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Abstract

In this paper the statistical model of the vehicular live load on long span bridges
reflecting Korean traffic pattern was identified. Traffic jams, which are assumed for
live load model on long span bridges, do not always occur in reality. The assumption
may lead to excessive conservatism. To reflect actual traffic patterns, driving
situations other than traffic jams were investigated using recently measured traffic
data from six different sites in Korea. An extrapolation method using Cramer’s
asymptotic solution was proposed to estimate maximum load distribution. A method
developing multiple presence factors appropriate for long span bridges was
discussed. The statistical characteristics of live the load model (Hwang, 2012) was
estimated. Bias factor was not uniform according to influence length due to different
decreasing rate of load. Site-to-site variability also needed to be considered. A new
live load model for long span bridges incorporating the decreasing rates and site-to-
site variability was proposed. The lane load was classified into two groups: normal
and heavy traffic sites. Load models for influence line length and span length were
proposed respectively. The statistical characteristics of the proposed load model and

load effects were identified.

Key words: vehicular live load model on long span bridge, statistical model,
Cramer’s asymptotic solution, WIM data, multiple presence factor
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1. Introduction

1.1 Background

Bridge design codes in many countries have been changed from Allowable Stress
Design (ASD) to the probability-based Limit State Design (LSD). ASD, which was a
common design method in the past and still in use today, is based on a deterministic
method. The allowable stress is set by safety factors to account for uncertainty and
provide a safety margin. However, the safety factor has been determined empirically,
and the effects from different loads are considered simultaneously. It is, therefore,
inadequate to provide a uniform level of safety. In contrast, the probability-based
LSD defines possible limit states and calculates safety level (defined in reliability
index) based on reliability theory. It accounts for the different variability levels of
various loads and resistances independently. Therefore, a more consistent reliability
level can be attained. 1ISO2394 (1SO, 1998), Eurocode (CEN, 2001), and AASHTO
LRFD (AASHTO, 2007) have already established their reliability-based limit state
design codes. In Korea, the Korea Bridge Design Engineering Research Center has
conducted long-term research to introduce limit state design to the Korea Bridge
Design Code (KBDC), and consequently the Korea Bridge Design Code — Limit
State Design(KBDC-LSD)(MLTM, 2012) was established.

It is essential to obtain a sufficient amount and quality of statistical data for the
reliability analysis. And it is also important to identify an appropriate statistical

model of loads and resistances from the statistical data. Vehicular live load is one of



the most important components in bridge design and evaluation. Inadequate
knowledge of live load may lead to uneconomical or unsafe design. In America,
Nowak developed a statistical model of vehicular live load using two weeks Ontario
truck survey data(Nowak, 1993; Nowak and Hong, 1991; Hwang and Nowak 1991).
The current American vehicular live load model, HL93, was developed in Nowak’s
(1999) research. Maximum expected values for various time periods were calculated,
and the design live load model was developed based on 75-year maximum load
effects. The statistical data from two-week periods are relatively short compared to
the design life and, therefore, statistical parameters were estimated using an
extrapolation method. However, relatively short-term truck survey data may not be
enough to account for the long-term variation. In addition, heavy vehicles may avoid
the survey station intentionally or control lifting axles.

The WIM (Weight-In-Motion) system collects axle weights during drive situation.
An early version of WIM included considerable amount of errors or measured only
low-speed traffic data. Nowak et al. (1993) used low-speed (8-16km/h) WIM data.
However, the WIM technology has greatly improved in recent years and more
reliable and long-term statistical traffic data are now available. High-speed WIM
systems can measure traffic data at normal highway speeds without driver’s
knowledge. Using recent WIM data of 35 million trucks, Nowak and Rakoczy (2013)
reviewed statistical parameters of AASHTO LRFD live load moments according to
the same procedure used by Nowak (1999). Moses (2001) used WIM data and

presented an equation that computes the maximum weight for bridge evaluation.



In Korea, Koh (1998) reviewed vehicular live load models in America, the United
Kingdom, Japan and Germany and developed a live load model using domestic
WIM data. As a result of a long-term project of the Korea Bridge Design
Engineering Research Center, Hwang (2008) developed a live load model for
KBDC(2012) using domestic WIM data.

The statistical models of live load stated above are limited to short- and medium-
span bridges. The HL-93 live load model was developed for 10 ~ 200ft span bridges
(Nowak, 1999). For long spans, the ASCE model (Buckland 1981) was developed in
the 1980s. And Nowak et al. (2010) investigated recent WIM data and concluded
that HL-93 is appropriate for long span bridges. In Korea, the live load model for
long span bridges was presented in the Korean Design Guideline of Cable Steel
Bridge (2006), but this is an ASD method. KBDC (2012) provides the live load
model without limitation of span length, but the model was not extensively
investigated for bridges longer than 200m. Hwang (2012) developed a new live load
model for long span cable bridges, and the model is now under review for new
revision of KDBC. The statistical characteristics of the live load model, however,
have not been clearly stated.

The models of Nowak et al. (2010) and Hwang (2012) were developed for
assumed traffic jam situation. They do not incorporate the probability of occurrence
but assume the occurrence of traffic jams, which may contribute to artificial bias.
Lee (2014) estimated the bias factor of the live load model proposed by Hwang

(2012), and the estimated bias factor was excessive compared to the bias factor of



the KBDC(2012). Therefore, real traffic — not hypothetical traffic - should be
considered.

In contrast with short- and medium live load model, multiple presence factors
should be considered in different way for long span live load model. For short- and
medium- span live load model, probability of side-by-side multiple truck occurrence
is applied to heavy trucks (Nowak, 1999; Hwang, 2008). For long span bridges,
however, multiple vehicles including not only heavy trucks but also other small
vehicles should be considered. Therefore multiple presence factors which are

appropriate for long span bridges should be developed.

1.2 Objectives

The objective of this study is to identify a statistical model of vehicular live load
on long span bridges reflecting Korean traffic patterns. To reflect actual traffic
patterns, driving situations other than traffic jams were investigated using recently
measured traffic data. The extrapolation method is compared to identify an exact
statistical model. The multiple presence factor appropriate to long span bridges was
considered. Finally, a new live load model reflecting actual traffic patterns and

statistical characteristics of it was proposed.

1.3 Organization of the thesis

This paper is organized as follow. Chapter 1 presents the background, purpose,



and organization of this study. Chapter 2 presents basic knowledge of statistics for
understanding this thesis. Chapter 3 reviews the existing live load models. Live load
models, multi-lane consideration, dynamic effects, and statistical characteristics are
presented. Chapter 4 describes the procedure of drive analysis, analyzing the actual
traffic patterns. WIM data is presented and multiplication factors are considered in
this chapter. Chapter 5 presents statistical models of live load model for long span

bridges and a new model is proposed.



2. Basic Statistics for Statistical Model Identification

2.1 Basic Theory of Statistics

2.1.1 Random Variables
(1) Definition of random variables

Random variable is a variable whose values are not fixed for the same event under
the same condition but distributed around representative value. Random variable is
defined by certain regulation or function in sample space and divided into discrete
random variable and continuous random variable. Discrete random variable is a
random variable with finite elements or countable infinite elements and continuous
random variable is a random variable whose values can be any value in a certain

interval.

(2) Probabilistic function

Probabilistic function is a representation of probability value which corresponds
to random variable in a function form and can be separated into: Probabilistic mass
function(PMF), Probabilistic density function(PDF), Cumulative distribution
function(CDF). PMF and PDF is defined by discrete random variable and

continuous random variable each, and CDF is defined by both.

PMF p, (x) about discrete random variable X and PDF f, (x) about

continuous random variable X are defined as follows:



Px (X) =P[X =x] (2.1a)
fy (X) =P[x< X < x+dx] (2.1b)

CDF F, (x) about discrete random variable and continuous random variable is

defined as:
Fo () =P[X <x]= > py (%) (2.22)
Fy ()= P[X <X]= j fi (u)du (2.20)

(3) Statistical characteristics of a random variable
Statistical characteristic of a random variable would be described completely if
the form of the distribution function and the associated parameters are specified. In
practice, however, the distribution may not be known. Instead, approximate
description of a random variable such as mean value, variance, and standard
deviation can be used. Even when the distribution function is known, these
guantities remain useful.

Mean value of random variable X (g, ), by discrete random variable and

continuous random variable, expressed as 1% moment:

uy = E[X]= zxi Py (%) (2.3a)
Uy =E[X]= TxfX (x)dx (2.3b)

7



Variance and standard deviation of random variable X (V, and o, ) can be

derived using 2" moment

Vy = E[XZ]—(E[X])2 (2.4a)
oy =V, =VEIX?]—-(E[X])? (2.4b)

Coefficient of variation of random variable X (&, ) is used to measure variance

of random variable, and defined as ratio of standard deviation to mean value

Oy =— (2.5)

2.2 Probability Distribution of Extremes

In bridge design the maximum load distribution is of concern, rather than the
entire load distribution itself. The maximum load distribution can be developed from
extreme distribution. More detailed information about the statistics of extremes can
be found in textbook (Ang et. al, 1984). The largest and smallest values from
samples of size N are also random variables and therefore they have probability
distributions of their own. These distributions can be expected to be related to the

distribution of the initial variate.



2.2.1 Exact Distribution

Let X be the initial random variable with known initial distribution function
F, (X). Consider sets of samples of size N taken from the population. Each

sample will be a set of observations (Xl, Xy, Xn) representing respectively the
first, second, ..., N-th observed values. Then we may assume each value can be
considered as random variables (Xl, XZ,---,Xn). The extreme values from a
sample size N are the maximum and minimum values. Let the random variables of

extreme values are Y,, Y, defined as equation (2.6).

Y =max(X,, X,,-, X, ) (2.6a)

Y, =min (X,, X5, X, ) (2.6b)

If Y, is larger than a value vy, all the sample random variables X, X,, =+, X

must be less then y. Assume X, X,,---, X, are statistically independent and

identically distributed as the initial variate X .
FXl(Xl): sz(xz):"' = Fxn(xn): Fy (X) (2.7)

The cumulative distribution function of Y, and the corresponding probability

density function are derived as equations (2.8) and (2.9)



=P(X, <y, X, <y, X, <) (2.8)
= [Fx (y)]n
oF,
fvn (y): N (y)
oy (2.9

Likewise if Y, less than a value y , the cumulative distribution function of Y, is

1- FY1(Y): P(Yl 2 y)

=P(X,2y,X, 2y, X, 2 )

= [1_ Fy (y)]n

Therefore, the cumulative distribution function of Y, and the corresponding

probability density function are
FY1 (Y) =1- [1_ I:x (y)] " (2.10)

fy (y)=nli—F (VI £ (¥) (2.11)

The Equation (2.8) through (2.11) are the exact probability distributions of the

extremes from samples of size N taken from a population X . And these

10



distributions depend on the initial distribution F, (X) of the population and also

on the sample size n. The distributions of Y, and Y1 are generally difficult to

obtain or derive in analytic form.

2.2.2 Asymptotic Distribution

As N — oo, Yn(y) and FYl(y) converges to a particular functional asymptotic
form. The asymptotic form of and extremal distribution depends largely on the tail
behavior of the initial distribution, and the central portion of the initial distribution
has little influence on the asymptotic form. The analytical derivation of the
appropriate asymptotic extremal distribution given the distribution of an initial
variate is facilitated by the method of Cramer.

Consider the extremal distribution for the largest value from an initial variate X .

Following Cramer (1946), define the transformed random variable &, .

& =nll-F, (Y,)] (2.12)
Then,

(2.13)

11



As N— o0,

F. (&)=1-¢* (2.14)

The corresponding asymptotic PDF is

f. (&)=e" (2.15)

From equation (2.12) and (2.14)

Y = Fx-l(l—i] (2.16)
n
Define g(y) as follow
g(y)=nft—Fy (v, )] (217)
Then,
P(Y, <y)=Pl5, > g(y)] (2.18)

Therefore, the asymptotic CDF and PDF of Y, is

R, (v)=1-F. [a(y)]=exp[- g(y)] (2.19)
i (y)= —d%—(yy)eXp [a(y)] (2.20)

Consider standard normal initial variate. The transformed variate of equation (2.12)

is

12
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W27 g,

L
é:n —\/ZJ‘YHG

1 -
Integrating by parts, with u== and dv=ze (llz)zzdz

z

ief(UZ)Yn2 []_+ O(l/Yn2 )]

é:_ n
n \/ZY,]

Cramer(1946) gives the following asymptotic solution for Y, as n—oo

hinn+indz In¢&
E =+2Inn- - i
2y2Inn rJ2Inn

Denoting

ninn+In4r
U, =v2Inn —-————, o, =+/2Ihn
2+/2Inn

The &, becomes

From equation (2.19), the CDF of Y, becomes

F, () =exp[-expi-a,(y-u,)]]
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2.2.3 The Three Asymptotic Forms

The extreme value distribution depends largely on the tail behavior of initial
distribution in the direction of extreme. There are three type of extreme value
distribution according to the Gumbel’s classification. The three type of the largest
extreme values distribution and the mean and standard deviation of them are as

follow.

(1) The Type | Asymptotic Form
If an initial distribution with an exponentially decaying tail in the direction of
extreme, the extreme value distribution will converge to the Type | asymptotic form.

The largest extreme value distribution are

Fy, (x)=exp[-exp{-a,(x-u,)i] (2.272)
fy (x)=a, expi=a,(x—u, )jexp[-exp{- o, (x—u, )}] (2.27b)
My, = U, +0an , ain = % (2.27c)

The parameter U, is the location the parameters which is the most probable
values of the extreme variate X ,. And the parameter ¢, are the shape parameters
which is an inverse measure of dispersion of the extreme variate X,. » is the

Euler constant y =0.55716---.

14



(2) The Type Il Asymptotic Form
If the initial distribution has polynomial tail in the direction of extreme, the

extreme value distribution will converge to the Type Il asymptotic distribution form.

k
Fxn(x):exp{— [U—;j } for x>0, v, >0 (2.28a)
k L k+1 L k
f, (x)=—(—”j exp{—(—”) } for x>0, v, >0 (2.28b)
" U, \X X
1
Hy = U”F(l_Ej for k>1 (2.28c)
2 2 2 1
ol = u{f(l—d -r (17)} for k> 2 (2.28d)

The parameter v, is the location the parameters which is the most probable
value of the extreme variate X . And the parameter K is the shape parameter

which is an inverse measures of dispersion of each extreme variate X, .

y = I"(x) means the gamma function.

(3) The Type I Asymptotic Form
If the initial distribution has a finite upper or lower bound in the direction of
extreme, the extreme value distribution will converge to the Type Il asymptotic

distribution form. The largest Type Il asymptotic form are

15



k
Fy (x)= exp{( ®-X ] } for x<w (2.29a)

®—W,
k o-x ) o-x )
f, (x)= exp — for x<e (2.29b)
! w—W, | @—W, o—W,
py =o—(0-Ww, )F(l+%) (2.29¢)
2 2 2 9 1
Oy =(0-w,) {F(ljt EJ_F (1+ Eﬂ (2.29c)

o is the upper bound value of the initial variate X . The parameter W, is the
location the parameters which is the most probable value of the extreme variate

X, . And the parameter K is the shape parameter which is an inverse measures of

dispersion of each extreme variate X, .

16



2.3 Probability Paper

The vehicular live load is treated as a random variable and therefore we have to
define the probability distribution of the live load. For the reliable design and
evaluation, the most appropriate probability distribution of the live load should be
identified. Graphic methods using probability paper are simple and useful way.
Probability distribution can be estimated and maximum load can be estimated by
extrapolation using the probability paper.

Based on the observable data, we can determine the distribution of the data
empirically. We can construct the histogram of observed data and compare with
theoretical probability density functions. Or we can use probability paper prepared
for specific distributions. Probability papers are constructed such that a given
probability paper is associated with a specific probability distribution. Observed data
are plotted on the probability paper and are determined whether the data follow the
distribution by their linearity, or lack of linearity. Therefore the probability papers
are different according to the distributions and no other distribution satisfy linearity
on different probability paper. There are many kinds of probability papers and the
normal probability paper and the Gumbel probability paper are described here. More
detailed information about the probability paper can be found in textbook(Ang et. al,

1975; Castilo, 1988).

17



2.3.1 Empircal CDF
Let (Xl, Xz,---,XN) are N observed data arranged in increasing order. Then
empirical cumulative distribution function are assigned to m-th value as follow.

m-a

F, =———
N +(1-2a) (2:30)

The a is parameter determining the plotting position and many different values
of the a are introduced to different distributions(Castilo, 1988; Kang, 2008).
However, the position based on Gumbel(a=0) is known to have the theoretical

attributes and the computational simplicity(Ang et al., 1975).

2.3.2 Normal Probability Paper

The normal probability paper is probability paper associated with the normal
distribution. One axis is the variate X , and the other axis is the standard normal
variate S of the variate X . If the variate X follows the normal distribution

X ~N(uy,0y), it will make a straight line according to the linear relation

between two variate X and S

(2.31)

The CDF of the normal distribution and probability paper is compared in Figure
2.1

18
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Figure 2.1 Normal probability paper and cumulative distribution function(x, =5,
Oy :1)

If there are N observed data (Xl, Xy, XN) arranged in increasing order, we

assign the empirical CDF F, (X,) to the m-th smallest value X, based on the

equation (2.30) with a=0. Then the S can be calculated by the inverse standard

normal CDF.

S(xn) = F 1Py (%)} (2.32)

If the plotted data follow the exact normal distribution, the observed data will be

plotted in a line on the normal probability paper. Then, the probability distribution of

a
the observed data can be identified by the linear equation (2.31). The mean is ——

1
and the standard deviation is —, where the « and [ are the y-intercept and the

19



slope, respectively. If the plotted data doesn’t follow the exact normal distribution,
the data does not make the straight line. An approximate normal distribution can be
estimated drawing a straight line on the normal probability paper by error

minimization.

2.3.3 Gumbel Probability Paper

The Gumbel probability paper is probability paper associated with the Gumbel
distribution(the type | asymptotic distribution). One axis is the variate X , and the
other axis is the standard extremal variate S. The standard extremal variate for the

Gumbel distribution is written as equation (2.33)
s=a,(x,—u,)=a,x, —a,u, (2.33)

If there are N observed data (xl, Xyyeee, XN) arranged in increasing order, we
assign the empirical CDF F, (X,,) to the m-th smallest value X, based on the

equation (2.30) with a=0. Then the S can be calculated by the inverse Gumbel
CDF in equation (2.34). The CDF of the Gumbel distribution and probability paper

is compared in Figure 2.2

S(%n) = Fx* {Fx ()} =—In[=In {F (X, )}] (2.34)
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Figure 2.2 Gumbel probability paper and cumulative distribution function (u =5,
a,=1)

If the plotted data follow the exact Gumbel distribution, the observed data will be

plotted in a line on the Gumbel probability paper by the linear relation as (2.33). The
location parameter(U,) and shape parameter(c,) can be derived from the y-

intercept( ), and slope( #) of the line, that is, equation (2.34). The Gumbel

probability paper with u, =5, «a, =1 isshown in Figure 2.2

U =——, a,=—— (2.34)

If the plotted data doesn’t follow the exact Gumbel distribution, the data does not
make the straight line. Then an approximate Gumbel distribution can be estimated

drawing straight line on the Gumbel probability paper by error minimization.
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3. International Design Live Load Model

Some of international vehicular live load models were compared in this chapter.
KBDC-LSD(2012) and AASHTO LRFD(2012) are provided for general bridges
with all spans, but DGCSB(2006) and ASCE(1981) are provided for bridge design
especially for long spans. These live load models consist of concentrated loads and
uniformly distributed loads. For short- and medium-span bridges, single or several
heavily loaded truck effects governs the live load effect. If the span length increases,
however, load effects by the mixture of vehicles may be important. For long span
bridges, the load from different lanes is uniformly distributed to main components,
and the influence of single truck decreases(Nowak et al., 2010). Therefore the live
load for long span bridges can be modeled as lane load(Nowak et al, 2010; Hwang,
2012; Lee, 2014). The lane loads, except for AASHTO LRFD(2012), decrease when
loaded lengths increase. It was reported that there was enough margin for long span
brides constructed in Korea, Seohae Grand Bridge, Youngjong Grand
Bridge(DGCSB, 2006). Decreasing form of lane load model for loaded length is also
used in BS 5400(2006). The design live loads, multi-lane considerations and

dynamic effects are compared.

The statistical characteristics of LSD codes are also summarized. Bias factor (4, )

and COV (,, ) of the statistical model of the live load effect (Q,, ) can be defined

by the following equation (Ellingwood et al., 1980):
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The influence factor, C,, , reflects uncertainties arise from analysis which

transforms load to load effect. The modeling parameter, B, , reflects the load

LL
modeling effects. A, is the structural load. The site-to-site variability and the

effect of impact was considered as influence factor (Lee, 2014). Statistical

characteristics of load effect, QLL, are determined considering all these effects

together.

3.1 KBDC — LSD(2012)

The design live load model of the Korea Bridge Design Code — Limit State
Design (KBDC) consists of design truck load, (Figure 3.1) and design lane load
(Table 3.1). The extreme load effect is taken as the larger between ‘the effect of one
design truck’ and ‘the effect of 75% of design truck combined with the effect of the
design lane’. A value of 0.18 for N is provided in the KBDC (2012). Hwang(2012)
proposed 0.15 for the new lane load model for long span cable bridges with the same
truck load.

For multi-lane design, the live load model is multiplied by a number of design

loaded lanes with the multiple presence factor. Table 3.2 presents the multiple
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Figure 3.1 Design truck load (KBDC, 2012)

Table 3.1 Design lane load (KBDC, 2012)

L<60m w=12.7 (KN/m)
60
L>=60m w=12.7x T (KN/m)

Table 3.2 Multiple Presence Factors (KBDC, 2012)

Number of Loaded Lanes

Multiple Presence Factors, m

1 1.0
2 0.9
3 0.8
4 0.7
> 5 0.65

presence factor. And a dynamic amplification factor of 0.25 is applied to the design

truck.

Statistical characteristics of load effects of KBDC (2012) are stated in Hwang’s
study (Hwang, 2008; Hwang et al., 2012)’s study. The bias factor of load effects is

1.0 ~ 1.1 and the COV is 19%. Conservative value of COV, 20%, is used. The detail
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COV calculation are presented in Table 3.3 and equation 3.2. Distribution type of

live load effect is assumed as Gumbel distribution.

Table 3.3 Coefficient of variation of load effects (Hwang et al., 2012).

Effect cov
Estimation 0.07
Analysis 0.1
Dynamic 0.1
Local 0.1
5, =~0.07% +0.1* +0.12 +0.1% =0.19 (3.2)

3.2 DGCSB (2006)

The Korean Design Guideline of Cable Steel Bridge (DGCSB) load consists of
design truck load (DB load) and lane load (DL load) as shown in Figure 3.2. DB
load (Table 3.4) is classified into three classes, and DL load (Table 3.5) is used for
long span cable bridges. The larger force effect between DB and DL load should be
taken. DGCSB load provides decreasing lane load for bridges with spans longer than

200m.
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Figure 3.2 DB, DL Load Model (DGCSB, 2006)

Table 3.4 DB load (DGCSB, 2006

Load Total Weight (kN) [Front wheel weight (kN) Rear wheel weight (kN)
DB-24 432 24 96
DB-18 324 18 72
DB-13.5 243 13.3 54

Table 3.5 DL load (DGCSB, 2012)

Concentrated load P, =108 kN P, =156 kN
L <200m
Distributed Lane Load w=12.7 (kN/m)
Concentrated load P, =108 kN P, =156 kN
L >200 m 300
Distributed Lane Load| W=12.7x (0.57 + L Lj (KN/m)

Multi-lane load is evaluated using a multiple presence factor of 0.9 for three lanes

and 0.75 for four or more lanes. Dynamic amplification factor (| ) is considered in

equation (3.3)

15 <03 (3.3)
40+ L

26



3.3 AASHTO LRFD (2012)

The AASHTO HL-93 load model consists of a three-axle design truck (Figure
3.3), a pair of 111.2kN design tandem spaced 1.2m apart, and a uniformly
distributed design lane load of 9.34kN/m per lane. The larger force effect of the
following should be taken.

1) The effect of the design tandem combined with the effect of the design lane load,
or

2) The effect of one design truck, combined with the effect of the design lane load,
and

3) For negative moment between points of contraflexure under a uniform load on
all spans, and reaction at interior piers only, 90 percent of the effect of two
design trucks spaced a minimum of 50ft between the lead axle of one truck and
the rear axle of the other truck, combined with 90 percent of the effect of the
design lane load. The distance between the 32.0-kip axles of each truck shall be
taken as 14.0 ft. The two design trucks shall be placed in adjacent spans to

produce maximum force effects.

() Q¢ (2)
T T I
356kN  142.3kN 142 3kN

42m 42-10.0m

Figure 3.3 Characteristics of the Design Truck (AASHTO, 2012)
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Table 3.6 Multiple Presence Factors (AASHTO LRFD, 2012)

Number of Loaded Lanes Multiple Presence Factors, m
1 1.20
2 1.00
3 0.85
>3 0.65

The multiple presence factors are shown in Table 3.6, and a dynamic amplification
factor of 0.33 is applied to the design truck. Statistical characteristics of load effects
of HL-93 are presented in Nowak’s (1999) study. The bias factors of load effects
(moments and shears) are about 1.3 ~ 1.35 and that of live load with impact is
presented as 1.10 ~ 1.20. The COV is presented as 18%, considering static live load,

live load analysis factor, and dynamic load.

3.4 ASCE Loading (1981)

The ASCE Loading is a result of the studies performed by Peter G. Buckland,
which was recommended by the American Society of Civil Engineers Committee on
Loads and Forces on Bridges for long span bridges. ASCE (1981) specifies three
levels of live load for highway bridges depending on the average percentage of
heavy vehicles in traffic flow: 7.5%, 30%, and 100% heavy vehicles of the total
vehicle population. "Heavy vehicles (HV)" were defined as buses and trucks over
12,000 Ibs. In designing a new bridge, the expected trucks in the traffic must be
estimated from traffic measurements. The ASCE model does not have any allowance

for dynamic load. (quoted from Lutomirska, 2009)
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Figure 3.4 ASCE Loading on Log Scale (Buckland 1981; quoted from Lutomirska,
2009)
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4. Drive Analysis

4.1 Introduction

For short- and medium-span bridges, single or several heavily loaded truck effects
govern the live load effect. If the span length increases, however, load effects due to
the mixture of vehicles may be important. For long span bridges, the load from
different lanes is uniformly distributed to main components, and the influence of
single truck decreases (Nowak et al., 2010). Therefore, the live load for long span
bridges can be modeled as lane load (Nowak et al, 2010; Hwang, 2012; Lee, 2014).

The live load model for bridges with long spans was developed by Nowak et al.
(2010), and it was concluded that the bias factor is less than 1.25 and the HL-93 can
be applied to long span bridges. Based on WIM data obtained from NCHRP 12-76,
traffic jam scenario was investigated as shown in Fig 4.1. Starting with the first
truck, all consecutive trucks were added with a fixed headway distance (distance
between the last axle of one truck and first axle of the following truck) of 7.6m until
the total length exceeded the span length. Then the total weight of all trucks on a
certain span length was calculated and divided by span length to obtain the average
uniformly distributed load (UDL). Next, the first truck was deleted, and one or more
trucks were added to cover the span length. The UDL distribution was identified by
repeating the procedure. Only the most loaded lane was considered and motorcycles
and small cars were omitted. The heaviest combination of vehicles over a 75-year

period was calculated.
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Figure 4.2 Traffic scenario (Hwang, 2012)
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The vehicular live load on long span bridges, proposed by Hwang (2012), is based
on presumed truck traffic jams as shown in Figure 4.2. Spacing between the last axle
of one truck and first axle of the following truck was considered as 4.5m ~ 7.5m.
Truck data are based on WIM data from six sites in Korea, and small vehicle data
having 5.8kN/m in weight and 6m in length were generated with assumptions about
traffic ratios (truck : small car = 3:7). Starting with the first truck all vehicles were
arranged in a row according to the scenario until the total length reached a certain
influence line length. Then, the total weights of all vehicles in the length were
divided by the length to obtain the equivalent uniformly distributed load (EUDL).
Next, the first truck was deleted, and one or more truck were added to cover the span
length. The EUDL distribution was identified by repeating the procedure. The
maximum EUDL during the measured period of WIM data was calculated and the
lane load model was proposed based on it.

The two lane load model assumed traffic jam situation. However, the traffic jam
situation is not always expected to occur, but in a special cases like traffic accident
or holiday events. Traffic jam assumption without considering the probability of
occurrence may lead to unnecessary conservative design. Therefore, the load model
should reflect the actual traffic. In this chapter, the drive analysis method, which
investigates the actual traffic based on WIM data, was proposed. And a method for
developing multiple presence factors appropriate for long span bridges based on the

drive analysis was proposed.
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4.2 \Weight-In-Motion data

The WIM system collects axle weights without interrupting traffic. Therefore, the
reliable traffic data can be collected without artificial bias such as controlling lift
axles or avoiding checkpoints. The WIM data used in this paper was provided by the
Korean Expressway & Transportation Research Institute. And data used by Hwang
(2008) and Lee (2014) was also used. The WIM data includes gross vehicle weight

(GVW), axle weight, axle spacing, time, driving lane, speed, vehicle type, etc.

4.2.1 WIM locations

Traffic patterns vary depending on regions and road classifications. Therefore
collecting WIM data from various locations is important. The measured WIM data
used in this paper is presented in Table 4.1. Data of all lanes in both directions is
preferable, but the WIM data collected is only one-directional data.

The quality of information is more important than the quantity of data collected.
WIM equipment should be calibrated regularly and collected data should be
carefully monitored. WIM data was calibrated with respect to temperature difference
between the top and bottom of pavement and about wheel position. Kwon et al.
(2010) and Hwang (2008) described the detailed algorithm of the calibrations.

Shivakumar et al. (2011) recommended use of a year’s worth of recent continuous
data or at least one month of data for each season for each site to observe seasonal
variation. Therefore, WIM data for the sites measured in the long term, GC, SS, WG,
PH (2010~11), were focused.
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Table 4.1 WIM measurement locations
# of WIM Lanes

Site (one Direction) Date # of Vehicle data
Gimcheon (GC) 3 2013.01.31 ~12.31 4,221,557
Seonsan (SS) 2 2013.01.22 ~12.31 8,212,839
Waegwan (WG) 4 2013.01.31 ~ 12.29 15,896,920
2010.05.24 ~12.31
1,211,810
Pohang (PH) 2 2011.01.01 ~ 12.13
2006.05.13 ~ 06.06 29,400
2010.10.11 ~ 10.25 66,929
Yeoju (YJ) 2
2005.01.12~04.28 314,183
Munmak (MM) 1 2006.10.24~12.01 10,151

4.2.2 Data Scrubbing

The quality of WIM data is more important than quantity in the development of
the live load model. WIM system collects data from high-speed traffic that the
collected WIM data need to be reviewed or monitored. To edit “bad or unreliable
data” out of WIM data, Shivakumar et al. (2011) used data scrubbing rules. Data
scrubbing rules should consider differences in traffic characteristics of the site. In

this paper, the WIM data is scrubbed using the following filters:

® The number of axles < 2
® Records with the number of axles > 9 are considered to have 8 axles

® Records where the sum of axle spacing is greater than 40m, or the steer
axle spacing is greater than 20m

® GVW: s 0ton or negative value
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® Records where GVW > 100 ton
® Records where the steer axle weight is > 15 ton

® Records where one axle weight is greater than 20 tons and greater than
60% of GVW at the same time

® Records from a single not fully recorded for 24 hours

4.2.3 Data generation

The GC, SS, WG WIM data includes all vehicle types, though the other sites
collected only data on heavily loaded trucks with certain lower weight limit. WIM
data of these sites are assumed to have only Types 3~12, and the Type 1 and 2 data
was generated based on average traffic ratio from 1995~2013 (MLTM, 2004; 2008;

2013). The vehicle type classification is shown in Table 4.2.

Table 4.2. Twelve vehicle type classifications (MLTM, 2012)

Type 1 Type 2 Type 3 Type 4
(passenger car) (bus) (small truck A) (small truck B)
- f Ti 1
o=o o o o0 0 0
- - = - = =
Type 5 Type 6 Type 7 Type 8

(medium truck A) | (medium truck B) | (medium truck C) | (large truck A)

fonoo- ‘o000 ‘607000 Fovo o0
. = 2

Type 9 Type 10 Type 11 Type 12
(large truck B) (large truck C) (large truck D) (large truck E)

:é""'a"'"ﬁ {Sro0—0® o" o0 o o fowoo™ 000
— [T =] - HH
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The data generation procedures are based on the assumption of random traffic
situation. The generated vehicles are assumed to travel with the same velocity as the
first truck in front of the generated vehicle. The procedures of data generation are as

follows:

® The WIM time record of heavy trucks is kept as recorded in WIM

® Generate vehicles type | and Il in accordance with the following traffic
ratio assumption and assumed properties presented in Table 3.3
(Type 1) : (Type 2) : (the others) =63 : 7: 30
® Determine the number of generated vehicles between two measured
trucks randomly based on the random traffic situation assumption

® Determine the time information of generated vehicles

- if the generated vehicles between two trucks satisfy the safety
distance within the two trucks, the generated vehicles equally divide
the time gap of two trucks

- if the generated vehicles between two trucks do not satisfy the safety
distance between the two trucks, move one by one of the generated
vehicles behind the next truck until safety distance is satisfied.

- the safety distance is in proportional to the square of velocity and the
safety distance at 200km/h is 100m.

Table 4.3 Properties of the generated data

Generated vehicle type # of axle Axle spacing [cm] GVW* [ka]

Type 1 2 275 1,000 ~ 2,000

Type 2 2 550 12,000 ~ 15,000

GVW of generated data was determined randomly from uniform distribution of
GVW=* by random sampling.
Axle weights are assumed to have 50% of the GVW each.
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4.2.4 Statistics of collected data

WIM data after scrubbing and data generation procedure is presented in Table 4.4.
To consider seasonal or other variation, WIM data including at least one month each
season, GC, SS, WG, PH (2010~11), were selected for further analysis.

There are several factors that affect vehicular live load. AASHTO LRFD (2012)
applies different multiple presence factors for different ADTT (Average Daily Truck
Traffic). According to Nowak et al. (2010), the live loads for long spans depend on
the mix of traffic and headway distance. The basic traffic characteristics were
investigated. Daily traffic volume in a lane and the average GVW of vehicle types in
different WIM locations are compared in Figures 4.3 and 4.4. And the average speed

is compared in Table 4.5.

Table 4.4 WIM data after scrubbing and data generation
# of WIM Lanes

Site (one Dir) # of WIM days ADT ADTT

GC 3 236 17,885 5,649

SS 2 276 29,484 8,657

WG 4 295 53,595 15,201

PH (2010~11) 402 8,525 2,560

PH (2006) ? 21 4,197 1,255

YJ (2010) 14 15,894 4,778

YJ (2005) ? 79 12,374 3,720
MM 1 19 1,260 378

ADT: Average Daily Traffic,  ADTT: Average Daily Truck Traffic
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Average daily traffic and truck traffic in one lane were large in SS and WG. And
the average GVW of heavy trucks (type 7, 12) in GC, SS was heavier than others.
The average speed was the lowest at PH (2010~11), but still higher than 70km/h,

which implies that the traffic jam situation is not typical traffic condition in reality.
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® H WG
s B PH(2010~11)
© 10000-
o
£
L
=
S
S, 5000-
'S
o
04
Al'l 2 3 4 5 6 7 8 9 10 11 12
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2500
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B PH(2010~11)
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Daily traffic in one lane

5004
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Figure 4.3 Average daily traffic of each vehicle type and truck traffic in one lane
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Figure 4.4 Average GVW of each vehicle type

Table 4.5 Speed statistics of WIM data

) Speed (km/h)
Site
Average Standard Deviation
GC 93.29 14.7
SS 91.49 16.6
WG 93.08 13.5

PH (2010~11) 76.27 12.3
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4.3 Drive Analysis

Nowak et al. (2010) and Hwang (2012) developed a live load model for long span
bridges assuming the occurrence of traffic jam situation. However, the average
traffic speed measured is higher than 70km/h, indicating that traffic jams seem to be
rare. The live load model based on severe situation assumption may lead to
unnecessary conservatism. Therefore, realistic traffic situations need to be

investigated, so driving situations were analyzed using recently measured WIM data.

4.3.1 Method

It was assumed that the actual traffic flow could be modeled by the WIM data.
The WIM data includes the measured time, axle weights, axle spacing, speed, lane,
vehicle type, etc. It was assumed that vehicles maintain the same speed and lane
when driving, and that the location of the steer axle of vehicles was right on the
entrance of bridge when it was measured by the WIM system. The procedure of the

drive analysis is as follows:

00:00:15 00:00:12 00:00:10 00:00:05
70km/h 90km/h 80km/h 100km/h
Time 00:00:15 “6-- 6" “oooio0! So— 6 S lgn =
00:00:15 00:00:12 00:00:10
70km/h 90km/h 80km/h
Time 00:00:15 +0. o — oo0 oo coge A_’

Figure 4.5 Vehicle position of a certain time
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1)

2)

3)

4)

5)

Vehicle location at a certain time is calculated based on the speed and
measured time data as described in Figure 4.5 (data on the vehicle figures
are the measured time and velocity information of each vehicle. The time at
the very left is the reference time according to which vehicles are arranged)

Calculate the total axle weights on the bridge length

Calculate representative uniformly distributed load (UDL)

UDL = total axle Welgh_ts on the bridge length 41)
(length of the bridge )x (number of lane)

Repeat steps 1) ~ 3) when an axle passes through the bridge entrance

Repeat steps 1) ~ 4) using different bridge lengths

4.3.2 Results

The UDLs are the average with regard to the number of lanes and they are

assumed to be representative values of whole-lane traffic at each time. The results of

drive analysis with the WIM data were presented in Tables 4.6 ~ 8. The average of

the UDL decreased when the length increased. The maximum UDL was bigger than

the sum of the average and exhibited at standard deviation of six. This means that

the UDL value near the maximum happens rarely compared to all events. There are

some severe loads, but ordinary traffic is very low compared to the severe loads.
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Table 4.6 The average of UDL (kKN/m)

Length (m) GC SS WG PH (2010~11)
250 0.35 0.67 0.42 0.56
500 0.30 0.60 0.40 0.49
750 0.29 0.57 0.39 0.46
1000 0.28 0.56 0.38 0.44
1250 0.27 0.55 0.38 0.43
1500 0.27 0.54 0.38 0.43
1750 0.27 0.54 0.38 0.42
2000 0.26 0.54 0.38 0.41

Table 4.7 The standard deviation of UDL (KN/m)

Length (m) GC SS WG PH (2010~11)
250 0.36 0.55 0.32 0.47
500 0.26 0.42 0.25 0.36
750 0.22 0.37 0.22 0.32
1000 0.20 0.34 0.21 0.29
1250 0.19 0.32 0.20 0.28
1500 0.18 0.31 0.19 0.27
1750 0.17 0.30 0.18 0.26
2000 0.16 0.29 0.18 0.25

Table 4.8 The maximum value of UDL (KN/m)

Length (m) GC SS WG PH (2010~11)
250 4.28 6.22 3.42 5.91
500 2.62 4.97 2.95 4.16
750 2.53 461 2.59 3.11
1000 2.22 4.42 2.48 2.77
1250 2.27 4.20 2.58 2.44
1500 2.11 3.99 251 2.22
1750 2.06 3.89 2.60 2.14

2000 191 3.58 2.56 2.06
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4.4 Multiple Presence Factor

The UDLs are the average uniformly distributed load with regard to the number of
lanes. And those of UDLs were assumed to be the representative lane load of single
lane traffic at each considered time. Therefore multi-lane traffic at each considered
time can be modeled by multiplying the UDLs by the number of lanes. But the
multi-lane reduction effect has to be considered. The multi-lane reduction effect can

be defined by equation (4.2):

The average of the max. load of the whole lane
The max. load of one lane

Reduction factor =

(4.2)

4.4.1 Method

Let the UDL values of each site from drive analysis of WIM be the population of
the lane load of each site. Each UDL value is the average lane load at a specific time,
which describes the traffic situation at that time. Therefore multi-lane driving
simulations can be performed by sampling UDLs from the population for each lane.
The multi-lane driving simulations are described in Figure 4.6. Then, multiple

presence factors were proposed according to the following procedures:

I I I
, ) I 0.,
Chronological Wal Wl o0 Wy
; I i i
order
population I Ei Ei j
[l
P Tl
) ¥ ¥ T )
Random ! ! i
sampling Lane 1 Lane 2 Lane N

Figure 4.6 Multi-lane simulation
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1) Assemble population data, UDL, according to the drive analysis

described in section 4.3

2) Select a single value (@, ) for lane 1 from the population in
chronological order

3) Select a single value for lanes 2~8 (w;, ~ @,g) each from the population
by random sampling without considering time sequence

4) Repeat steps 2), 3) as many as the size of the population
5) Calculate the multi-lane reduction ratio using equation (4.3)

6) Repeat steps 2) ~ 5) 1,000 times and select the ten largest values (upper
10% value) of the ratio as multiple presence factors

N
max (Z o, j]
=L N (4.3)
reduction ratio =

max(a)u)

where, N is the number of total lanes, @ is the lane load of lane j at i-th
time sequence

4.4.2 Proposal of multiple presence factor for bridges with long spans

The multiple presence factors were estimated for 100, 300, 500, 1000m of GC, SS,
WG, PH (2010~11) and proposed based on the average values of GC, SS, WG, PH
(2010~11). The UDLs were already averages with regard to the number of lanes,
such that the UDLs were assumed to be two-lane averages and, therefore, the
multiple presence factors of two loaded lanes were normalized to 1.0. The results

were compared with KBDC (2012) and AASHTO (2012) in Table 4.9 and Figure 4.7.
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The multiple presence factors of KBDC (2012) were divided by the multiple
presence factor value of 2 loaded lanes for direct comparison. The load reduction
effect of the proposed multiple presence factor was less than that of KBDC (2012)
and similar to AASHTO (2012) for loaded lanes 1~4. More radical multiple
presence factors were proposed, providing decreasing values up to loaded lane 6.

Table 4.9 Multiple presence factors

L oaded Average of
Lanes KBDC* | AASHTO |Proposed| GC, SS, WG, PH (2010~11)
100m 300m 500m 1000m

1 1.0 (1.11) 1.20 1.25 130 127 122 1.23
2 0.9 (1.00) 1.00 1.00 1.00 1.00 1.00 1.00
3 0.9 (0.89) 0.85 0.80 0.78 081 0.79 0.78
4 0.7 (0.78) 0.65 0.70 0.66 0.69 0.67 0.67
5 0.65 (0.72) 0.65 0.60 058 062 060 0.9
6 0.65 (0.72) 0.65 0.55 053 056 055 0.54
7 0.65 (0.72) 0.65 0.55 049 051 051 0.50
8 0.65 (0.72) 0.65 0.55 045 0.49 0.47 0.48

The KDBC* values in parentheses are normalized to 1.0 for two lanes

1.3
1.2 4
114
14
0.9 1
0.8 1
07 i = = = H1
0.6 1 ~—
05 | !
0.4 1

0.3
0.2 | ——AASHTO(2012)
0'1 | =—KBDC(2012)* - normalized by lane2

0 —e—Proposed

1 2 3 4 5 6 7 8
Number of Loaded Lanes

Multiple Presence Factors

Figure 4.7 Comparison of the multiple presence factors (The KDBC (2012)* is
normalized to 1.0 for two lanes)
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5. Statistical Model of Live Load for Long span
Bridges

Identification of a statistical model of vehicular live load is essential for
probability-based design code. The variation is described by distribution type, bias
factor, and coefficient of variation. In Korea, the statistical characteristics of short-
to medium-span bridges is presented by Hwang (2008; 2012). But for longer-span
bridges, those have not been clearly stated. Hwang (2012) developed the lane load
model for long span cable bridges but did not provide its statistical characteristics.
Lee (2014) estimated the bias factor of the lane load, which was excessive compared
to the bias factor of the KBDC (2012).

The reason for this excessive bias may be the assumed traffic jam. Indeed the
speed results of WIM showed that traffic jams are rare case in reality. Therefore, the
statistical characteristic was again estimated by drive analysis.

Lee (2014) used statistical extrapolation method for estimating maximum load
over the design period, compared to the Hwang’s (2012) method of using the
maximum value of the measured period without extrapolation. The statistical
extrapolation method was also investigated to evaluate whether it affected the

excessive bias factor result.
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5.1 Estimation of the Maximum Load

The time period should be defined in order to devise the statistical model of
vehicular live load. To estimate the probability of bridge failure during the design
period, the magnitude of maximum load should be calculated. The design of bridges
requires the estimation of the maximum load effect during the design period, such as
100 years for KDBC and 75 years for AASHTO LRFD. It is impossible to collect
sufficient data to identify the maximum load effect in a 75-year or 100-year period
and, therefore, statistical projection should be performed. In this paper, maximum
load was considered instead of maximum load effect based on an assumption that

load and load effect have a linear relationship.

5.1.1 Estimation by return period load

(1) Return period

If a process is stationary, the return period T of a given event X; is defined as
the average time elapsing between two successive realizations of the event (X;)
itself and can be expressed as a function of a probability distribution F, and the
average waiting time U; between two events X (Renata et al., 2012). The return

period of a given event X; can be calculated by equation (5.1).

Ur

e Fy (%) G
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The design live load model can be determined from the return period load. Return
period load can be calculated from the return period and probability distribution. A
load distribution can be estimated by field measurement such as WIM. And the
probability of exceedence corresponding to the return period can be calculated. The
correspondent position of the probability of exceedence in the load distribution is the

return period load.

(2) Previous research — Nowak (1999)

The HL-93 live load model is based on the 75-year return period load. Nowak
(1999) estimated the 75-year mean maximum load effects, assuming the largest 20%
of the whole measured data as a normal distribution. This calculation is based on the
assumption that all measured data do not follow a normal distribution, but the tail
end of the data resembles a theoretical normal distribution.

To describe the extrapolation procedure, the 100-year mean maximum UDL of
GC (500m) was calculated using the extrapolation method of Nowak (1999). The
UDLs of GC (500m) data were collected as described in section 4.3 and sorted in
increasing order. The empirical CDF is calculated by equation (5.2), and the data

was plotted in the normal probability paper as shown in Figure 5.1.

Fe (X)) = (5.2)
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Table 5.1 Number of events and probability according to time period
[Nowak’s (1999) method]

Time Number Exceedence Empirical Inverse
period of Events Probability CDF Normal
T N 1/(N+1) N/(N+1) S
1 day 8,525 1.173x10°*  0.9998827146 3.679
1 month 255,756 3.910x10%  0.9999960900 4.470
1 year 3,111,703 3.214x1077  0.9999996786 4.978

50 years 155,585,154  6.428x10%°  0.9999999936 5.688
100 years 311,170,308  3.214x10%°  0.9999999968 5.805

It was assumed that the load distribution does not change with time. The expected
number of events, probability, and the inverse normal was calculated in Table 5.1.
Then, the approximate normal distribution was estimated by drawing a straight line
fitted to the largest 20% of data as shown in a continuous line. The mean and
standard deviation from the fitted to the upper 20% normal distribution are

computed in equation (5.3).

SData(TopZO%) = (216443))( - (015401) = O_i X — g_x
X X (5.3)

uy =0.1067, o, =0.6930

The 100-year mean maximum UDL was predicted from equation (5.4), which is
the inverse form of equation (5.3). The expected maximum UDL of different design

life is the horizontal axis value of the intersection points between the continuous line
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and dotted line of each design period (Figure 5.1). The estimated maximum UDLs

are shown in Figure 5.1 and Table 5.2.

X =0y SData(Top 20m) T Hx = (0-6930)8 Data(Top20%) T (0-1067) (5.4)

All data
©  Upper 20%
— Linear fit (upper 20%)

Inverse Normal Distribution Function

-— lday
= =1 month
70— 1 year
----- 50 years
| - —100 years
-6 ] ] ] T ] L \‘

0O 1 2 3 4 5 6 7 8 9 10
UDL(GC, 500m) [kN/m]

Figure 5.1 Maximum UDL estimation using the extrapolation method of
Nowak (1999)

Table 5.2 Maximum UDL estimation [Nowak’s (1999) extrapolation method]

Time period Inverse Normal Estimated
Maximum UDL

T S [kN/m]

1 day 3.679 1.856

1 month 4.470 2.208

1 year 4.978 2.436
50 years 5.688 2.757
100 years 5.805 2.810
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The mean maximum estimated by Nowak’s (1999) method is the UDL, which
corresponds to the probability of exceedence of each time period in the load
distribution and therefore it is the return period load.

This extrapolation method assumed the upper 20% data as a normal distribution,
but it may not be appropriate to use it as a maximum value distribution. The
approximated normal distribution changes depending on what percentage of upper
data we use. And the maximum load distribution, rather than entire load distribution,
is of concern to evaluate the reliability of structure over design life. It is known that
extreme value distribution is more appropriate for the maximum value selected from

the population.

5.1.2 Estimation by maximum load distribution

(1) Maximum load distribution

The maximum load can be estimated from maximum value distribution. If the
sample size is big enough, the maximum value distribution from a population
converges to the three types of extreme value distribution as described in section 2.3.
Then, the return period load is in the position of the location parameter of extreme

value distribution. Equation (5.5) is the nonexceedence probability of return period

load (X;) in initial distribution (F, ). From equation (2.8), the nonexceedence

probability of return period load (X;) in maximum value distribution can be

expressed as equation (5.6).
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1
I:x (XT) —1_ﬁ (5.5)

Fy, () =[Fx (0]" = {1—%} Nj% ~ 0.3679 (5.6)

N : the expected number of events over period T

The location parameter of extreme value distribution has the same nonexceedence
probability as shown in equation (5.7), if the number of events is large enough.
Therefore, design load can be proposed by the location parameter in maximum load

distribution as the same philosophy of return period load.

"D|H

Type | Fxn(x)‘ = exp[-expi—a, (U, —u,

X=U,

Type Il Fy (XX =exps—

X=0,

X=W, }

(2) Previous research — Lee (2014)

_1
- (5.7)

T
>
—_
>
S
|
D
x
o
E
<'DI|—\

Type 11

Lee (2014) estimated maximum load distribution over the design period using
measured maximum load distribution over unit measured time period using the
concept of 1ISO2394 (ISO, 1998). Then, he predicted the maximum load value from
the estimated maximum distribution. He assumed the daily maximum values as the

Gumbel distribution.
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Figure 5.2 Maximum UDL estimation using the extrapolation method of Lee (2014)

To describe the details of the procedure, the 100-year maximum UDL distribution
of GC (500m) was calculated using the extrapolation method of Lee (2014). One-
day maximum UDLs were collected and sorted in increasing order. The number of
daily maximum events, N, is the number of days of the design period. The
empirical CDF was calculated by equation (5.2), and the data was plotted in the
Gumbel probability paper as described in section 2.3.3. Then, the daily maximum
load distribution was estimated by drawing a straight line fitted to the data on the

Gumbel probability paper as shown in a continuous line in Figure 5.2.
The location (U;) and shape parameter (¢;) of daily maximum UDL can be

calculated from the fitted line using equation (5.8).
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S bata(Daily Max) = (3.0983))( — (4.9184) =a, X —ayU,

5.8
U, —15877, @, =3.0978 (8)

The maximum load distribution (FXT) of design period, T , and the

corresponding parameters (U;, ;) can be calculated from the daily maximum

distribution (F,) using equations (5.9) and (5.10). And the estimated maximum

UDL distribution of the design period, T , was described on the Gumbel probability
paper in Figure 5.2. The mean and coefficient of variation can also be calculated

from the maximum distribution according to the equation (2.21c).

Fy, (X) = {Fl (X)}T =exp [_ EXp {_ o (X - Ul)}]T

R

= exp[—exp{— o (x—u; )]

= Uy, + , o = (5.10)

5.1.3 Estimation using Cramer’s asymptotic solution
Nowak (1999) assumed a normal distribution based on the upper data distribution
profile, and predicted the mean maximum load from the initial upper data

distribution. But Lee (2014) estimated not only the return period load, but also the
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maximum load distribution over the design period using the extreme value
distribution theory. The extrapolation results can vary according to assumption such
as normal distribution for upper the 20% data or Gumbel distribution for daily
maximum data. The extrapolation method posited by Lee (2014) estimated bigger
maximum UDL compared to Nowak’s (1999) method.

However, the COVs of maximum distribution did not change for different time
periods in Lee’s (2014) method because of the property of Gumbel distribution. If
the normal distribution assumption of Nowak (1999) is correct, the COV of
maximum value distribution should decrease when time period increases. If the
initial upper tail of the initial distribution is normal distribution, the maximum
distribution converges to a Gumbel distribution as explained in section 2.2.2. Then,
the daily maximum distribution should be considered as an approximate — not an
exact — Gumbel distribution. And the COV of maximum distribution should
decrease when design period increases according to the equation (2.24). Therefore, a
new extrapolation method estimating maximum load distribution from normal

distribution was proposed using Cramer’s asymptotic solution.

(1) Cramer’s asymptotic solution

If initial random variable X follows the normal distribution of mean /s,

and standard deviation o then the maximum value after N repetitions taken

event !
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from initial distribution asymptotically approaches an Extreme Value Type |

distribution with the parameters shown in equation (5.10) as derived in section 2.2.2.

l"IN = :uevent + O-event|: 2 In N - In {In (N )}+ In (47[):| 1
' 242In N
v2In N

(o}

(5.10)

oy =
event

Uy and o, are the location and shape parameter of maximum value
distribution, respectively

(2) Estimation of maximum load distribution by Cramer’s asymptotic solution

It is assumed that the upper UDL follows a normal distribution in line with
Nowak’s (1999) assumption. Then, the daily maximum UDL distribution can be
assumed to be a Gumbel distribution if the number of events is large enough. The
number of events corresponding to the daily maximum distribution is the ADT,
which is normally more than 1,000, that assumed to be large enough for the
assumption. The initial UDL distribution can be derived from the daily maximum
UDL distribution, and 100-year maximum UDL distribution can also be derived
from Cramer’s asymptotic solution.

To describe the extrapolation procedure, the 100-year maximum UDL of GC
(500m) was calculated using the extrapolation method of Cramer’s asymptotic
solution. . The daily maximum UDL distribution was estimated according to the
same procedure described in section 5.1.2, using Gumbel probability paper. Then,

the initial UDL distribution was estimated by equation (5.11).
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oy =ay, 2In(ADT)

(5.11)
=0, \/m_ In{ln(ADT)}+In(47r)}_uX ,

2,/2In(ADT)
My and o are the mean and standard deviation of initial UDL distribution, and
Uy oo, and ay,, are the location and shape parameter of daily maximum UDL

distribution, respectively.

Then, the 100-year maximum Gumbel distribution FX100year was derived from the

initial normal distribution Fx using equation 5.10, with N = ADT x365x100. The
approximated daily maximum distribution, estimated initial normal distribution, and
the estimated 100-year Gumbel distribution of UDL are shown in Figure 5.3. The
100-year return period UDL was 9% lower than Lee’s (2014) method, and Figure
5.4 compared the two methods. It was still greater than Nowak’s (1999) method, but
Nowak’s (1999) method underestimated a 100-year return period load with stiffer
slope than the trend exhibited by the data as shown in Figure 5.1. The measured
maximum UDL was 2.6153 kN/m, and the measured period was 236 days for GC,
500m UDL. The three methods are compared in Table 5.3. Nowak’s (1999) method
(under)estimated the closest 236-day UDL. The proposed method estimated 236-day

UDL more precisely than Lee’s (2014) method.
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Figure 5.4 Comparison of extrapolation method between the proposed method and
Lee’s (2014) method

Table 5.3 Comparison of the measured and estimated maximum UDL of GC (500m)

Nowak’s (1999)  Lee’s (2014) Proposed
AT method method method
236-day
Max. UDL 2.615 2.398 3.351 3.254
[KN/m]
Error(%) - 8.30 28.15 24.44
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5.2 Statistical Characteristics of Vehicular Live Load

5.2.1 Design live load model

The design live load model of KBDC (2012) consists of a design truck model and
design lane load (Figure 5.5, Table 5.4). The extreme load effect is taken as the
larger between ‘the effect of one design truck’ and ‘the effect of 75% of design truck

combined with the effect of the design lane’.

135kN 135kN 192kN

o |

[3.6m 1',2,,, 7.2m1
' - 12.0m

0 . S El T B ! 7;}0.611*1
3.0m| | } : | 1.8m
o L — 7[}' “T0.6m

Figure 5.5 Design truck load (KBDC, 2012)

Table 5.4 Design lane load (KBDC, 2012)

L<60m w=12.7 (kN/m)
60
L=60 m w=12.7x T (kN/m)

A value of 0.18 for N is provided in KBDC (2012). Hwang (2012) proposed a
value of 0.15 for a new lane load model for long span cable bridges with the same

truck load.
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5.2.2 Bias factor of the design lane load model

Bias factor, mean to nominal lane load, was calculated. The mean value was

calculated by equation (2.27c¢) from the 100-year maximum UDL distribution.

Nominal lane load is the lane load model of Hwang (2012) multiplied by the two-

lane multiple presence factor of 0.9.
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The 100-year maximum UDL distribution was estimated by the proposed method
in section 5.1.3 from each site using span lengths of 50, 75, 100, 200, 250, 300, 400,
500, 750, 1000, 1250, 1500, 1750 and 2000m. The daily maximum UDL distribution
of four sites was presented in Figure 5.6. The daily maximum UDL distribution,
estimated initial UDL distribution, and 100-year maximum UDL distribution results
are presented in Tables 5.5 ~ 5.7. UDL decreased as length increased, and the results

at the SS site were greater than those of other sites.

Table 5.5 Daily maximum UDL distribution (Gumbel distribution)

Location parameter Shape parameter

Length PH PH
m | ¢ S5 WG 5515-1g) ©C S5 WG nhq0-19

50 6.54 9.59 4.97 6.78 0.98 0.69 0.84 0.55
75 5.06 7.36 3.82 5.16 1.25 0.87 1.04 0.71
100 | 4.16 6.15 3.20 4.29 1.48 0.96 1.23 0.83
200 2.71 4.07 2.16 2.82 2.07 121 1.69 1.18
250 2.36 3.59 1.90 2.46 2.25 1.29 1.89 1.30
300 2.12 3.26 1.74 2.22 2.49 1.38 2.02 1.44
400 1.78 2.81 151 1.90 2.84 1.48 2.25 1.62
500 1.59 2.52 1.35 1.69 3.10 1.56 2.48 1.79
750 1.27 2.10 1.13 1.37 3.45 1.76 2.86 2.10
1000 | 1.09 1.86 1.00 1.20 3.77 1.89 3.12 2.35
1250 | 0.98 1.69 0.91 1.08 4.01 2.01 3.34 2.53
1500 | 0.90 1.58 0.85 1.00 4.23 2.09 3.53 2.64
1750 | 0.83 1.49 0.81 0.94 4.40 2.16 3.65 2.76
2000 | 0.79 1.42 0.78 0.89 4.62 2.23 3.77 2.83
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Table 5.6 Estimated parent UDL distribution (Normal distribution)

Mean Standard deviation
Length PH PH
(mg) GC S5 WE 5011y GC S5 WG 5510-11)
50 |-10.91 -16.86 -18.04 -21.77 4,50 6.61 5.56 7.72
75 -8.72 -1359 -1467 -17.12 3.55 5.23 4.47 6.02
100 | -7.47 -12.66 -1256 -14.66 3.00 4.70 3.81 5.12
200 | -5.61 -10.88 -9.25  -10.47 2.14 3.74 2.76 3.60
250 | -5.27 -10.46 -8.32 -9.62 1.97 3.51 2.47 3.27
300 | -477 -987 -7.81 -8.74 1.77 3.28 2.31 2.96
400 | -4.27 -9.46  -7.07 -7.83 1.56 3.07 2.07 2.63
500 | -3.96 -9.12 -6.46 -7.12 1.43 2.91 1.89 2.38
750 | -3.71 -8.20 -5.62 -6.12 1.28 2.57 1.63 2.02
1000 | -3.47 -7.72 -5.19 -5.49 1.18 2.39 1.49 1.81
1250 | -3.31 -7.32 -4.87 -5.14 1.10 2.25 1.40 1.68
1500 | -3.16 -7.12 -4.61 -4.96 1.04 2.17 1.32 1.61
1750 | -3.07 -6.90 -4.49 -4.76 1.01 2.10 1.28 1.54
2000 | -293 -6.73 -4.35 -4.66 0.96 2.04 1.24 1.50
Table 5.7 Estimated 100-year maximum UDL distribution (Gumbel distribution)

Location parameter

Shape parameter

Length PH PH
(mg) GC S8 WG (5910-11)] ¢ S5 WG (9p10-19)
50 | 1578 2202 1594 2311 | 142 098 118 081
75 | 1236 1702 1264 1790 | 179 123 146  1.04
100 | 1032 1563 1071 1513 | 243 137 172 122
200 | 741 1161 760 1043 | 298 173 237 174
250 | 640 1067 678 938 | 324 184 265 101
300 | 576 987 629 849 | 359 197 283 211
200 | 499 900 559 747 | 409 210 316  2.38
500 | 452 839 507 673 | 446 222 347 262
750 | 391 729 435 565 | 496 251 401 3.09
1000 | 351 669 395 502 | 542 269 438 346
1250 | 325 624 367 464 | 577 286 468 372
1500 | 3.04 596 346 440 | 610 297 495 388
1750 | 290 572 333 420 | 634 307 511 406
2000 | 2.76 553 322 407 | 665 316 528 416
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Table 5.8 Estimated 100-year maximum UDL distribution (continue)
Mean Ccov

Length PH PH
m | ¢SS WG oh10-1py] €SS WG 551011

50 16.19 2351 1643 23.83 0.056 0.056 0.066 0.066
75 12.69 18.38 13.04 18.46 0.056 0.057 0.067 0.067
100 | 1059 16.05 11.05 15.60 0.057 0.058 0.068 0.067
200 7.30 1194 7.84 10.76 0.059 0.062 0.069 0.069
250 6.58 10.99 7.00 9.68 0.060 0.064 0.069 0.069
300 5.92 10.17 6.50 8.77 0.060 0.064 0.070 0.069
400 5.13 9.27 5.78 7.71 0.061 0.066 0.070 0.070
500 4.65 8.65 524 6.95 0.062 0.067 0.071 0.070
750 4.038 752 449 5.84 0.064 0.068 0.071 0.071
1000 | 3.62 6.90 4.08 5.19 0.065 0.069 0.072 0.071
1250 | 3.35 6.44  3.79 4.79 0.066 0.070 0.072 0.072
1500 | 3.14 6.15 3.58 4.55 0.067 0.070 0.072 0.073
1750 | 2.99 591 345 4.34 0.068 0.071 0.073 0.073
2000 | 2.85 571  3.33 4.21 0.068 0.071 0.073 0.073

The mean value the of 100-year maximum UDL was compared with the nominal
value in Figure 5.7. The 100-year UDL decreased when length increased as the
design lane load does, however the decreasing rate was stiffer than the design lane
load. The bias factor(Figure 5.8) varies from 0.4 to 1.5, which is not uniform for

lengths. And the bias factor of SS was more than twice that of GC.
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5.3 Proposal of New Lane Load Model

Based on the recently measured WIM data and the drive analysis, the lane load
model Hwang (2012) showed non-uniform bias factor according to lengths. And the
site-to-site variability should be incorporated. Therefore, a new lane load model was

proposed.

5.3.1 Lane load model

(1) Load model for influence line length

A new lane load model was proposed as decreasing in relation to influence line
length as shown in equation (5.12). BS5400 and ASCE Report (1981) also used the
decreasing form of uniformly distributed load for loaded length. And it is reasonable
to define the lane load for influence line length, which is effective loaded length
(KSCE, 2006). Parameter A denotes the value of lane load at an influence line
length of 100m, and constant lane load was proposed for influence line lengths
shorter than 100m, because design truck load effect is dominant for short spans.

Parameter B represents the decreasing rate of lane load.

100\®
= A = 5.12
w A( 3 j (5.12)
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Figure 5.9 Average of normal and heavy traffic lane load

The results were divided into two groups by the magnitude of lane load: normal
traffic and heavy traffic. The round markers (GC, WG) were classified as normal
traffic and the square markers (WG, PH) were classified as heavy traffic (Figure 5.9).
The parameter was fitted for the average return period load of each traffic for 250,
500, 750, 1000, 1250, 1500, 1750, 2000m as shown in Figure 5.9. The proposed
value of B, 0.35, was bigger than that used by Hwang (2012) which indicates a
faster decreasing rate. The lane load magnitude, A, for normal traffic was close to
the AASHTO lane load value and, therefore, the AASHTO lane load value of 9.34
kN/m was proposed. Table 5.9 and Figure 5.10 present data for the proposed lane
load model and the mean value of the 100-year maximum UDL distribution of each

site.

66



25

[~ L L Hwang(2012) * GC
----- AASHTO(2012) =SS
Proposed - Normal traffic  © WG
20 | -— Proposed - Heavy = PH(2010~11)

Uniformly Distributed Load (kN/m)

1000 1500
Length (m)

Figure 5.10 Proposed lane load and the mean of 100-year max. UDL

0100 500 2000

100\°
Table 5.9 Proposed lane load, w= A x -

Normal traffic Heavy traffic
Parameter [ : Hwang
Fitted from Fitted from (2012)
proposed proposed
average average
A 899 A%I?i|4TO) 13.52 135 11.76
0.375 0.35 0.355 0.35 0.15

(2) Load model for span length

Influence line length varies for different member and load effects, that the design
procedure can be complicate. KDBC (2014, under revision) offers a more
conservative load model for span length that simplifies the design procedure based

on Hwang’s (2012) load model. Load Model 1 (LM1) is defined in terms of span
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Table 5.10 Design lane load (KBDC, 2014 (under revision))

Load Models 1, 2 L<60 m w=12.7 (kN/m)

60

0.10
Load Model 1 W:12_7X(Tj (KN/m)

(Span length)
L>60m

60

0.15
Load Model 2 W:lZ.?x(T] (KN/m)

(Influence line length)

length, and Load Model 2 (LM2) is defined in terms of influence line length (Table
5.10).

For the proposed load model, the span length-based model was also considered
with the same conservative level using the weighted geometric mean concept
(equation 5.13). The LM1 can be considered as a weighted geometric average
between LM2 and the conservative unreduced lane load. The geometric weight used
in LM1 was 1/3 as derived in equation (5.14), and this weight was used for the
proposed lane load model. The proposed model for span length is presented in

equation (5.15).

W= Wla Wzl—a

(5.13)
(a isweight for W,, OSasl)
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Wimis =Wy XWiy,

015 &)
:12.7“x{12.7x(6—|_0] }

- (5.14)
0.15-0.15¢ 010
=12.7x[@] :12_7{@]
L L
. a=1/3
2
1 035] 3 0.23
Wormal traffic, span = 9.34379.34 x (@j =0.34 x (@j
: L 3
(5.15)

2
1 0.35) 3 0.23
—

where, L isspan length(m)

(3) Verification

To verify the proposed model, more WIM data of other sites were compared. The
WIM data of PH (2006), YJ (2010), YJ (2005), and MM were used. The mean value
of the 100-year maximum distribution is presented in Figure 5.11. The PH (2006),
YJ (2010) can be classified as a site of heavy traffic, and the YJ (2005) can be
classified as a site of normal traffic. MM is a site of heavy traffic at short spans but
normal traffic at longer spans. This is because the traffic is lower than at other sites
as presented in Table 4.4. Even though lane load for short spans is high, it can

decrease for long spans because of low traffic. MM has to be classified as heavy
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Figure 5.11 Comparison of proposed model with other sites

traffic for conservative design, but we may have to propose a faster decreasing lane
load model for regions of low traffic.

The proposed model classifies sites as the normal and heavy traffic sites. But the
classification is based on the results of drive analysis, which requires significant
computation. Therefore, the standard of classification from objective properties
needs to be developed, such as traffic volume, average vehicle weight, average

speed, etc.

5.3.2 Statistical characteristics of live load for long spans
The live load model for long span bridges was proposed in section 5.3.1.

Statistical characteristics were estimated for the proposed lane load model in this
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section. The bias factor of the normal traffic model was 0.87 ~ 1.18, and 0.86 ~ 1.21
for heavy traffic for influence lengths longer than 100m as shown in Figure 5.12.
Therefore, bias factor for the proposed lane load model can be proposed as 0.8 ~ 1.2.

Estimated coefficients of variation of 100-year maximum distribution were

presented in Table 5.8 and Figure 5.13. The 7% COV was proposed for lane load.

25 25
----- Hwang(2012) ==+ -Hwang(2012)
Proposed - Normal traffic Proposed - Heavy traffic
T 24| e G6C e —~ 2] =SS
= o WG e L2 o PH(2010~11)
8 5 "
s 15 215
c 1954 5
= i . > TP
= . -
o . o ] L et
£ 1 " < ! amy om m.eet i . . - L]
B % [ PR
g S e . o o . . % AL o a a o o
< [
L L
@ 0.5+ 8 05
o m
0 T T T 0 T T T
0100 500 1000 1500 2000 0100 500 1000 1500 2000
Influence Line Length (m) Influence Line Length (m)

Figure 5.12 Bias factor of proposed lane load model(normal, heavy traffic)

0.1
o g g j°]
0.07—5}2E TG = ¥ * A 0
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. -, e
> 0.05
1
o -
b —Proposed (7 %)
* GC
b = SS
i ° WG
5 PH(2010~11)
0 560 10bO 15b0 2000

Influence Line Length (m)

Figure 5.13 Coefficient of variation of lane load
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The site-to-site variability and the effect of impact was considered as influence
factor (Lee, 2014). The impact was not considered here because the influence of
dynamic load is not significant for long spans (Nowak et al., 2010). The bias factor
and COV of site-to-site variability was assumed to be 1.0 and 10%, respectively. The
site-to-site variability should be investigated using more traffic data, but the same
value was assumed to be that from the previous domestic research (Hwang, 2008).
The COV could be reduced because the variability was already interpreted by
classification of load model as normal and heavy traffic. For the modeling parameter,
Hwang (2008) assumed the assumption of Nowak (1999) and Moses (2001); a value
of 1.0 for bias factor and 10% for COV.

Considering all these effects, the bias factor for load effect was the same as that of
the load model, because the bias factor of the influence factor and modeling
parameter are 1.0. Therefore, the bias factor for load effect for long spans can be
proposed as 0.8 ~ 1.2. The COV of the load effect for long spans can be proposed as
0.16.

The probability distribution of the influence factor and modeling parameter were
assumed to comprise a normal distribution in previous research. The load model was
assumed to have a Gumbel distribution according to the drive analysis. A lognormal
distribution is known to be appropriate when the variable being modeled is a product
of other random variables (Moses, 2001). But if one part exhibits an extreme

distribution, it is known that the variable is likely to follow the extreme distribution,
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even though the other part of the variable follows a normal distribution (Lee, 2014).

Therefore, the load effect was assumed to follow the Gumbel distribution.

5.4 Summary

The statistical model of vehicular live load for long spans was identified. New
extrapolation method using Cramer’s asymptotic solution was proposed. The
estimated 100-year return period UDL showed faster decreasing rate according to
length than design load model. Bias factor of lane load model of Hwang (2012) was
not uniform according to lengths, and showed site-to-site variability. Therefore, a
new live load model for long spans was proposed, considering the decreasing rate
and site-to-site variability. The lane load classified into normal and heavy traffic.
And the load model for influence line length and span length are proposed. The
statistical characteristics of the load model and load effects were identified. The

results are summarized as follows:

® Proposed Lane Load — influence line length

9.34 L, <100m
0.35
Wiiormal trafic = 934)([1'52] |—| ~100m (5.16a)
|
13.50 L, <100m
W 100 (5.16b)

B 0.35
Heavy trafic — 13.50 x (L_J LI >100m
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Proposed Lane Load — span length

9.34 L <100m

Whomatraic =g 34 % i L ~100m (5.17a)
13.50 L <100m

Whieavy tafic =113 50« % o L ~100m (5.17b)

Statistical Characteristics of Load Effects
- Biasfactor: 0.8~1.2
- COV:0.16

- Probability distribution: Gumbel distribution
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6. Conclusions

The current live load model for long span bridges was developed according to
traffic jam scenarios (Hwang, 2012; Nowak et al., 2010). However, the statistical
characteristic of the live load model proposed by Hwang(2012) was not clearly
stated. Lee (2014) has suggested statistical characteristics of the lane load model of
Hwang(2012), but excessive bias factor was estimated, compared to that of
KDBC(2012). The traffic jam assumption and the extrapolation method were the
reasons for the excessive results. To identify the difference between assumed traffic
jam scenario and actual driving situations, recently measured WIM data was
interrogated.

To consider actual traffic patterns, driving situations were analyzed. And the
multiple presence factor of a live load model for long span bridges was proposed by
virtual multi-lane driving simulation using the results from drive analysis. The
simulation results showed a greater multi-lane reduction effect than KBDC (2012)
and were similar to AASHTO LRFD (2012). A decreasing multiple presence factor
for up to six loaded lanes was proposed.

The maximum load distribution was estimated to identify the statistical model of
vehicular live load. A new extrapolation method using Cramer’s asymptotic solution
was proposed to estimate the maximum load distribution. The statistical
characteristics of Hwang’s (2012) lane load model were identified. Bias factor was
not uniform due to different decreasing rates of the 100-year return period load. Site-
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to-site variability needed to be considered. A new live load model for long spans was
proposed considering the decreasing rate and site-to-site variability. The lane load
classified into normal and heavy traffic, and a load model in terms of influence line
length and span length were proposed. The statistical characteristics of the proposed
load model and load effects were identified.

The proposed model classifies sites into the normal and heavy traffic sites. The
standard of classification from objective properties, such as traffic volume, average
vehicle weight, average speed etc., are not presented here. Further study is required
because the drive analysis requires significant computation.

The proposed load model was developed from WIM data across four sites. More
WIM data from many different sites and over a longer period should be analyzed to

create a more reliable vehicular live load model.
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