Threshold Value for Sensor  S13 
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Figure 5.20 Damage Feature for Sensor  S15 

 

 
Figure 5.21 Threshold Value for Sensor  S15 
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Figure 5.22 Damage Feature for Sensor  S17 

 
Figure 5.23 Threshold Value for Sensor  S17 
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Figure 5.24 Damage Feature for Sensor  S19 
 
 
 

 
Figure 5.25 Threshold Value for Sensor  S19 
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Figure 5.26 Damage Feature for Sensor  S20 
 
 

 
Figure 5.27 Threshold Value for Sensor  S2 
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6 Results and Discussion 

6.1 Conclusion  
 
For any structural health monitoring system primary requirement is that, it 

should ascertain with confidence that whether the damage is present or not. So 

damage detection is most important for any structural health monitoring 

system. Then comes the decision making about the damage. This study was 

mainly related to get the threshold value and decide about the damage. The 

conclusion of the study is as follows 

1- In the previous study generalized extreme value distribution was used 

and some threshold value was determined. Which could not match the 

actual situation. For extreme value distribution it is necessary that the 

random variables should have to be independently and identically 

distributed, which were not considered in previous study. So In this 

study extreme values  were randomly mixed and i.i.d condition was 

employed which provided reliable results for threshold value. 

2- Also it was found that while getting the extreme value distribution 

from original distribution; it should have to be raised to the power 

equal to sample size. Which was no considered in the previous study? 

 
  

 Due to this mistake extremely large threshold values were determined    and 

while selecting the significance level for example 1%, it is statistically 

accurate that 1% values should have to be above threshold value. But when a 

very high threshold value is employed it cannot give 1% values above it. In 

that case extremely small significance level resembles the above situation. 

( ) ( )n
nH X F X=



 

65 
 

3- Optimal sample size for the threshold value is determined from the 

mean value of the extreme value distribution as abundant data is 

available around the mean. 

4- A Pseudo significance level for threshold value is proposed 

alternatively. As we don’t know the actual damage area in probability 

distribution. So we cannot define the type 1 error.  

5- it was also concluded in this study that to have a reliable structural       

health monitoring algorithm , monitoring time and observation time  

     Should be given importance, as monitoring acceleration data of 5 

        Hours cannot represent the behavior of the actual structure. So   to 

develop reliable SHM scheme, about one year acceleration data of the 

bridge should be utilized which is designed usually for 100 years. 

6- It was studied that while increasing the observation time we can get 

better threshold value. When we increased our observation period to 

the monitoring period for the available data, we had better results for 

threshold value. 

6.1.1 Further Studies 

 

Proper decision making and hypothesis testing technique should be developed, 

because when we have very low threshold value, we may have many false 

alarms for the heavy vehicles entering the bridge. As we have already 

determined the frequency of those heavy loading cases in this study it is 

required to look into for avoiding large number of false alarms. Simulated 

acceleration data was used for this study, to get more reliable results practical 

acceleration data should be used and long monitoring duration should be 

employed.  If it is possible the information about damaged state should be 

applied to this scheme with model based SI and/or with engineering 

experiences. 
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초  록 
 

구조물은 그 수명 동안 여러 가지 형태의 하중에 노출된다. 특히 

일반적인 상태의 하중상태와 비정상적인 조건의 하중 상태를 연구 하는 

것이 매우 중요하다. 이 연구에는 여러 가지 손상 지표를 적용 할 수 

있는데 이 논문에서는 자기회귀 모형을 이용해 손상 탐지를 수행하며 

자기회귀 모형을 통한 잔차와 자기회귀의 계수 사이의 공분산을 

손상지표로 적용 하였다.  

비 구조모형 기반의 기법(non-model based scheme) 구조물에 부착된 

가속도 측정기에서 얻은 정보를 토대로 손상을 탐지한다. 이 정보는 

시간영역에 존재 하고 있는데 정보의 속성을 정확히 규명하고 이해하기 

위해서는 전달함수라는 주파수영역 분석이 필수적이다.  

또한 구조물로부터 얻은 신호에는 환경적 요인의 변화로 인한 잡음이 

포함되어 있다. 이를 제거하기 위해 시간창 기법(time-windowing 

technique)을 도입한다. 환경적 요인은 매우 긴 주기로 변화 하므로 

시간창 기법을 통해 잡음을 걸러낼 수 있다.  

이러한 알고리즘을 2경간 트러스 교량 예제에 적용하여 손상 탐지를 

수행 하였다. 구조물의 손상은 트러스 부재의 단면적 감소로 표현 한다. 
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또한 승용차, 버스, 트럭등의 일반적인 하중 조합을 생성하여 구조물에 

적용 시켰다.  

극치분포는 손상지표의 외치들을 걸러내기 위해 도입 하였다. 

정상치와 외치를 구분하는 임계값은 유의수준과 sample size 를 통해 

결정 된다. 이 논문에서는 극치분포를 이용함에 있어 기존 연구에서 

놓쳤던 부분을 보완하는 내용이 포함 되어 있다.  

 

 

주요어 

손상탐지, 시간창 기법, 자기회귀 모형, 손상지표, 비 인과필터, 임계값, 

극치분포 
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