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Abstract 
 

In this paper the statistical model of the vehicular live load on long span bridges 

reflecting Korean traffic pattern was identified. Traffic jams, which are assumed for 

live load model on long span bridges, do not always occur in reality. The assumption 

may lead to excessive conservatism. To reflect actual traffic patterns, driving 

situations other than traffic jams were investigated using recently measured traffic 

data from six different sites in Korea. An extrapolation method using Cramer’s 

asymptotic solution was proposed to estimate maximum load distribution. A method 

developing multiple presence factors appropriate for long span bridges was 

discussed. The statistical characteristics of live the load model (Hwang, 2012) was 

estimated. Bias factor was not uniform according to influence length due to different 

decreasing rate of load. Site-to-site variability also needed to be considered. A new 

live load model for long span bridges incorporating the decreasing rates and site-to-

site variability was proposed. The lane load was classified into two groups: normal 

and heavy traffic sites. Load models for influence line length and span length were 

proposed respectively. The statistical characteristics of the proposed load model and 

load effects were identified.  

 

Key words: vehicular live load model on long span bridge, statistical model, 

Cramer’s asymptotic solution, WIM data, multiple presence factor 
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1. Introduction 

1.1 Background 

Bridge design codes in many countries have been changed from Allowable Stress 

Design (ASD) to the probability-based Limit State Design (LSD). ASD, which was a 

common design method in the past and still in use today, is based on a deterministic 

method. The allowable stress is set by safety factors to account for uncertainty and 

provide a safety margin. However, the safety factor has been determined empirically, 

and the effects from different loads are considered simultaneously. It is, therefore, 

inadequate to provide a uniform level of safety. In contrast, the probability-based 

LSD defines possible limit states and calculates safety level (defined in reliability 

index) based on reliability theory. It accounts for the different variability levels of 

various loads and resistances independently. Therefore, a more consistent reliability 

level can be attained. ISO2394 (ISO, 1998), Eurocode (CEN, 2001), and AASHTO 

LRFD (AASHTO, 2007) have already established their reliability-based limit state 

design codes. In Korea, the Korea Bridge Design Engineering Research Center has 

conducted long-term research to introduce limit state design to the Korea Bridge 

Design Code (KBDC), and consequently the Korea Bridge Design Code – Limit 

State Design(KBDC-LSD)(MLTM, 2012) was established. 

  It is essential to obtain a sufficient amount and quality of statistical data for the 

reliability analysis. And it is also important to identify an appropriate statistical 

model of loads and resistances from the statistical data. Vehicular live load is one of 
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the most important components in bridge design and evaluation. Inadequate 

knowledge of live load may lead to uneconomical or unsafe design. In America, 

Nowak developed a statistical model of vehicular live load using two weeks Ontario 

truck survey data(Nowak, 1993; Nowak and Hong, 1991; Hwang and Nowak 1991). 

The current American vehicular live load model, HL93, was developed in Nowak’s 

(1999) research. Maximum expected values for various time periods were calculated, 

and the design live load model was developed based on 75-year maximum load 

effects. The statistical data from two-week periods are relatively short compared to 

the design life and, therefore, statistical parameters were estimated using an 

extrapolation method. However, relatively short-term truck survey data may not be 

enough to account for the long-term variation. In addition, heavy vehicles may avoid 

the survey station intentionally or control lifting axles.  

 The WIM (Weight-In-Motion) system collects axle weights during drive situation. 

An early version of WIM included considerable amount of errors or measured only 

low-speed traffic data. Nowak et al. (1993) used low-speed (8-16km/h) WIM data. 

However, the WIM technology has greatly improved in recent years and more 

reliable and long-term statistical traffic data are now available. High-speed WIM 

systems can measure traffic data at normal highway speeds without driver’s 

knowledge. Using recent WIM data of 35 million trucks, Nowak and Rakoczy (2013) 

reviewed statistical parameters of AASHTO LRFD live load moments according to 

the same procedure used by Nowak (1999). Moses (2001) used WIM data and 

presented an equation that computes the maximum weight for bridge evaluation.  
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In Korea, Koh (1998) reviewed vehicular live load models in America, the United 

Kingdom, Japan and Germany and developed a live load model using domestic 

WIM data. As a result of a long-term project of the Korea Bridge Design 

Engineering Research Center, Hwang (2008) developed a live load model for 

KBDC(2012) using domestic WIM data.  

The statistical models of live load stated above are limited to short- and medium-

span bridges. The HL-93 live load model was developed for 10 ~ 200ft span bridges 

(Nowak, 1999). For long spans, the ASCE model (Buckland 1981) was developed in 

the 1980s. And Nowak et al. (2010) investigated recent WIM data and concluded 

that HL-93 is appropriate for long span bridges. In Korea, the live load model for 

long span bridges was presented in the Korean Design Guideline of Cable Steel 

Bridge (2006), but this is an ASD method. KBDC (2012) provides the live load 

model without limitation of span length, but the model was not extensively 

investigated for bridges longer than 200m. Hwang (2012) developed a new live load 

model for long span cable bridges, and the model is now under review for new 

revision of KDBC. The statistical characteristics of the live load model, however, 

have not been clearly stated.  

The models of Nowak et al. (2010) and Hwang (2012) were developed for 

assumed traffic jam situation. They do not incorporate the probability of occurrence 

but assume the occurrence of traffic jams, which may contribute to artificial bias. 

Lee (2014) estimated the bias factor of the live load model proposed by Hwang 

(2012), and the estimated bias factor was excessive compared to the bias factor of 
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the KBDC(2012). Therefore, real traffic – not hypothetical traffic - should be 

considered.  

In contrast with short- and medium live load model, multiple presence factors 

should be considered in different way for long span live load model. For short- and 

medium- span live load model, probability of side-by-side multiple truck occurrence 

is applied to heavy trucks (Nowak, 1999; Hwang, 2008). For long span bridges, 

however, multiple vehicles including not only heavy trucks but also other small 

vehicles should be considered. Therefore multiple presence factors which are 

appropriate for long span bridges should be developed. 

 

1.2 Objectives  

The objective of this study is to identify a statistical model of vehicular live load 

on long span bridges reflecting Korean traffic patterns. To reflect actual traffic 

patterns, driving situations other than traffic jams were investigated using recently 

measured traffic data. The extrapolation method is compared to identify an exact 

statistical model. The multiple presence factor appropriate to long span bridges was 

considered. Finally, a new live load model reflecting actual traffic patterns and 

statistical characteristics of it was proposed.  

 

1.3 Organization of the thesis 

This paper is organized as follow. Chapter 1 presents the background, purpose, 
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and organization of this study. Chapter 2 presents basic knowledge of statistics for 

understanding this thesis. Chapter 3 reviews the existing live load models. Live load 

models, multi-lane consideration, dynamic effects, and statistical characteristics are 

presented. Chapter 4 describes the procedure of drive analysis, analyzing the actual 

traffic patterns. WIM data is presented and multiplication factors are considered in 

this chapter. Chapter 5 presents statistical models of live load model for long span 

bridges and a new model is proposed.   
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2. Basic Statistics for Statistical Model Identification 
 

2.1 Basic Theory of Statistics 

2.1.1 Random Variables  

(1) Definition of random variables 

Random variable is a variable whose values are not fixed for the same event under 

the same condition but distributed around representative value. Random variable is 

defined by certain regulation or function in sample space and divided into discrete 

random variable and continuous random variable. Discrete random variable is a 

random variable with finite elements or countable infinite elements and continuous 

random variable is a random variable whose values can be any value in a certain 

interval. 

 

(2) Probabilistic function 

Probabilistic function is a representation of probability value which corresponds 

to random variable in a function form and can be separated into: Probabilistic mass 

function(PMF), Probabilistic density function(PDF), Cumulative distribution 

function(CDF). PMF and PDF is defined by discrete random variable and 

continuous random variable each, and CDF is defined by both. 

PMF )(xpX
 about discrete random variable X  and PDF )(xfX

 about 

continuous random variable X  are defined as follows: 
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     ][)( xXPxpX   (2.1a) 

     ][)( dxxXxPxfX   (2.1b) 

 

CDF )(xFX
 about discrete random variable and continuous random variable is 

defined as:  

  



xx

iXX

i

xpxXPxF )(][)(  
(2.2a) 

  




x

XX duufxXPxF )(][)(  (2.2b) 

 

(3) Statistical characteristics of a random variable 

Statistical characteristic of a random variable would be described completely if 

the form of the distribution function and the associated parameters are specified. In 

practice, however, the distribution may not be known. Instead, approximate 

description of a random variable such as mean value, variance, and standard 

deviation can be used. Even when the distribution function is known, these 

quantities remain useful.  

Mean value of random variable X  (
X ), by discrete random variable and 

continuous random variable, expressed as 1st moment: 

 

     
ix

iXiX xpxXE )(][  
(2.3a) 

     




 dxxxfXE XX )(][  (2.3b) 
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Variance and standard deviation of random variable X  (
XV  and 

X ) can be 

derived using 2nd moment 

 

  
22 ])[(][ XEXEVX   (2.4a) 

  
22 ])[(][ XEXEVXX   (2.4b) 

 

Coefficient of variation of random variable X  (
X ) is used to measure variance 

of random variable, and defined as ratio of standard deviation to mean value 

 

X

X
X




   (2.5) 

 

 

2.2 Probability Distribution of Extremes   

In bridge design the maximum load distribution is of concern, rather than the 

entire load distribution itself. The maximum load distribution can be developed from 

extreme distribution. More detailed information about the statistics of extremes can 

be found in textbook (Ang et. al, 1984). The largest and smallest values from 

samples of size n  are also random variables and therefore they have probability 

distributions of their own. These distributions can be expected to be related to the 

distribution of the initial variate.  
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2.2.1 Exact Distribution 

Let X  be the initial random variable with known initial distribution function 

)(xFX . Consider sets of samples of size n  taken from the population. Each 

sample will be a set of observations  nxxx ,,, 21   representing respectively the 

first, second, …, n -th observed values. Then we may assume each value can be 

considered as random variables  nXXX ,,, 21  . The extreme values from a 

sample size n  are the maximum and minimum values. Let the random variables of 

extreme values are nY , 1Y  defined as equation (2.6). 

 

 nn XXXY ,,,max 21   (2.6a) 

 

 nXXXY ,,,min 211   (2.6b) 

 

If nY  is larger than a value y , all the sample random variables nXXX ,,, 21   

must be less then y . Assume nXXX ,,, 21   are statistically independent and 

identically distributed as the initial variate X .  

 

       xFxFxFxF XnXXX n
 21 21

 (2.7) 

 

The cumulative distribution function of nY  and the corresponding probability 

density function are derived as equations (2.8) and (2.9) 
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   

 

  nX

n

nY

yF

yXyXyXP

yYPyF
n







,,, 21   (2.8) 

 

          
 

 

    yfyFn

y

yF
yf

X

n

X

Y

Y
n

n

1







 (2.9) 

 

Likewise if 1Y  less than a value y , the cumulative distribution function of 1Y  is 

 

   

 

  nX

n

Y

yF

yXyXyXP

yYPyF







1

,,,

1

21

11

   

 

Therefore, the cumulative distribution function of 1Y  and the corresponding 

probability density function are 

 

                 n

XY yFyF  11
1

 (2.10) 

 

                  yfyFnyf X

n

XY

1
1

1


  (2.11) 

 

  The Equation (2.8) through (2.11) are the exact probability distributions of the 

extremes from samples of size n  taken from a population X . And these 
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distributions depend on the initial distribution )(xFX  of the population and also 

on the sample size n . The distributions of nY  and 1Y  are generally difficult to 

obtain or derive in analytic form. 

 

2.2.2 Asymptotic Distribution 

As n ,  yF
nY  and  yFY1

 converges to a particular functional asymptotic 

form. The asymptotic form of and extremal distribution depends largely on the tail 

behavior of the initial distribution, and the central portion of the initial distribution 

has little influence on the asymptotic form. The analytical derivation of the 

appropriate asymptotic extremal distribution given the distribution of an initial 

variate is facilitated by the method of Cramer. 

Consider the extremal distribution for the largest value from an initial variate X . 

Following Cramer (1946), define the transformed random variable n .  

  nXn YFn  1  (2.12) 

Then,  

         

n

n

XXXY

Xn

nXnXn

n

n
FF

n
FF

n
FYP

n
YFPYFnPPF

n

n































































































11

1111

1

11

11

1

 (2.13) 
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As n ,  

  
   eF

n
1  (2.14) 

 

The corresponding asymptotic PDF is 

  
   ef

n
 (2.15) 

 

From equation (2.12) and (2.14) 









 

n
FY n

Xn


11

 (2.16) 

 

Define  yg  as follow  

    nX YFnyg  1  (2.17) 

Then,  

    ygPyYP nn    (2.18) 

 

Therefore, the asymptotic CDF and PDF of nY  is 

                      ygygFyF
nnY  exp1   (2.19) 

 

                
 

  yg
dy

ydg
yf

nY  exp  (2.20) 

 

Consider standard normal initial variate. The transformed variate of equation (2.12) 

is 
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



nY

z

n dze
n 2)2/1(

2
  (2.21) 

 

Integrating by parts, with 
z

u
1

  and dzzedv z2)2/1(  

 

  2)2/1(
/1o1

1

2

2

n

Y

n

n Ye
Y

n
n 




  (2.22) 

 

Cramer(1946) gives the following asymptotic solution for nY  as n  

 

nn

n
n n

n
ln2

ln

ln22

4lnlnln
ln2


 


  (2.23) 

Denoting 

n

n
nun

ln22

4lnlnln
ln2


 , nn ln2  (2.24) 

 

The n  becomes 

  nnnn uY   exp  (2.25) 

 

From equation (2.19), the CDF of nY  becomes  

 

   nnY uyyF
n

 expexp)(  (2.26) 
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2.2.3 The Three Asymptotic Forms 

The extreme value distribution depends largely on the tail behavior of initial 

distribution in the direction of extreme. There are three type of extreme value 

distribution according to the Gumbel’s classification. The three type of the largest 

extreme values distribution and the mean and standard deviation of them are as 

follow. 

 

(1) The Type I Asymptotic Form 

If an initial distribution with an exponentially decaying tail in the direction of 

extreme, the extreme value distribution will converge to the Type I asymptotic form. 

The largest extreme value distribution are   

 

            nnX uxxF
n

 expexp  (2.27a) 

               nnnnnX uxuxxf
n

  expexpexp  (2.27b) 

       
n

nX u
n 


  ,  

2

2
2

6 n

Xn 


   (2.27c) 

 

The parameter nu  is the location the parameters which is the most probable 

values of the extreme variate nX . And the parameter n  are the shape parameters 

which is an inverse measure of dispersion of the extreme variate nX .   is the 

Euler constant 55716.0 .  
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(2) The Type II Asymptotic Form 

If the initial distribution has polynomial tail in the direction of extreme, the 

extreme value distribution will converge to the Type II asymptotic distribution form.  
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  The parameter n  is the location the parameters which is the most probable 

value of the extreme variate nX . And the parameter k  is the shape parameter 

which is an inverse measures of dispersion of each extreme variate nX . 

)(xy   means the gamma function.  

 

(3) The Type III Asymptotic Form 

If the initial distribution has a finite upper or lower bound in the direction of 

extreme, the extreme value distribution will converge to the Type III asymptotic 

distribution form. The largest Type III asymptotic form are 
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  is the upper bound value of the initial variate X . The parameter nw  is the 

location the parameters which is the most probable value of the extreme variate 

nX . And the parameter k  is the shape parameter which is an inverse measures of 

dispersion of each extreme variate nX .   

 

  



 

17 

 

2.3 Probability Paper  

The vehicular live load is treated as a random variable and therefore we have to 

define the probability distribution of the live load. For the reliable design and 

evaluation, the most appropriate probability distribution of the live load should be 

identified. Graphic methods using probability paper are simple and useful way. 

Probability distribution can be estimated and maximum load can be estimated by 

extrapolation using the probability paper.  

Based on the observable data, we can determine the distribution of the data 

empirically. We can construct the histogram of observed data and compare with 

theoretical probability density functions. Or we can use probability paper prepared 

for specific distributions. Probability papers are constructed such that a given 

probability paper is associated with a specific probability distribution. Observed data 

are plotted on the probability paper and are determined whether the data follow the 

distribution by their linearity, or lack of linearity. Therefore the probability papers 

are different according to the distributions and no other distribution satisfy linearity 

on different probability paper. There are many kinds of probability papers and the 

normal probability paper and the Gumbel probability paper are described here. More 

detailed information about the probability paper can be found in textbook(Ang et. al, 

1975; Castilo, 1988). 
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2.3.1 Empircal CDF 

Let  Nxxx ,,, 21   are N  observed data arranged in increasing order. Then 

empirical cumulative distribution function are assigned to m-th value as follow.  

 

)21( aN

am
F

mX



  (2.30) 

 

The a  is parameter determining the plotting position and many different values 

of the a  are introduced to different distributions(Castilo, 1988; Kang, 2008). 

However, the position based on Gumbel( 0a ) is known to have the theoretical 

attributes and the computational simplicity(Ang et al., 1975).  

 

2.3.2 Normal Probability Paper  

The normal probability paper is probability paper associated with the normal 

distribution. One axis is the variate X , and the other axis is the standard normal 

variate S  of the variate X . If the variate X  follows the normal distribution  

),(~ XXNX  , it will make a straight line according to the linear relation 

between two variate X  and S  
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The CDF of the normal distribution and probability paper is compared in Figure 

2.1 
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Figure 2.1 Normal probability paper and cumulative distribution function( 5X ,

1X ) 

 

If there are N  observed data  Nxxx ,,, 21   arranged in increasing order, we 

assign the empirical CDF )( mX xF  to the m -th smallest value mx  based on the 

equation (2.30) with 0a . Then the S  can be calculated by the inverse standard 

normal CDF.  

    mXXm xFFxS 1  (2.32) 

 

If the plotted data follow the exact normal distribution, the observed data will be 

plotted in a line on the normal probability paper. Then, the probability distribution of 

the observed data can be identified by the linear equation (2.31). The mean is 



  

and the standard deviation is 


1
, where the   and   are the y-intercept and the 
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slope, respectively. If the plotted data doesn’t follow the exact normal distribution, 

the data does not make the straight line. An approximate normal distribution can be 

estimated drawing a straight line on the normal probability paper by error 

minimization.  

 

2.3.3 Gumbel Probability Paper 

The Gumbel probability paper is probability paper associated with the Gumbel 

distribution(the type I asymptotic distribution). One axis is the variate X , and the 

other axis is the standard extremal variate s . The standard extremal variate for the 

Gumbel distribution is written as equation (2.33)  

 

  nnnnnnn uxuxs    (2.33) 

 

If there are N  observed data  Nxxx ,,, 21   arranged in increasing order, we 

assign the empirical CDF )( mX xF  to the m -th smallest value mx  based on the 

equation (2.30) with 0a . Then the S  can be calculated by the inverse Gumbel 

CDF in equation (2.34). The CDF of the Gumbel distribution and probability paper 

is compared in Figure 2.2 

 

        mXmXXm XFxFFxS lnln1    (2.34) 
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Figure 2.2 Gumbel probability paper and cumulative distribution function ( 5nu ,

1n ) 

 

If the plotted data follow the exact Gumbel distribution, the observed data will be 

plotted in a line on the Gumbel probability paper by the linear relation as (2.33). The 

location parameter( nu ) and shape parameter( n ) can be derived from the y-

intercept( ), and slope(  ) of the line, that is, equation (2.34). The Gumbel 

probability paper with 5nu , 1n  is shown in Figure 2.2 




nu , 




1
n  (2.34) 

 

If the plotted data doesn’t follow the exact Gumbel distribution, the data does not 

make the straight line. Then an approximate Gumbel distribution can be estimated 

drawing straight line on the Gumbel probability paper by error minimization.  
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3. International Design Live Load Model 

 

Some of international vehicular live load models were compared in this chapter. 

KBDC-LSD(2012) and AASHTO LRFD(2012) are provided for general bridges 

with all spans, but DGCSB(2006) and ASCE(1981) are provided for bridge design 

especially for long spans. These live load models consist of concentrated loads and 

uniformly distributed loads. For short- and medium-span bridges, single or several 

heavily loaded truck effects governs the live load effect. If the span length increases, 

however, load effects by the mixture of vehicles may be important. For long span 

bridges, the load from different lanes is uniformly distributed to main components, 

and the influence of single truck decreases(Nowak et al., 2010). Therefore the live 

load for long span bridges can be modeled as lane load(Nowak et al, 2010; Hwang, 

2012; Lee, 2014). The lane loads, except for AASHTO LRFD(2012), decrease when 

loaded lengths increase. It was reported that there was enough margin for long span 

brides constructed in Korea, Seohae Grand Bridge, Youngjong Grand 

Bridge(DGCSB, 2006). Decreasing form of lane load model for loaded length is also 

used in BS 5400(2006). The design live loads, multi-lane considerations and 

dynamic effects are compared.  

The statistical characteristics of LSD codes are also summarized. Bias factor ( LL ) 

and COV ( LL ) of the statistical model of the live load effect ( LLQ ) can be defined 

by the following equation (Ellingwood et al., 1980): 
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LLLLLL ABCLL    (3.1a) 
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LLLLLL ABCLL    
(3.1b) 

 

The influence factor, 
LLC , reflects uncertainties arise from analysis which 

transforms load to load effect. The modeling parameter, 
LLB , reflects the load 

modeling effects. 
LLA  is the structural load. The site-to-site variability and the 

effect of impact was considered as influence factor (Lee, 2014). Statistical 

characteristics of load effect, LLQ , are determined considering all these effects 

together. 

 

3.1 KBDC – LSD(2012) 

The design live load model of the Korea Bridge Design Code – Limit State 

Design (KBDC) consists of design truck load, (Figure 3.1) and design lane load 

(Table 3.1). The extreme load effect is taken as the larger between ‘the effect of one 

design truck’ and ‘the effect of 75% of design truck combined with the effect of the 

design lane’. A value of 0.18 for n  is provided in the KBDC (2012). Hwang(2012) 

proposed 0.15 for the new lane load model for long span cable bridges with the same 

truck load.  

For multi-lane design, the live load model is multiplied by a number of design 

loaded lanes with the multiple presence factor. Table 3.2 presents the multiple  
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Figure 3.1 Design truck load (KBDC, 2012) 

 

Table 3.1 Design lane load (KBDC, 2012) 

m60L   kN/m)(7.12w  

m60L   kN/m)(
60

7.12

n

L
w 








  

 

Table 3.2 Multiple Presence Factors (KBDC, 2012) 

Number of Loaded Lanes Multiple Presence Factors, m 

1 1.0 

2 0.9 

3 0.8 

4 0.7 

≥ 5 0.65 

 

presence factor. And a dynamic amplification factor of 0.25 is applied to the design 

truck. 

Statistical characteristics of load effects of KBDC (2012) are stated in Hwang’s 

study (Hwang, 2008; Hwang et al., 2012)’s study. The bias factor of load effects is 

1.0 ~ 1.1 and the COV is 19%. Conservative value of COV, 20%, is used. The detail 
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COV calculation are presented in Table 3.3 and equation 3.2. Distribution type of 

live load effect is assumed as Gumbel distribution. 

 

Table 3.3 Coefficient of variation of load effects (Hwang et al., 2012). 

Effect COV 

Estimation 0.07 

Analysis 0.1 

Dynamic 0.1 

Local 0.1 

 

19.01.01.01.007.0 2222 LL  (3.2) 

 

 

3.2 DGCSB (2006) 

The Korean Design Guideline of Cable Steel Bridge (DGCSB) load consists of 

design truck load (DB load) and lane load (DL load) as shown in Figure 3.2. DB 

load (Table 3.4) is classified into three classes, and DL load (Table 3.5) is used for 

long span cable bridges. The larger force effect between DB and DL load should be 

taken. DGCSB load provides decreasing lane load for bridges with spans longer than 

200m. 
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(a) DB load 

 

 
 

 

 

(b) DL load 

 

Figure 3.2 DB, DL Load Model (DGCSB, 2006) 

 

Table 3.4 DB load (DGCSB, 2006) 

Load Total Weight (kN) Front wheel weight (kN) Rear wheel weight (kN) 

DB-24 432 24 96 

DB-18 324 18 72 

DB-13.5 243 13.3 54 

 

Table 3.5 DL load (DGCSB, 2012) 

200mL  
Concentrated load kN108P m kN156P s  

Distributed Lane Load kN/m)(7.12w  

m200L  

Concentrated load kN108P m kN156P s  

Distributed Lane Load kN/m)(
L500

300
57.07.12 










w  

 

Multi-lane load is evaluated using a multiple presence factor of 0.9 for three lanes 

and 0.75 for four or more lanes. Dynamic amplification factor ( I ) is considered in 

equation (3.3) 

 

3.0
40

15





L
I  (3.3) 
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3.3 AASHTO LRFD (2012) 

The AASHTO HL-93 load model consists of a three-axle design truck (Figure 

3.3), a pair of 111.2kN design tandem spaced 1.2m apart, and a uniformly 

distributed design lane load of 9.34kN/m per lane. The larger force effect of the 

following should be taken. 

1) The effect of the design tandem combined with the effect of the design lane load, 

or 

2) The effect of one design truck, combined with the effect of the design lane load, 

and 

3) For negative moment between points of contraflexure under a uniform load on 

all spans, and reaction at interior piers only, 90 percent of the effect of two 

design trucks spaced a minimum of 50ft between the lead axle of one truck and 

the rear axle of the other truck, combined with 90 percent of the effect of the 

design lane load. The distance between the 32.0-kip axles of each truck shall be 

taken as 14.0 ft. The two design trucks shall be placed in adjacent spans to 

produce maximum force effects. 

 

 
Figure 3.3 Characteristics of the Design Truck (AASHTO, 2012) 
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Table 3.6 Multiple Presence Factors (AASHTO LRFD, 2012) 

Number of Loaded Lanes Multiple Presence Factors, m 

1 1.20 

2 1.00 

3 0.85 

>3 0.65 

 

The multiple presence factors are shown in Table 3.6, and a dynamic amplification 

factor of 0.33 is applied to the design truck. Statistical characteristics of load effects 

of HL-93 are presented in Nowak’s (1999) study. The bias factors of load effects 

(moments and shears) are about 1.3 ~ 1.35 and that of live load with impact is 

presented as 1.10 ~ 1.20. The COV is presented as 18%, considering static live load, 

live load analysis factor, and dynamic load.  

 

3.4 ASCE Loading (1981) 

  The ASCE Loading is a result of the studies performed by Peter G. Buckland, 

which was recommended by the American Society of Civil Engineers Committee on 

Loads and Forces on Bridges for long span bridges. ASCE (1981) specifies three 

levels of live load for highway bridges depending on the average percentage of 

heavy vehicles in traffic flow: 7.5%, 30%, and 100% heavy vehicles of the total 

vehicle population. "Heavy vehicles (HV)" were defined as buses and trucks over 

12,000 lbs. In designing a new bridge, the expected trucks in the traffic must be 

estimated from traffic measurements. The ASCE model does not have any allowance 

for dynamic load. (quoted from Lutomirska, 2009)  
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Figure 3.4 ASCE Loading on Log Scale (Buckland 1981; quoted from Lutomirska, 

2009) 
 

  



 

30 

 

4. Drive Analysis 
 

4.1 Introduction 

For short- and medium-span bridges, single or several heavily loaded truck effects 

govern the live load effect. If the span length increases, however, load effects due to 

the mixture of vehicles may be important. For long span bridges, the load from 

different lanes is uniformly distributed to main components, and the influence of 

single truck decreases (Nowak et al., 2010). Therefore, the live load for long span 

bridges can be modeled as lane load (Nowak et al, 2010; Hwang, 2012; Lee, 2014).   

The live load model for bridges with long spans was developed by Nowak et al. 

(2010), and it was concluded that the bias factor is less than 1.25 and the HL-93 can 

be applied to long span bridges. Based on WIM data obtained from NCHRP 12-76, 

traffic jam scenario was investigated as shown in Fig 4.1. Starting with the first 

truck, all consecutive trucks were added with a fixed headway distance (distance 

between the last axle of one truck and first axle of the following truck) of 7.6m until 

the total length exceeded the span length. Then the total weight of all trucks on a 

certain span length was calculated and divided by span length to obtain the average 

uniformly distributed load (UDL). Next, the first truck was deleted, and one or more 

trucks were added to cover the span length. The UDL distribution was identified by 

repeating the procedure. Only the most loaded lane was considered and motorcycles 

and small cars were omitted. The heaviest combination of vehicles over a 75-year 

period was calculated.  
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Figure 4.1 Critical loading. Traffic jam scenario [Nowak et al. (2010)] 

 

 

(a) Scenario 1-0 

 
(b) Scenario 1-1 

 

 
(c) Scenario 1-2 

 

 
(d) Scenario 2-0 

 

 
(e) Scenario 2-1 

 

 
(f) Scenario 2-2 

 

Figure 4.2 Traffic scenario (Hwang, 2012)  
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The vehicular live load on long span bridges, proposed by Hwang (2012), is based 

on presumed truck traffic jams as shown in Figure 4.2. Spacing between the last axle 

of one truck and first axle of the following truck was considered as 4.5m ~ 7.5m. 

Truck data are based on WIM data from six sites in Korea, and small vehicle data 

having 5.8kN/m in weight and 6m in length were generated with assumptions about 

traffic ratios (truck : small car = 3:7). Starting with the first truck all vehicles were 

arranged in a row according to the scenario until the total length reached a certain 

influence line length. Then, the total weights of all vehicles in the length were 

divided by the length to obtain the equivalent uniformly distributed load (EUDL). 

Next, the first truck was deleted, and one or more truck were added to cover the span 

length. The EUDL distribution was identified by repeating the procedure. The 

maximum EUDL during the measured period of WIM data was calculated and the 

lane load model was proposed based on it.  

The two lane load model assumed traffic jam situation. However, the traffic jam 

situation is not always expected to occur, but in a special cases like traffic accident 

or holiday events. Traffic jam assumption without considering the probability of 

occurrence may lead to unnecessary conservative design. Therefore, the load model 

should reflect the actual traffic. In this chapter, the drive analysis method, which 

investigates the actual traffic based on WIM data, was proposed. And a method for 

developing multiple presence factors appropriate for long span bridges based on the 

drive analysis was proposed. 

  



 

33 

 

4.2 Weight-In-Motion data 

The WIM system collects axle weights without interrupting traffic. Therefore, the 

reliable traffic data can be collected without artificial bias such as controlling lift 

axles or avoiding checkpoints. The WIM data used in this paper was provided by the 

Korean Expressway & Transportation Research Institute. And data used by Hwang 

(2008) and Lee (2014) was also used. The WIM data includes gross vehicle weight 

(GVW), axle weight, axle spacing, time, driving lane, speed, vehicle type, etc. 

 

4.2.1 WIM locations 

Traffic patterns vary depending on regions and road classifications. Therefore 

collecting WIM data from various locations is important. The measured WIM data 

used in this paper is presented in Table 4.1. Data of all lanes in both directions is 

preferable, but the WIM data collected is only one-directional data.  

The quality of information is more important than the quantity of data collected. 

WIM equipment should be calibrated regularly and collected data should be 

carefully monitored. WIM data was calibrated with respect to temperature difference 

between the top and bottom of pavement and about wheel position. Kwon et al. 

(2010) and Hwang (2008) described the detailed algorithm of the calibrations.  

Shivakumar et al. (2011) recommended use of a year’s worth of recent continuous 

data or at least one month of data for each season for each site to observe seasonal 

variation. Therefore, WIM data for the sites measured in the long term, GC, SS, WG, 

PH (2010~11), were focused. 
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  Table 4.1 WIM measurement locations 

Site 
# of WIM Lanes 

(one Direction) 
Date # of Vehicle data 

Gimcheon (GC) 3 2013.01.31 ~ 12.31 4,221,557 

Seonsan (SS) 2 2013.01.22 ~ 12.31 8,212,839 

Waegwan (WG) 4 2013.01.31 ~ 12.29 15,896,920 

Pohang (PH) 2 

2010.05.24 ~12.31 

2011.01.01 ~ 12.13 
1,211,810 

2006.05.13 ~ 06.06 29,400 

Yeoju (YJ) 2 
2010.10.11 ~ 10.25 66,929 

2005.01.12~04.28 314,183 

Munmak (MM) 1 2006.10.24~12.01 10,151 

 

4.2.2 Data Scrubbing 

The quality of WIM data is more important than quantity in the development of 

the live load model. WIM system collects data from high-speed traffic that the 

collected WIM data need to be reviewed or monitored. To edit “bad or unreliable 

data” out of WIM data, Shivakumar et al. (2011) used data scrubbing rules. Data 

scrubbing rules should consider differences in traffic characteristics of the site. In 

this paper, the WIM data is scrubbed using the following filters: 

 

 The number of axles < 2 

 Records with the number of axles ≥ 9 are considered to have 8 axles 

 Records where the sum of axle spacing is greater than 40m, or the steer 

axle spacing is greater than 20m 

 GVW is 0 ton or negative value 
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 Records where GVW > 100 ton 

 Records where the steer axle weight is > 15 ton 

 Records where one axle weight is greater than 20 tons and greater than 

60% of GVW at the same time 

 Records from a single not fully recorded for 24 hours 

 

4.2.3 Data generation 

The GC, SS, WG WIM data includes all vehicle types, though the other sites 

collected only data on heavily loaded trucks with certain lower weight limit. WIM 

data of these sites are assumed to have only Types 3~12, and the Type 1 and 2 data 

was generated based on average traffic ratio from 1995~2013 (MLTM, 2004; 2008; 

2013). The vehicle type classification is shown in Table 4.2.  

Table 4.2. Twelve vehicle type classifications (MLTM, 2012) 

Type 1 Type 2 Type 3 Type 4 

(passenger car) (bus) (small truck A) (small truck B) 

    
Type 5 Type 6 Type 7 Type 8 

(medium truck A) (medium truck B) (medium truck C) (large truck A) 

    
Type 9 Type 10 Type 11 Type 12 

(large truck B) (large truck C) (large truck D) (large truck E) 
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The data generation procedures are based on the assumption of random traffic 

situation. The generated vehicles are assumed to travel with the same velocity as the 

first truck in front of the generated vehicle. The procedures of data generation are as 

follows: 

 

 The WIM time record of heavy trucks is kept as recorded in WIM 

 Generate vehicles type I and II in accordance with the following traffic 

ratio assumption and assumed properties presented in Table 3.3 

(Type 1) : (Type 2) : (the others) = 63 : 7 : 30 

 Determine the number of generated vehicles between two measured 

trucks randomly based on the random traffic situation assumption 

 Determine the time information of generated vehicles 

- if the generated vehicles between two trucks satisfy the safety 

distance within the two trucks, the generated vehicles equally divide 

the time gap of two trucks 

- if the generated vehicles between two trucks do not satisfy the safety 

distance between the two trucks, move one by one of the generated 

vehicles behind the next truck until safety distance is satisfied. 

- the safety distance is in proportional to the square of velocity and the 

safety distance at 100km/h is 100m. 

 

Table 4.3 Properties of the generated data 

Generated vehicle type # of axle Axle spacing [cm] GVW* [kg] 

Type 1 2 275 1,000 ~ 2,000 

Type 2 2 550 12,000 ~ 15,000 

GVW of generated data was determined randomly from uniform distribution of 

GVW* by random sampling. 

Axle weights are assumed to have 50% of the GVW each. 
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4.2.4 Statistics of collected data 

WIM data after scrubbing and data generation procedure is presented in Table 4.4. 

To consider seasonal or other variation, WIM data including at least one month each 

season, GC, SS, WG, PH (2010~11), were selected for further analysis.  

There are several factors that affect vehicular live load. AASHTO LRFD (2012) 

applies different multiple presence factors for different ADTT (Average Daily Truck 

Traffic). According to Nowak et al. (2010), the live loads for long spans depend on 

the mix of traffic and headway distance. The basic traffic characteristics were 

investigated. Daily traffic volume in a lane and the average GVW of vehicle types in 

different WIM locations are compared in Figures 4.3 and 4.4. And the average speed 

is compared in Table 4.5.  

 

Table 4.4 WIM data after scrubbing and data generation 

Site 
# of WIM Lanes 

(one Dir) 
# of WIM days ADT ADTT 

GC 3 236 17,885 5,649 

SS 2 276 29,484 8,657 

WG 4 295 53,595 15,201 

PH (2010~11) 
2 

402 8,525 2,560 

PH (2006) 21 4,197 1,255 

YJ (2010) 
2 

14 15,894 4,778 

YJ (2005) 79 12,374 3,720 

MM 1 19 1,260 378 

ADT: Average Daily Traffic,   ADTT: Average Daily Truck Traffic 
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Average daily traffic and truck traffic in one lane were large in SS and WG. And 

the average GVW of heavy trucks (type 7, 12) in GC, SS was heavier than others. 

The average speed was the lowest at PH (2010~11), but still higher than 70km/h, 

which implies that the traffic jam situation is not typical traffic condition in reality. 
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Figure 4.3 Average daily traffic of each vehicle type and truck traffic in one lane 

 



 

39 

 

50

100

150

200

250

300

350

400

All 1 2 3 4 5 6 7 8 9 10 11 12

GC
SS
WG
PH(2010~11)

A
v

e
r
a

g
e
 G

V
W

(k
N

)

Type
 

 

Figure 4.4 Average GVW of each vehicle type 

 

 

Table 4.5 Speed statistics of WIM data 

Site 
Speed (km/h) 

Average Standard Deviation 

GC 93.29 14.7 

SS 91.49 16.6 

WG 93.08 13.5 

PH (2010~11) 76.27 12.3 
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4.3 Drive Analysis 

Nowak et al. (2010) and Hwang (2012) developed a live load model for long span 

bridges assuming the occurrence of traffic jam situation. However, the average 

traffic speed measured is higher than 70km/h, indicating that traffic jams seem to be 

rare. The live load model based on severe situation assumption may lead to 

unnecessary conservatism. Therefore, realistic traffic situations need to be 

investigated, so driving situations were analyzed using recently measured WIM data.  

 

4.3.1 Method 

It was assumed that the actual traffic flow could be modeled by the WIM data. 

The WIM data includes the measured time, axle weights, axle spacing, speed, lane, 

vehicle type, etc. It was assumed that vehicles maintain the same speed and lane 

when driving, and that the location of the steer axle of vehicles was right on the 

entrance of bridge when it was measured by the WIM system. The procedure of the 

drive analysis is as follows: 

 

 
 

Figure 4.5 Vehicle position of a certain time 
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1) Vehicle location at a certain time is calculated based on the speed and 

measured time data as described in Figure 4.5 (data on the vehicle figures 

are the measured time and velocity information of each vehicle. The time at 

the very left is the reference time according to which vehicles are arranged) 

2) Calculate the total axle weights on the bridge length 

3) Calculate representative uniformly distributed load (UDL)  

 

   lane ofnumber  bridge  theoflength 

length bridge on the  weightsaxle total
UDL


  (4.1) 

 

4) Repeat steps 1) ~ 3) when an axle passes through the bridge entrance 

5) Repeat steps 1) ~ 4) using different bridge lengths 

 

4.3.2 Results 

The UDLs are the average with regard to the number of lanes and they are 

assumed to be representative values of whole-lane traffic at each time. The results of 

drive analysis with the WIM data were presented in Tables 4.6 ~ 8. The average of 

the UDL decreased when the length increased. The maximum UDL was bigger than 

the sum of the average and exhibited at standard deviation of six. This means that 

the UDL value near the maximum happens rarely compared to all events. There are 

some severe loads, but ordinary traffic is very low compared to the severe loads.  
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Table 4.6 The average of UDL (kN/m) 

Length (m) GC SS WG PH (2010~11) 

250 0.35 0.67 0.42 0.56 

500 0.30 0.60 0.40 0.49 

750 0.29 0.57 0.39 0.46 

1000 0.28 0.56 0.38 0.44 

1250 0.27 0.55 0.38 0.43 

1500 0.27 0.54 0.38 0.43 

1750 0.27 0.54 0.38 0.42 

2000 0.26 0.54 0.38 0.41 

 

Table 4.7 The standard deviation of UDL (kN/m) 

Length (m) GC SS WG PH (2010~11) 

250 0.36 0.55 0.32 0.47 

500 0.26 0.42 0.25 0.36 

750 0.22 0.37 0.22 0.32 

1000 0.20 0.34 0.21 0.29 

1250 0.19 0.32 0.20 0.28 

1500 0.18 0.31 0.19 0.27 

1750 0.17 0.30 0.18 0.26 

2000 0.16 0.29 0.18 0.25 

 

Table 4.8 The maximum value of UDL (kN/m) 

Length (m) GC SS WG PH (2010~11) 

250 4.28 6.22 3.42 5.91 

500 2.62 4.97 2.95 4.16 

750 2.53 4.61 2.59 3.11 

1000 2.22 4.42 2.48 2.77 

1250 2.27 4.20 2.58 2.44 

1500 2.11 3.99 2.51 2.22 

1750 2.06 3.89 2.60 2.14 

2000 1.91 3.58 2.56 2.06 
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4.4 Multiple Presence Factor 

The UDLs are the average uniformly distributed load with regard to the number of 

lanes. And those of UDLs were assumed to be the representative lane load of single 

lane traffic at each considered time. Therefore multi-lane traffic at each considered 

time can be modeled by multiplying the UDLs by the number of lanes. But the 

multi-lane reduction effect has to be considered. The multi-lane reduction effect can 

be defined by equation (4.2): 

 

lane one of load max. The

lane  whole theof load max.  theof average The
factorReduction   (4.2) 

 

4.4.1 Method 

Let the UDL values of each site from drive analysis of WIM be the population of 

the lane load of each site. Each UDL value is the average lane load at a specific time, 

which describes the traffic situation at that time. Therefore multi-lane driving 

simulations can be performed by sampling UDLs from the population for each lane. 

The multi-lane driving simulations are described in Figure 4.6. Then, multiple 

presence factors were proposed according to the following procedures: 

 

 
Figure 4.6 Multi-lane simulation 
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1) Assemble population data, UDL, according to the drive analysis 

described in section 4.3 

2) Select a single value ( 1i ) for lane 1 from the population in 

chronological order 

3) Select a single value for lanes 2~8 ( 82 ~ ii  ) each from the population 

by random sampling without considering time sequence 

4) Repeat steps 2), 3) as many as the size of the population 

5) Calculate the multi-lane reduction ratio using equation (4.3) 

6) Repeat steps 2) ~ 5) 1,000 times and select the ten largest values (upper 

10% value) of the ratio as multiple presence factors 
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(4.3) 

 

where, N  is the number of total lanes, ij  is the lane load of lane j  at i -th 

time sequence 

 

4.4.2 Proposal of multiple presence factor for bridges with long spans 

The multiple presence factors were estimated for 100, 300, 500, 1000m of GC, SS, 

WG, PH (2010~11) and proposed based on the average values of GC, SS, WG, PH 

(2010~11). The UDLs were already averages with regard to the number of lanes, 

such that the UDLs were assumed to be two-lane averages and, therefore, the 

multiple presence factors of two loaded lanes were normalized to 1.0. The results 

were compared with KBDC (2012) and AASHTO (2012) in Table 4.9 and Figure 4.7. 
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The multiple presence factors of KBDC (2012) were divided by the multiple 

presence factor value of 2 loaded lanes for direct comparison. The load reduction 

effect of the proposed multiple presence factor was less than that of KBDC (2012) 

and similar to AASHTO (2012) for loaded lanes 1~4. More radical multiple 

presence factors were proposed, providing decreasing values up to loaded lane 6.  

Table 4.9 Multiple presence factors 

Loaded 

Lanes 
KBDC* AASHTO Proposed 

Average of  

GC, SS, WG, PH (2010~11) 

100m 300m 500m 1000m 

1 1.0 (1.11) 1.20 1.25 1.30 1.27 1.22 1.23 

2 0.9 (1.00) 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.9 (0.89) 0.85 0.80 0.78 0.81 0.79 0.78 

4 0.7 (0.78) 0.65 0.70 0.66 0.69 0.67 0.67 

5 0.65 (0.72) 0.65 0.60 0.58 0.62 0.60 0.59 

6 0.65 (0.72) 0.65 0.55 0.53 0.56 0.55 0.54 

7 0.65 (0.72) 0.65 0.55 0.49 0.51 0.51 0.50 

8 0.65 (0.72) 0.65 0.55 0.45 0.49 0.47 0.48 

The KDBC* values in parentheses are normalized to 1.0 for two lanes 
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Figure 4.7 Comparison of the multiple presence factors (The KDBC (2012)* is 

normalized to 1.0 for two lanes) 
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5. Statistical Model of Live Load for Long span 

Bridges 

 

Identification of a statistical model of vehicular live load is essential for 

probability-based design code. The variation is described by distribution type, bias 

factor, and coefficient of variation. In Korea, the statistical characteristics of short- 

to medium-span bridges is presented by Hwang (2008; 2012). But for longer-span 

bridges, those have not been clearly stated. Hwang (2012) developed the lane load 

model for long span cable bridges but did not provide its statistical characteristics. 

Lee (2014) estimated the bias factor of the lane load, which was excessive compared 

to the bias factor of the KBDC (2012).  

The reason for this excessive bias may be the assumed traffic jam. Indeed the 

speed results of WIM showed that traffic jams are rare case in reality. Therefore, the 

statistical characteristic was again estimated by drive analysis.  

Lee (2014) used statistical extrapolation method for estimating maximum load 

over the design period, compared to the Hwang’s (2012) method of using the 

maximum value of the measured period without extrapolation. The statistical 

extrapolation method was also investigated to evaluate whether it affected the 

excessive bias factor result.  
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5.1 Estimation of the Maximum Load  

The time period should be defined in order to devise the statistical model of 

vehicular live load. To estimate the probability of bridge failure during the design 

period, the magnitude of maximum load should be calculated. The design of bridges 

requires the estimation of the maximum load effect during the design period, such as 

100 years for KDBC and 75 years for AASHTO LRFD. It is impossible to collect 

sufficient data to identify the maximum load effect in a 75-year or 100-year period 

and, therefore, statistical projection should be performed. In this paper, maximum 

load was considered instead of maximum load effect based on an assumption that 

load and load effect have a linear relationship.  

 

5.1.1 Estimation by return period load  

(1) Return period 

If a process is stationary, the return period T  of a given event Tx  is defined as 

the average time elapsing between two successive realizations of the event ( Tx ) 

itself and can be expressed as a function of a probability distribution XF  and the 

average waiting time Tu  between two events x  (Renata et al., 2012). The return 

period of a given event Tx  can be calculated by equation (5.1).  

)(1 TX

T

xF

u
T


  (5.1) 
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The design live load model can be determined from the return period load. Return 

period load can be calculated from the return period and probability distribution. A 

load distribution can be estimated by field measurement such as WIM. And the 

probability of exceedence corresponding to the return period can be calculated. The 

correspondent position of the probability of exceedence in the load distribution is the 

return period load.  

 

(2) Previous research – Nowak (1999)  

The HL-93 live load model is based on the 75-year return period load. Nowak 

(1999) estimated the 75-year mean maximum load effects, assuming the largest 20% 

of the whole measured data as a normal distribution. This calculation is based on the 

assumption that all measured data do not follow a normal distribution, but the tail 

end of the data resembles a theoretical normal distribution.  

To describe the extrapolation procedure, the 100-year mean maximum UDL of 

GC (500m) was calculated using the extrapolation method of Nowak (1999). The 

UDLs of GC (500m) data were collected as described in section 4.3 and sorted in 

increasing order. The empirical CDF is calculated by equation (5.2), and the data 

was plotted in the normal probability paper as shown in Figure 5.1. 

 

 
1


N

m
xF mX  (5.2) 
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Table 5.1 Number of events and probability according to time period 

[Nowak’s (1999) method] 

Time  

period 

Number  

of Events 

Exceedence 

Probability 

Empirical 

CDF 

Inverse  

Normal 

T N 1/(N+1) N/(N+1) S 

1 day 8,525 1.173×10-04 0.9998827146 3.679 

1 month 255,756 3.910×10-06 0.9999960900 4.470 

1 year 3,111,703 3.214×10-07 0.9999996786 4.978 

50 years 155,585,154 6.428×10-09 0.9999999936 5.688 

100 years 311,170,308 3.214×10-09 0.9999999968 5.805 

 

It was assumed that the load distribution does not change with time. The expected 

number of events, probability, and the inverse normal was calculated in Table 5.1. 

Then, the approximate normal distribution was estimated by drawing a straight line 

fitted to the largest 20% of data as shown in a continuous line. The mean and 

standard deviation from the fitted to the upper 20% normal distribution are 

computed in equation (5.3). 

   
X

X

X

TopData XXS







1
15401.016443.2%)20(

 

 

1067.0X , 6930.0X  

(5.3) 

 

The 100-year mean maximum UDL was predicted from equation (5.4), which is 

the inverse form of equation (5.3). The expected maximum UDL of different design 

life is the horizontal axis value of the intersection points between the continuous line 
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and dotted line of each design period (Figure 5.1). The estimated maximum UDLs 

are shown in Figure 5.1 and Table 5.2.  

 

   1067.06930.0 %)20(%)20(  TopDataXTopDataX SSX   (5.4) 
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Figure 5.1 Maximum UDL estimation using the extrapolation method of  

Nowak (1999) 

 

Table 5.2 Maximum UDL estimation [Nowak’s (1999) extrapolation method] 

Time period Inverse Normal Estimated  

Maximum UDL 

[kN/m] T S 

1 day 3.679  1.856  

1 month 4.470 2.208 

1 year 4.978  2.436  

50 years 5.688  2.757  

100 years 5.805  2.810 
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The mean maximum estimated by Nowak’s (1999) method is the UDL, which 

corresponds to the probability of exceedence of each time period in the load 

distribution and therefore it is the return period load.  

This extrapolation method assumed the upper 20% data as a normal distribution, 

but it may not be appropriate to use it as a maximum value distribution. The 

approximated normal distribution changes depending on what percentage of upper 

data we use. And the maximum load distribution, rather than entire load distribution, 

is of concern to evaluate the reliability of structure over design life. It is known that 

extreme value distribution is more appropriate for the maximum value selected from 

the population.  

 

5.1.2 Estimation by maximum load distribution  

(1) Maximum load distribution 

  The maximum load can be estimated from maximum value distribution. If the 

sample size is big enough, the maximum value distribution from a population 

converges to the three types of extreme value distribution as described in section 2.3. 

Then, the return period load is in the position of the location parameter of extreme 

value distribution. Equation (5.5) is the nonexceedence probability of return period 

load ( Tx ) in initial distribution ( XF ). From equation (2.8), the nonexceedence 

probability of return period load ( Tx ) in maximum value distribution can be 

expressed as equation (5.6). 
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N : the expected number of events over period T  

 

The location parameter of extreme value distribution has the same nonexceedence 

probability as shown in equation (5.7), if the number of events is large enough. 

Therefore, design load can be proposed by the location parameter in maximum load 

distribution as the same philosophy of return period load.   
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(2) Previous research – Lee (2014) 

Lee (2014) estimated maximum load distribution over the design period using 

measured maximum load distribution over unit measured time period using the 

concept of ISO2394 (ISO, 1998). Then, he predicted the maximum load value from 

the estimated maximum distribution. He assumed the daily maximum values as the 

Gumbel distribution.  



 

53 

 

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

Measured data(1day max)
Linear fit      (1 day)
estimated fn.(1 month)
estimated fn.(1 year)
estimated fn.(50 years)
estimated fn.(100 years)

UDL(GC, 500m) [kN/m]

In
v

er
se

 G
u

m
b

el
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

 
Figure 5.2 Maximum UDL estimation using the extrapolation method of Lee (2014) 

 

To describe the details of the procedure, the 100-year maximum UDL distribution 

of GC (500m) was calculated using the extrapolation method of Lee (2014). One-

day maximum UDLs were collected and sorted in increasing order. The number of 

daily maximum events, N , is the number of days of the design period. The 

empirical CDF was calculated by equation (5.2), and the data was plotted in the 

Gumbel probability paper as described in section 2.3.3. Then, the daily maximum 

load distribution was estimated by drawing a straight line fitted to the data on the 

Gumbel probability paper as shown in a continuous line in Figure 5.2.  

The location ( 1u ) and shape parameter ( 1 ) of daily maximum UDL can be 

calculated from the fitted line using equation (5.8). 
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    111)MaxDaily( 9184.40983.3 uXXSData    

5877.11 u , 0978.31   
(5.8) 

 

The maximum load distribution (
TXF ) of design period, T , and the 

corresponding parameters ( Tu , T ) can be calculated from the daily maximum 

distribution ( 1F ) using equations (5.9) and (5.10). And the estimated maximum 

UDL distribution of the design period, T , was described on the Gumbel probability 

paper in Figure 5.2. The mean and coefficient of variation can also be calculated 

from the maximum distribution according to the equation (2.21c). 
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5.1.3 Estimation using Cramer’s asymptotic solution 

Nowak (1999) assumed a normal distribution based on the upper data distribution 

profile, and predicted the mean maximum load from the initial upper data 

distribution. But Lee (2014) estimated not only the return period load, but also the 
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maximum load distribution over the design period using the extreme value 

distribution theory. The extrapolation results can vary according to assumption such 

as normal distribution for upper the 20% data or Gumbel distribution for daily 

maximum data. The extrapolation method posited by Lee (2014) estimated bigger 

maximum UDL compared to Nowak’s (1999) method.  

However, the COVs of maximum distribution did not change for different time 

periods in Lee’s (2014) method because of the property of Gumbel distribution. If 

the normal distribution assumption of Nowak (1999) is correct, the COV of 

maximum value distribution should decrease when time period increases. If the 

initial upper tail of the initial distribution is normal distribution, the maximum 

distribution converges to a Gumbel distribution as explained in section 2.2.2. Then, 

the daily maximum distribution should be considered as an approximate – not an 

exact – Gumbel distribution. And the COV of maximum distribution should 

decrease when design period increases according to the equation (2.24). Therefore, a 

new extrapolation method estimating maximum load distribution from normal 

distribution was proposed using Cramer’s asymptotic solution.  

 

(1) Cramer’s asymptotic solution 

If initial random variable X  follows the normal distribution of mean event  

and standard deviation event , then the maximum value after N  repetitions taken 
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from  initial distribution asymptotically approaches an Extreme Value Type I 

distribution with the parameters shown in equation (5.10) as derived in section 2.2.2. 
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(5.10) 

Nu  and N  are the location and shape parameter of maximum value 

distribution, respectively 

 

(2) Estimation of maximum load distribution by Cramer’s asymptotic solution 

It is assumed that the upper UDL follows a normal distribution in line with 

Nowak’s (1999) assumption. Then, the daily maximum UDL distribution can be 

assumed to be a Gumbel distribution if the number of events is large enough. The 

number of events corresponding to the daily maximum distribution is the ADT, 

which is normally more than 1,000, that assumed to be large enough for the 

assumption. The initial UDL distribution can be derived from the daily maximum 

UDL distribution, and 100-year maximum UDL distribution can also be derived 

from Cramer’s asymptotic solution.  

To describe the extrapolation procedure, the 100-year maximum UDL of GC 

(500m) was calculated using the extrapolation method of Cramer’s asymptotic 

solution. . The daily maximum UDL distribution was estimated according to the 

same procedure described in section 5.1.2, using Gumbel probability paper. Then, 

the initial UDL distribution was estimated by equation (5.11).  
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X  and X  are the mean and standard deviation of initial UDL distribution, and 

dayXu
1

 and 
dayX1

  are the location and shape parameter of daily maximum UDL 

distribution, respectively. 

 

Then, the 100-year maximum Gumbel distribution 
yearXF

100
 was derived from the 

initial normal distribution FX using equation 5.10, with 100365 ADTN . The 

approximated daily maximum distribution, estimated initial normal distribution, and 

the estimated 100-year Gumbel distribution of UDL are shown in Figure 5.3. The 

100-year return period UDL was 9% lower than Lee’s (2014) method, and Figure 

5.4 compared the two methods. It was still greater than Nowak’s (1999) method, but 

Nowak’s (1999) method underestimated a 100-year return period load with stiffer 

slope than the trend exhibited by the data as shown in Figure 5.1. The measured 

maximum UDL was 2.6153 kN/m, and the measured period was 236 days for GC, 

500m UDL. The three methods are compared in Table 5.3. Nowak’s (1999) method 

(under)estimated the closest 236-day UDL. The proposed method estimated 236-day 

UDL more precisely than Lee’s (2014) method.  
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Figure 5.3 Estimated maximum UDL distribution using Cramer’s asymptotic 

solution 
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Figure 5.4 Comparison of extrapolation method between the proposed method and 

Lee’s (2014) method 
 

Table 5.3 Comparison of the measured and estimated maximum UDL of GC (500m) 

 
Measured 

Nowak’s (1999) 

method 

Lee’s (2014) 

method 
Proposed 

method 

236-day 

Max. UDL 

[kN/m] 

2.615 2.398 3.351 3.254 

Error(%) - 8.30 28.15 24.44 
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5.2 Statistical Characteristics of Vehicular Live Load  

5.2.1 Design live load model  

The design live load model of KBDC (2012) consists of a design truck model and 

design lane load (Figure 5.5, Table 5.4). The extreme load effect is taken as the 

larger between ‘the effect of one design truck’ and ‘the effect of 75% of design truck 

combined with the effect of the design lane’. 

 

 
Figure 5.5 Design truck load (KBDC, 2012) 

 

Table 5.4 Design lane load (KBDC, 2012) 

m60L   kN/m)(7.12w  

m60L   kN/m)(
60

7.12

n

L
w 








  

 

A value of 0.18 for n  is provided in KBDC (2012). Hwang (2012) proposed a 

value of 0.15 for a new lane load model for long span cable bridges with the same 

truck load.   
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5.2.2 Bias factor of the design lane load model 

Bias factor, mean to nominal lane load, was calculated. The mean value was 

calculated by equation (2.27c) from the 100-year maximum UDL distribution. 

Nominal lane load is the lane load model of Hwang (2012) multiplied by the two-

lane multiple presence factor of 0.9.  
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Figure 5.6 Daily maximum UDL distribution 
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The 100-year maximum UDL distribution was estimated by the proposed method 

in section 5.1.3 from each site using span lengths of 50, 75, 100, 200, 250, 300, 400, 

500, 750, 1000, 1250, 1500, 1750 and 2000m. The daily maximum UDL distribution 

of four sites was presented in Figure 5.6. The daily maximum UDL distribution, 

estimated initial UDL distribution, and 100-year maximum UDL distribution results 

are presented in Tables 5.5 ~ 5.7. UDL decreased as length increased, and the results 

at the SS site were greater than those of other sites.  

 

Table 5.5 Daily maximum UDL distribution (Gumbel distribution) 

 
Location parameter Shape parameter 

Length 

(m) 
GC SS WG 

PH 

(2010~11) 
GC SS WG 

PH 

(2010~11) 

50 6.54 9.59 4.97 6.78 0.98 0.69 0.84 0.55 

75 5.06 7.36 3.82 5.16 1.25 0.87 1.04 0.71 

100 4.16 6.15 3.20 4.29 1.48 0.96 1.23 0.83 

200 2.71 4.07 2.16 2.82 2.07 1.21 1.69 1.18 

250 2.36 3.59 1.90 2.46 2.25 1.29 1.89 1.30 

300 2.12 3.26 1.74 2.22 2.49 1.38 2.02 1.44 

400 1.78 2.81 1.51 1.90 2.84 1.48 2.25 1.62 

500 1.59 2.52 1.35 1.69 3.10 1.56 2.48 1.79 

750 1.27 2.10 1.13 1.37 3.45 1.76 2.86 2.10 

1000 1.09 1.86 1.00 1.20 3.77 1.89 3.12 2.35 

1250 0.98 1.69 0.91 1.08 4.01 2.01 3.34 2.53 

1500 0.90 1.58 0.85 1.00 4.23 2.09 3.53 2.64 

1750 0.83 1.49 0.81 0.94 4.40 2.16 3.65 2.76 

2000 0.79 1.42 0.78 0.89 4.62 2.23 3.77 2.83 
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Table 5.6 Estimated parent UDL distribution (Normal distribution) 

 
Mean Standard deviation 

Length 

(m) 
GC SS WG 

PH 

(2010~11) 
GC SS WG 

PH 

(2010~11) 

50 -10.91  -16.86  -18.04  -21.77  4.50  6.61  5.56  7.72  

75 -8.72  -13.59  -14.67  -17.12  3.55  5.23  4.47  6.02  

100 -7.47  -12.66  -12.56  -14.66  3.00  4.70  3.81  5.12  

200 -5.61  -10.88  -9.25  -10.47  2.14  3.74  2.76  3.60  

250 -5.27  -10.46  -8.32  -9.62  1.97  3.51  2.47  3.27  

300 -4.77  -9.87  -7.81  -8.74  1.77  3.28  2.31  2.96  

400 -4.27  -9.46  -7.07  -7.83  1.56  3.07  2.07  2.63  

500 -3.96  -9.12  -6.46  -7.12  1.43  2.91  1.89  2.38  

750 -3.71  -8.20  -5.62  -6.12  1.28  2.57  1.63  2.02  

1000 -3.47  -7.72  -5.19  -5.49  1.18  2.39  1.49  1.81  

1250 -3.31  -7.32  -4.87  -5.14  1.10  2.25  1.40  1.68  

1500 -3.16  -7.12  -4.61  -4.96  1.04  2.17  1.32  1.61  

1750 -3.07  -6.90  -4.49  -4.76  1.01  2.10  1.28  1.54  

2000 -2.93  -6.73  -4.35  -4.66  0.96  2.04  1.24  1.50  

Table 5.7 Estimated 100-year maximum UDL distribution (Gumbel distribution) 

 
Location parameter Shape parameter 

Length 

(m) 
GC SS WG 

PH 

(2010~11) 
GC SS WG 

PH 

(2010~11) 

50 15.78 22.92 15.94 23.11 1.42 0.98 1.18 0.81 

75 12.36 17.92 12.64 17.90 1.79 1.23 1.46 1.04 

100 10.32 15.63 10.71 15.13 2.13 1.37 1.72 1.22 

200 7.11 11.61 7.60 10.43 2.98 1.73 2.37 1.74 

250 6.40 10.67 6.78 9.38 3.24 1.84 2.65 1.91 

300 5.76 9.87 6.29 8.49 3.59 1.97 2.83 2.11 

400 4.99 9.00 5.59 7.47 4.09 2.10 3.16 2.38 

500 4.52 8.39 5.07 6.73 4.46 2.22 3.47 2.62 

750 3.91 7.29 4.35 5.65 4.96 2.51 4.01 3.09 

1000 3.51 6.69 3.95 5.02 5.42 2.69 4.38 3.46 

1250 3.25 6.24 3.67 4.64 5.77 2.86 4.68 3.72 

1500 3.04 5.96 3.46 4.40 6.10 2.97 4.95 3.88 

1750 2.90 5.72 3.33 4.20 6.34 3.07 5.11 4.06 

2000 2.76 5.53 3.22 4.07 6.65 3.16 5.28 4.16 
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 Table 5.8 Estimated 100-year maximum UDL distribution (continue) 

 
Mean COV 

Length 

(m) 
GC SS WG 

PH 

(2010~11) 
GC SS WG 

PH 

(2010~11) 

50 16.19 23.51 16.43 23.83 0.056  0.056  0.066  0.066  

75 12.69 18.38 13.04 18.46 0.056  0.057  0.067  0.067  

100 10.59 16.05 11.05 15.60 0.057  0.058  0.068  0.067  

200 7.30 11.94 7.84 10.76 0.059  0.062  0.069  0.069  

250 6.58 10.99 7.00 9.68 0.060  0.064  0.069  0.069  

300 5.92 10.17 6.50 8.77 0.060  0.064  0.070  0.069  

400 5.13 9.27 5.78 7.71 0.061  0.066  0.070  0.070  

500 4.65 8.65 5.24 6.95 0.062  0.067  0.071  0.070  

750 4.03 7.52 4.49 5.84 0.064  0.068  0.071  0.071  

1000 3.62 6.90 4.08 5.19 0.065  0.069  0.072  0.071  

1250 3.35 6.44 3.79 4.79 0.066  0.070  0.072  0.072  

1500 3.14 6.15 3.58 4.55 0.067  0.070  0.072  0.073  

1750 2.99 5.91 3.45 4.34 0.068  0.071  0.073  0.073  

2000 2.85 5.71 3.33 4.21 0.068  0.071  0.073  0.073  

 

The mean value the of 100-year maximum UDL was compared with the nominal 

value in Figure 5.7. The 100-year UDL decreased when length increased as the 

design lane load does, however the decreasing rate was stiffer than the design lane 

load. The bias factor(Figure 5.8) varies from 0.4 to 1.5, which is not uniform for 

lengths. And the bias factor of SS was more than twice that of GC.  
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Figure 5.7 The mean value of 100-year maximum UDL 
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Figure 5.8 Bias factor (mean to nominal value of UDL) 
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5.3 Proposal of New Lane Load Model  

Based on the recently measured WIM data and the drive analysis, the lane load 

model Hwang (2012) showed non-uniform bias factor according to lengths. And the 

site-to-site variability should be incorporated. Therefore, a new lane load model was 

proposed.  

 

5.3.1 Lane load model  

(1) Load model for influence line length 

A new lane load model was proposed as decreasing in relation to influence line 

length as shown in equation (5.12). BS5400 and ASCE Report (1981) also used the 

decreasing form of uniformly distributed load for loaded length. And it is reasonable 

to define the lane load for influence line length, which is effective loaded length 

(KSCE, 2006). Parameter A  denotes the value of lane load at an influence line 

length of 100m, and constant lane load was proposed for influence line lengths 

shorter than 100m, because design truck load effect is dominant for short spans. 

Parameter B  represents the decreasing rate of lane load.  

 
B

L
Aw 










100
   (5.12) 
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Figure 5.9 Average of normal and heavy traffic lane load 

 

The results were divided into two groups by the magnitude of lane load: normal 

traffic and heavy traffic. The round markers (GC, WG) were classified as normal 

traffic and the square markers (WG, PH) were classified as heavy traffic (Figure 5.9). 

The parameter was fitted for the average return period load of each traffic for 250, 

500, 750, 1000, 1250, 1500, 1750, 2000m as shown in Figure 5.9. The proposed 

value of B , 0.35, was bigger than that used by Hwang (2012) which indicates a 

faster decreasing rate. The lane load magnitude, A , for normal traffic was close to 

the AASHTO lane load value and, therefore, the AASHTO lane load value of 9.34 

kN/m was proposed. Table 5.9 and Figure 5.10 present data for the proposed lane 

load model and the mean value of the 100-year maximum UDL distribution of each 

site. 
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Figure 5.10 Proposed lane load and the mean of 100-year max. UDL 

 

Table 5.9 Proposed lane load, 
B

L
Aw 










100
 

Parameter 

Normal traffic Heavy traffic 
Hwang 

(2012) Fitted from 

average 
proposed 

Fitted from 

average 
proposed 

A 8.99 
9.34 

(AASHTO) 
13.52 13.5 11.76 

B 0.375 0.35 0.355 0.35 0.15 

 

(2) Load model for span length 

Influence line length varies for different member and load effects, that the design 

procedure can be complicate. KDBC (2014, under revision) offers a more 

conservative load model for span length that simplifies the design procedure based 

on Hwang’s (2012) load model. Load Model 1 (LM1) is defined in terms of span  
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Table 5.10 Design lane load (KBDC, 2014 (under revision)) 

Load Models 1, 2 m60L   kN/m)(7.12w  

Load Model 1 

(Span length) 
m60L  

 kN/m)(
60

7.12

10.0











L
w  

Load Model 2 

(Influence line length) 
       kN/m)(

60
7.12

15.0











L
w  

 

length, and Load Model 2 (LM2) is defined in terms of influence line length (Table 

5.10). 

For the proposed load model, the span length-based model was also considered 

with the same conservative level using the weighted geometric mean concept 

(equation 5.13). The LM1 can be considered as a weighted geometric average 

between LM2 and the conservative unreduced lane load. The geometric weight used 

in LM1 was 1/3 as derived in equation (5.14), and this weight was used for the 

proposed lane load model. The proposed model for span length is presented in 

equation (5.15). 

 
 


1

21 www  

(  is weight for 1w , 10  )   
(5.13) 
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where, L  is span length(m) 

(5.15) 

 

(3) Verification 

To verify the proposed model, more WIM data of other sites were compared. The 

WIM data of PH (2006), YJ (2010), YJ (2005), and MM were used. The mean value 

of the 100-year maximum distribution is presented in Figure 5.11. The PH (2006), 

YJ (2010) can be classified as a site of heavy traffic, and the YJ (2005) can be 

classified as a site of normal traffic. MM is a site of heavy traffic at short spans but 

normal traffic at longer spans. This is because the traffic is lower than at other sites 

as presented in Table 4.4. Even though lane load for short spans is high, it can 

decrease for long spans because of low traffic. MM has to be classified as heavy  
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Figure 5.11 Comparison of proposed model with other sites 

 

traffic for conservative design, but we may have to propose a faster decreasing lane 

load model for regions of low traffic.  

The proposed model classifies sites as the normal and heavy traffic sites. But the 

classification is based on the results of drive analysis, which requires significant 

computation. Therefore, the standard of classification from objective properties 

needs to be developed, such as traffic volume, average vehicle weight, average 

speed, etc.  

 

 

5.3.2 Statistical characteristics of live load for long spans 

The live load model for long span bridges was proposed in section 5.3.1. 

Statistical characteristics were estimated for the proposed lane load model in this 
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section. The bias factor of the normal traffic model was 0.87 ~ 1.18, and 0.86 ~ 1.21 

for heavy traffic for influence lengths longer than 100m as shown in Figure 5.12. 

Therefore, bias factor for the proposed lane load model can be proposed as 0.8 ~ 1.2. 

Estimated coefficients of variation of 100-year maximum distribution were 

presented in Table 5.8 and Figure 5.13. The 7% COV was proposed for lane load.  
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Figure 5.12 Bias factor of proposed lane load model(normal, heavy traffic) 
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Figure 5.13 Coefficient of variation of lane load 
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The site-to-site variability and the effect of impact was considered as influence 

factor (Lee, 2014). The impact was not considered here because the influence of 

dynamic load is not significant for long spans (Nowak et al., 2010). The bias factor 

and COV of site-to-site variability was assumed to be 1.0 and 10%, respectively. The 

site-to-site variability should be investigated using more traffic data, but the same 

value was assumed to be that from the previous domestic research (Hwang, 2008). 

The COV could be reduced because the variability was already interpreted by 

classification of load model as normal and heavy traffic. For the modeling parameter, 

Hwang (2008) assumed the assumption of Nowak (1999) and Moses (2001); a value 

of 1.0 for bias factor and 10% for COV.  

Considering all these effects, the bias factor for load effect was the same as that of 

the load model, because the bias factor of the influence factor and modeling 

parameter are 1.0. Therefore, the bias factor for load effect for long spans can be 

proposed as 0.8 ~ 1.2. The COV of the load effect for long spans can be proposed as 

0.16. 

The probability distribution of the influence factor and modeling parameter were 

assumed to comprise a normal distribution in previous research. The load model was 

assumed to have a Gumbel distribution according to the drive analysis. A lognormal 

distribution is known to be appropriate when the variable being modeled is a product 

of other random variables (Moses, 2001). But if one part exhibits an extreme 

distribution, it is known that the variable is likely to follow the extreme distribution, 
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even though the other part of the variable follows a normal distribution (Lee, 2014). 

Therefore, the load effect was assumed to follow the Gumbel distribution.  

 

5.4 Summary  

The statistical model of vehicular live load for long spans was identified. New 

extrapolation method using Cramer’s asymptotic solution was proposed. The 

estimated 100-year return period UDL showed faster decreasing rate according to 

length than design load model. Bias factor of lane load model of Hwang (2012) was 

not uniform according to lengths, and showed site-to-site variability. Therefore, a 

new live load model for long spans was proposed, considering the decreasing rate 

and site-to-site variability. The lane load classified into normal and heavy traffic. 

And the load model for influence line length and span length are proposed. The 

statistical characteristics of the load model and load effects were identified. The 

results are summarized as follows: 

 

 Proposed Lane Load – influence line length 
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 Proposed Lane Load – span length 
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 Statistical Characteristics of Load Effects 

- Bias factor : 0.8 ~ 1.2 

- COV: 0.16 

- Probability distribution: Gumbel distribution 
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6. Conclusions 
 

 

The current live load model for long span bridges was developed according to 

traffic jam scenarios (Hwang, 2012; Nowak et al., 2010). However, the statistical 

characteristic of the live load model proposed by Hwang(2012) was not clearly 

stated. Lee (2014) has suggested statistical characteristics of the lane load model of 

Hwang(2012), but excessive bias factor was estimated, compared to that of 

KDBC(2012). The traffic jam assumption and the extrapolation method were the 

reasons for the excessive results. To identify the difference between assumed traffic 

jam scenario and actual driving situations, recently measured WIM data was 

interrogated. 

To consider actual traffic patterns, driving situations were analyzed. And the 

multiple presence factor of a live load model for long span bridges was proposed by 

virtual multi-lane driving simulation using the results from drive analysis. The 

simulation results showed a greater multi-lane reduction effect than KBDC (2012) 

and were similar to AASHTO LRFD (2012). A decreasing multiple presence factor 

for up to six loaded lanes was proposed. 

The maximum load distribution was estimated to identify the statistical model of 

vehicular live load. A new extrapolation method using Cramer’s asymptotic solution 

was proposed to estimate the maximum load distribution. The statistical 

characteristics of Hwang’s (2012) lane load model were identified. Bias factor was 

not uniform due to different decreasing rates of the 100-year return period load. Site-



 

76 

 

to-site variability needed to be considered. A new live load model for long spans was 

proposed considering the decreasing rate and site-to-site variability. The lane load 

classified into normal and heavy traffic, and a load model in terms of influence line 

length and span length were proposed. The statistical characteristics of the proposed 

load model and load effects were identified.  

The proposed model classifies sites into the normal and heavy traffic sites. The 

standard of classification from objective properties, such as traffic volume, average 

vehicle weight, average speed etc., are not presented here. Further study is required 

because the drive analysis requires significant computation.  

The proposed load model was developed from WIM data across four sites. More 

WIM data from many different sites and over a longer period should be analyzed to 

create a more reliable vehicular live load model. 
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초 록 

 

이 연구에서는 국내의 교통특성을 반영한 장경간 차량활하중의 

확률모형을 추정하였다. 기존의 장경간 차량활하중 모형은 실제 

교통상황에서 낮은 확률로 발생하는 정체현상을 이미 발생한 것으로 

가정하고 있다. 이 가정은 보수적인 설계를 유발할 수 있기 때문에 

실제의 교통특성을 고려하기 위하여 최근 계측한 국내 6 개 지역의 

통행자료를 이용하여 주행상황을 분석하였다. 설계수명동안의 최대하중을 

추정하기 위해 Cramer 의 점근적 해를 이용한 통계적 외삽 기법을 

제안하고 기존 방법과 비교하였다. 또한 장경간 하중모형에 적합한 

다차로재하계수를 산정하기 위하여 대표차로하중을 구하고 이것을 

가상으로 동시주행시켜 다차로재하계수를 산정하는 방법을 제안하였다.   

최근 계측한 WIM data 의 주행상황 분석을 통해 황의승(2012)이 

제안한 장경간 활하중 모형의 통계특성을 추정하였다. 분석결과 길이에 

따른 차로하중의 감소율이 기존 하중모형보다 급격하게 평가돼 길이에 

따른 편심계수가 균일하지 않았고, 지역적에 따른 차이 역시 두드러지게 

나타났다. 이를 반영하여 새로운 차로하중 확률모형을 제안하였다. 하중 

크기에 따라 일반통행(Normal traffic)과 과중통행지역(Heavy traffic)으로 
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구분하였고, 영향선 길이에 따른 모형과 경간 길이에 따른 모형을 함께 

제안하였다. 제안된 하중모형의 통계특성을 함께 제시하였다.  
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