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ABSTRACT 

�

�

Regularization techniques in system identification (SI) for damage assessment of 

structures are proposed.  This study adopts an SI scheme based on the minimization of the 

least squared error between measured and calculated responses, which is a nonlinear 

inverse problem.   

A general concept of the regularity condition of the system property is presented.  By 

imposing a proper regularity condition, inherent ill-posedness of the SI scheme is alleviated 

satisfactorily.  It is shown that the regularity condition for elastic continua is defined by 

the L2-norm of the system properties.  Tikhonov regularization technique is employed to 

impose the regularity condition on the error function.  The characteristics of nonlinear 

inverse problems and the role of the regularization are investigated by the singular value 

decomposition of a sensitivity matrix of responses.  It is shown that the regularization re-

sults in a solution of a generalized average between the a priori estimates and the a posteri-

ori solution.  Based on this observation, a geometric mean scheme (GMS) is proposed.  

In the GMS, the optimal regularization factor is defined as the geometric mean between the 

maximum singular value and the minimum singular value of the sensitivity matrix of re-

sponses.  The validity of the GMS is demonstrated through numerical examples with 

measurement errors and modeling errors.   

It is shown that a solution space defined by the L2-norm of system property is not ap-

propriate for framed structures unlike elastic continua.  The L1-norm of the system prop-

erty is introduced as a new regularization function for framed structures.  The truncated 

singular value decomposition (TSVD) is employed to filter out noise-polluted solution 
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components in quadratic sub-problems of the error function.  The discretized regularity 

condition defined by the L1-norm of the stiffness parameter vector is imposed as a separate 

optimization problem in each quadratic sub-problem.  The optimization of the L1-norm is 

performed by the simplex method.  The optimal truncation number is determined by the 

cross validation.  The final damage status of a framed structure is assessed by the statisti-

cal approach based on the data perturbation and the hypothesis test.  The validity of the 

proposed regularity condition for framed structures is presented by detecting damage of a 

two-span continuous truss with different damage cases with measurement errors.   

 

�

Key Words : system identification, regularization technique, damage assessment, ill-

posedness, regularity condition, geometric mean scheme  
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Chapter 1 

Introduction 

�

Civil infrastructures suffer from damages due to unexpected disasters such as earth-

quake, fire, and blast.  As the traffic volume increases rapidly, structures such as bridges 

are exposed to continuous overloads that may lead to fatigue failures.  A proper design 

enables structures endure unexpected events that may result in damages.  However, it 

cannot be always guaranteed that no damage occurs in the structure after unexpected events.  

Once damage occurs in a structure, timely and proper actions should be taken to prevent an 

irreparable catastrophe.  Therefore, systematic and regular inspections are required to 

clarify the existence of damage in structures. 

Non-destructive testing (NDT) methods for the existing structures have been used to 

assess damage.  Visual inspection, ultrasonic techniques, magnetic flux leakage tech-

niques, radiographic techniques, penetrant techniques, eddy current techniques can be cate-

gorized as the local NDT methods [Bra89].  Since not only these methods are time-

consuming and expensive but also the vicinity of damage should be known a priori, they 

are used for the inspection of local parts that are accessible easily.   

Recently, structural health monitoring is an emerging area of civil engineering as the 

number of large and complex infrastructures increases rapidly.  Structural health monitor-

ing can be defined as the science of inferring the health and safety of an engineered system 

by monitoring its status [Akt00, Doe96].  Innovative developments of sensor, computer, 

and information technologies enable engineers to design a well-established structural moni-

toring system.  These technologies have made it possible to resolve the complexity of 
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relevant physical phenomena through detailed computer simulations and their signatures in 

the measured data through innovative data acquisition and system identification methods.  

Especially, the damage assessment based on the system identification (SI) is a beneficiary 

of these innovations of the technologies since the SI requires both measurements with a 

high precision and a large amount of numerical calculations.    

 
1.1 System Identification as an Inverse Problem 

In general, engineering problems can be categorized into three different ones as shown 

in Fig.1.1.  The first problem is the forward problem that is usually referred to as analysis.  

In the forward problem, the unknown output is obtained using the known input and model.  

Most engineering problems belong to the forward problems.  The second problem is the 

reconstruction problem in which the unknown input is obtained using the known model and 

output.  The third problem is the system identification (SI) in which the unknown model 

is obtained using the known input and output.  The reconstruction problem and system 

identification are usually referred to as inverse problems.   

Applications of inverse problems to engineering areas go way back to the 1970’s in 

aerospace engineering [Ali75, Bec84, Bec85].  Estimation of heat-flux generated on the 

surface of the space shuttle is an important issue for successful navigation of the space 

shuttle.  Image enhancing technique of blurred images in the medical imaging and the as-

tronomy is popular areas of inverse problems [Car94, Fes94, Han96a, Fra00]. 

As far as the engineering mechanics is concerned, shape identification [Sch92, Lee99, 

Lee00], estimation of material properties [Gio80, Nor89, Hon94, Mah96, Par01], recon-

struction of traction boundaries [Man89, Sch90], tomography [Bui94], and defect identifi-
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cation [Tan89, Bez93, Mel95] are categorized as inverse problems. 

It is well-known that inverse problems suffer from ill-posedness unlike the forward 

problems that are usually well-posed.  The solution of an inverse problem may suffer 

from non-existence, non-uniqueness, and discontinuity unlike that of the forward problem, 

which are referred as ill-posedness [Tik77, Gro84, Mor93, Bui94, Han98].   

A. N. Tikhonov, a famous mathematician of the USSR, concentrated on this issue and 

established a regularization theory to alleviate ill-posedness of an inverse problem [Tik77, 

Gro84, Mor93].  Numerous researches on inverse problems in the engineering field that 

Model Input Output 

Forward problem

Model Input Output 

Inverse problem : Reconstruction 

Model Input Output 

Inverse problem : System identification 

Fig.1.1 Engineering problems  
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are mentioned above have adopted regularization technique and obtained satisfactory re-

sults [Ali75, Bec84, Bec85, Man89, Sch90, Sch92, Lee99, Lee00, Yeo00, Par91].  There 

are various kinds of schemes that can realize the regularization.   

However, a common idea of several regularization techniques is to preserve the regu-

larity of solution by defining a proper function space in which the solution must exist 

[Tik77, Joh87, Bui94].   

 
1.2 A Damage Assessment Algorithm Using System Identification 

SI for the structural systems can be defined as the parametric correlation of structural 

response characteristics predicted by a mathematical model and analogous quantities de-

rived from experimental measurements [Doe99].  Many SI methods using various meas-

ured responses have been developed for damage assessment in the last few decades.   

From the 1970’s to the 1980’s, an offshore oil platform was the first target structure of 

SI-based damage assessment as a civil structure [Doe96, Doe99].  Several researches 

were performed for damage assessment of an oil platform.  Unfortunately, there were 

many practical problems to produce satisfactory results in SI of the offshore oil platform.  

Environmental and structural uncertainties such as measurement noise caused by the ma-

chinery, hostile environments for instrumentation, and the change of foundation with time 

were main enemies.  In addition, the natural frequencies representing the measured re-

sponse were not sensitive enough to indicate the several types of damage to be identified. 

Researchers have paid attention to the SI-based damage assessment for the bridge and 

roadways.  Bridge failure may result in irreparable catastrophe like the collapse of the 

Sungsoo bridge.  Since the number of large scale complex bridges increases, the auto-
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mated health monitoring system is necessary to prevent the catastrophes.  The SI-based 

damage assessment plays an important role in the health monitoring system of the existing 

structures.  Earlier works focused on the changes of the natural frequencies to detect the 

damage.  It becomes generally known that only the natural frequencies are not sufficient 

to obtain both damage location and severity.  More recently, mode shapes and modal fre-

quencies are used simultaneously to find the damage location and severity of damages 

[Doe99].  Extensive and detailed literature reviews of almost every damage assessment 

method using vibration responses are available in the technical report published by Los 

Alamos laboratory in 1996 [Doe96].  Static data such as strain and displacement can be 

used for the SI-based damage assessment in addition to the modal data [San91, Shi94, 

Yeo00]. 

Whatever a target structure is, an important assumption of the SI-based damage as-

sessment is that the measured response of the structures changes if the structure experi-

ences damage and the change of measured response can lead to quantitative or qualitative 

properties of damage [Doe96].  The purpose of the SI-based damage assessment is not 

only to identify the existence of damage but also to predict the location and the severity of 

damage.   

The most embarrassing difficulties of the SI-based damage assessment are sparseness 

of measurements and measurement noise [Shi94, Yeo00].  To obtain satisfactory results 

by using the SI-based damage assessment, inevitable ill-posedness of SI due to sparseness 

and noise of measurements should be resolved properly [Bui94, Yeo00, Par01].  Sparse-

ness of measurements is unavoidable since the civil structures are usually large and com-

plex.  Measurement noise is also inevitable due to the uncertain environment of sensor 
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instrumentation.  Various SI-based damage assessment algorithms have adopted intuitive 

remedies to alleviate the difficulties without theoretical insight into an inherent ill-

posedness of SI.  With a strong theoretical background of SI, a rigorous SI scheme for a 

damage assessment algorithm can be established and a reliable damage assessment is pos-

sible. 

Recently, Ge and Soong presented a damage identification scheme based on the mini-

mization of cost functional using the regularization method [Ge98a, Ge98b].  The SI-

based damage assessment algorithm proposed by Yeo adopted regularization technique and 

yielded satisfactory results for damage assessment of framed structures [Yeo99, Yeo00].  

In his work, conceptual explanations with schematic drawings about the SI are presented to 

explain ill-posedness of a SI problem. 

 
1.3 Objective and scope 

The current study presents regularization techniques in SI for damage assessment of 

structures.  SI is based on the minimization of the least squared error between measured 

and calculated responses, which is a nonlinear inverse problem.  SI based on the minimi-

zation of the least squared error between measured and calculated responses suffers from 

inherent instabilities caused by ill-posedness of inverse problems.   

In chapter 2, a general concept of regularity condition with respect to the system prop-

erty for SI is presented.  By imposing a proper regularity condition, inherent ill-posedness 

of SI can be relieved satisfactorily.  A regularity condition of the system property for elas-

tic continua is presented.  Based on the proposed regularity condition, a regularization 

function based on the L2-norm with respect to the system property is proposed.  A regular-
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ity condition of the system property is discretized in terms of system parameters.  Two 

different approaches to impose the discretized regularity condition on minimization of error 

function were presented;  the truncated singular value decomposition (TSVD) and the 

Tikhonov regularization.  

In Tikhonov regularization, the most important issue is to keep consistent regulariza-

tion effect through the parameter estimation, which is controlled by a regularization factor. 

Therefore, it is crucial to determine a well-balanced regularization factor in order to obtain 

a physically meaningful and numerically stable solution of an inverse problem with the 

regularization technique.   

This study illustrates that the minimization of the error function with the Tikhonov 

regularization function results in a solution of a generalized average between the a priori 

estimates and the a posteriori solution.  Here, the a priori estimates represent known base-

line properties of system parameters, and the a posteriori solution denotes the solution ob-

tained by given measured data.  A new idea of the geometric mean scheme (GMS) is pre-

sented to select optimal regularization factors in nonlinear inverse problems [Par01].  In 

the GMS, the optimal regularization factor is defined as the geometric mean between the 

maximum and minimum singular value for balancing the maximum and minimum effect of 

the a priori estimates and the a posteriori solution in a generalized average sense.  De-

tailed discussions on the behaviors of the GMS are presented and compared with identifica-

tion results from other schemes in the numerical examples.  The numerical examples are 

to estimate Young’s modulus of a foreign inclusion in a finite body from a given measure-

ments polluted with random noise and modeling error. 

In chapter 3, it is shown that a solution space defined by Tikhonov regularization func-
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tion is inadequate to SI for framed structures unlike elastic continua.  To establish SI ade-

quate for framed structures, a new regularity condition of the system property for framed 

structures is proposed.  Based on the proposed regularity condition, a regularization func-

tion based on the L1-norm with respect to the system parameters is proposed.   

Minimization of error function with L1-based regularization function is performed us-

ing the TSVD and L1-optimization iteratively since the error function with L1-based regu-

larization function is usually nonlinear and non-differentiable with respect to the system 

parameters.  The cross validation method is utilized to determine an optimal truncation 

number in each quadratic sub-problem.  Also, a simplified method based on the discrep-

ancy principle is proposed to reduce computational effort in the final damage assessment 

[Mor84, Mor93]. 

The statistical approach proposed by Yeo et al is adopted to assess the damage status of 

a framed structure using identification results of SI [Yeo00].  Data perturbation is used to 

obtain samples of system parameters [Shi94], and the damage status of each member is 

determined by applying a hypothesis test for the interval estimation of the mean value.   

The validity of the proposed damage assessment algorithm is presented by detecting 

damage of a two-span continuous truss with different damage cases with measurement er-

rors   
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1.4 Notations 
 

The symbols used in this study are defined where they first appear in the text and 

whenever clarification is necessary.  The most frequently used symbols are listed below. 

Boldfaced characters represent vectors. 

�

AN Noise amplitude 
 

bi Body force vector 
 

rb  Displacement residual considering the axis transformation. ( rUS −−= )1(ξξξξ ) 
 

c Critical value in the hypothesis test 
 

Cijkl Elasticity tensor 
 

e Noise vector in the measurement data 
 

H1(V) Sobolev space of degree one on V 
 

H0 Null hypothesis 
 

H1 Alternative hypothesis 
 

Hk-1 Gauss Newton Hessian at the k-1’th optimization iteration (= SST ) 
 

�� Damage index 
 

In Identity matrix of order n 
 

k Iteration count for the nonlinear optimization 
 

K Stiffness matrix 
 

li Length of member i in a framed structure 
 

L2(V) L2 space on V 
 

nG Size of system parameter group vector 
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),( 2baN  Normal distribution with mean a and standard deviation b 
 

p Numerical rank of sensitivity matrix 
 

Pi Nodal force vector of i’th load case 
 

q A linear combination of truncated RSVs [See Eq.(3.14)] 
 

qopt Optimal solution obtained by the linear programming [See Eq.(3.16)] 
 

R Constraint for the system property 
 

Rs Size of the function space 
 

R Constraint vector for the system parameters 
 

i
tr̂  Predicted displacement residual for truncation number t in the cross validation 

[See Eq.(3.20)] 
 

is  i-th row of the original sensitivity matrix at the k-1’th optimization iteration in 
the cross validation 

 
SD Damage severity 

 

1−kS �  Sensitivity matrix of calculated displacements with respect to the system pa-
rameters at the k-1’th optimization iteration 

 

S# Regularized inverse of the sensitivity matrix (= T

j
j diagdiag ZV )1()1(

ω
α− � 

 
i−S  Reduced sensitivity matrix in which the i-th row is omitted at the k-1’th optimi-

zation iteration in the cross validation 
 

iT  Traction vector 
 

u Displacement field 
 

u* Admissible displacement field 
 

uA Element of u* 
 

ui Displacement vector 
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ui,j Derivative of the displacement vector with respect to j’th material coordinate 

 
iû  Virtual displacement vector 

 
jiu ,ˆ  Derivative of the virtual displacement with respect to�j’th material coordinate 

 
m
iu  Measured displacement vector 

 
ui Nodal displacement vector of i’th load case 

 
c
iu  Calculated displacement vector of i’th load case obtained by the finite element 

method 
 

m
iu  Measured displacement vector of i’th load case at the discrete observation 

points 
 

i
r
kU )( 1−  i-th row of the original displacement residual vector at the k-1’th optimization 

iteration in the cross validation 
 

cU  
Vectors obtained by arranging the vectors of the computed displacements for 
each load case in a row 

 
mU  

Vectors obtained by arranging the vectors of the measured displacements for
each load case in a row 

 
U~  Normalized calculated displacement vector ( cU ) 

 
U  Normalized measured displacement vector ( mU ) 

 
fU  Noise-free measurement vector 

 
r
k 1−U  Displacement residual at the k-1’th optimization iteration ( 1

~
−−= kUU ) 

 
ir

k
−

− )( 1U  Reduced displacement residual vector in which the i-th row is omitted at the k-
1’th optimization iteration in the cross validation 

 
vj j’th column vector of V 

 
V Material configuration; Structural volume 

 



 12

e
iV  Volume of member i in a framed structure 

 
V Right singular matrix of the sensitivity matrix in the SVD 

 
x System property 

 
x* Admissible system property 

 
xR Subspace of x* determined by the regularization technique 

 
xA Element of xR 

 
xI Element not in xR 

 
x System parameter vector 

 
iX  System parameter of member i in a framed structure 

 
0)( iX  Baseline value of system parameter of member i in a framed structure 

 
zj j’th column vector of Z 

 
z Standardized probabilistic variable 

 
zµ Standardized critical value in the hypothesis test 

 
Z Left singular matrix of the sensitivity matrix in the SVD 

 
jα  Weighting factor corresponding to j’th singular value ( )/( 222 λ+ωλ= j ) 

 
αmax Weighting factor corresponding to the largest singular value 

 
αmin Weighting factor corresponding to the smallest singular value 

 
β Step length for the line search in the direction of the solution increment 

 

βopt 
Optimal step length for the line search in the direction of the solution increment 
at the current iteration 

 
∆χχχχ Transformed regularized solution [See Eq.(2.42)] 
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γj Arbitrary real number [See Eq. (2.17)] 
 

Γt Traction boundary 
 

Γu Displacement boundary 
 

δ Dirac delta function 
 

δm Tolerance based on the machine precision  
 

pε  Threshold value to determine the numerical rank of the sensitivity matrix 
 

Φ CDF of the standardized normal distribution 
 

)(λη  Log of Rπ  in the LCM 
 

i
z

i
y

i
x ηηη  ,  ,  A local coordinate system for member i of a framed structure 

 
)(λκ  Curvature of L-curve with respect to λ in the LCM 

 
λ Regularization factor 

 
optλ  Optimal regularization factor 

 
µ Significance level in the hypothesis test 

 
Rπ  Normalized regularization function 

 
Eπ  Normalized error function ( EΠ ) 

 
l
Eπ  Linearized error function in the LCM [See Eq. (2.43)] 

 
πP Penalty function of SMEπ  

 
SMEπ  Squared model error [See Eq. (3.1)]

 

 

EΠ  Least squared error between the measured responses and the calculated re-
sponses; Error function 
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RΠ  Regularization function 
 

)(λρ  Log of l
Eπ  in the LCM 

 
σ Standard deviation of each system parameter obtained by data perturbation 

 
σij Stress tensor 

 
2σ  Prior estimate of the averaged random noise variance 

 
uυ  Function space for the displacement 

 
ûυ  Function space for the virtual displacement 

 
τ Decreasing rate of Fourier coefficients [See Eq. (2.19)] 

 
ωj j’th diagonal component value of V; j’th singular value 

 
ΩΩΩΩ Diagonal matrix with singular values of the sensitivity matrix 

 
ξξξξ Normalized system parameter vector (x) 

 
ξξξξG System parameter group vector in parameter group updating scheme 

 
ξξξξk-1 Normalized system parameter vector at the k-1’th optimization iteration 

 
R
uξξξξ  Regularized solution of unconstrained nonlinear optimization problem at the 

current iteration  
 

*
tξξξξ  Converged solution obtained by the L1-TSVD for a fixed truncation number t 

 
-TSVDL1

optξξξξ  Converged solution by the L1-TSVD with the truncation number determined by 
the cross validation 

 

ξξξξ∆  Solution increment of constrained nonlinear optimization problem at the current
iteration without regularization 

 

uξξξξ∆  Solution increment of unconstrained nonlinear optimization problem at the cur-
rent iteration without regularization 

 
f
uξξξξ∆  Solution increments contributed by the noise-free displacement residual 
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e
uξξξξ∆  Solution increments contributed by the noise in measurement 

 
TSVD
tξξξξ∆  Solution increment by the TSVD at the current optimization iteration with trun-

cation number t 
 

-TSVDL
t

1ξξξξ∆  Optimal solution increment by the L1-TSVD at the current iteration 
 

Ξ Unknown actual value of each system parameter in the hypothesis test 
 

i−∆ optξξξξ  Solution increment by the L1-TSVD for truncation number t in the cross valida-
tion  

 
eℵ  Noise level 

 
maxℑ  Maximum perturbation amplitude 

 

1
  ⋅  L1-norm of a function or a vector 

 

2
  ⋅  L2-norm of a function or a vector 

 

∞
⋅   L∞-norm of a function or a vector 

 
 
�
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Chapter 2 

System Identification for Elastic Continua 

�

System identification (SI) algorithms have been widely used for the last few decades 

in the area of structural engineering to identify mechanical systems [Bui94] and to detect 

damage in structures [Hje96a, Shi99, Yeo00].  It is currently recognized that two different 

approaches to SI exist, i.e. a model based one and a non-model based one [Lju87].  In a 

model based approach, the system parameters are estimated by least square methods in 

which the difference between calculated and measured response is minimized.  The 

calculated response is obtained from mathematical model simulating real physical 

phenomena and the measured ones are obtained from real physical phenomena.  In a non-

model based approach, the system parameters are obtained from a black box which can 

accommodate a variety of systems without looking into the internal structures of the 

physical phenomena. Neural network [Bis94, Sim99], and genetic algorithms [Gol89] are 

well-known non-model based approaches.   

Each approach has its own merits and drawbacks. In model based approaches, the 

physical and mathematical theories are clearly defined for development of the SI algorithm 

while appropriate remedies such as regularization techniques are required to resolve the 

numerical instabilities.  In non-model based approaches, algorithms are very robust and 

easy to adapt to complex physical phenomena while they cannot yield good results without 

a lot of well-refined information about the phenomenon. 

No matter which approach is used in SI for structural systems, it should be noted that 

two inherent problems are inevitable, i.e. sparseness and noise in measurements. [Shi94, 
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Yeo00]  Sparseness of measurements grows severe as the ratio of measured data to the 

unknown system parameters decreases.  Noise in measurements occurs due to sensitivity 

of measuring instruments and uncertainty in experimental environments.  Especially, 

problems of both sparseness and noise in measurements are very serious in complex 

structures like bridges because the number of measurable responses is much smaller than 

that of the system parameters and uncertainty in experimental environments is very serious.  

In this study, minimization of the least squared error between measured and calculated 

response is adopted in SI for structural systems.  Minimization of the least squared error is 

referred to as the output error estimator hereafter.  In many previous researches based on 

the output error estimator for structural systems, however, inherent ill-posedness due to 

sparseness and noise in measurements has not been fully recognized.  A detailed 

investigation of the instabilities is also rarely available.   

Ill-posedness of SI based on the output error estimator is investigated in the context of 

the inverse problems.  Regularization technique is adopted to reduce the instabilities of 

the output error estimator.   

 
2.1 Output Error Estimator in the SI Scheme for Structural Systems 

In structural systems, there are various measurable physical responses such as static 

displacements, acceleration, natural frequencies, and mode shapes.  Mass, damping, and 

stiffness of the structural system may be identified in SI using these responses.   In this 

study, it is assumed that structural system is time-invariant and linear.  Two-dimensional 

finite body with static response will be dealt with as a target structure for the simplicity of 

further discussion. This simplification causes no loss of generality when it comes to the 
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type of structural system, measured responses, and system parameters to be estimated 

because any type of measured response and system parameters can be used in this 

formulation. 

Fig. 2.1 shows a two-dimensional finite body, for which the geometry and the 

boundary conditions of the exterior boundary are known.  Prescribed traction is applied 

on Γt, and displacement is specified on Γu.  It is assumed that only small parts of a given 

body have different material properties from the original, known material properties, which 

are referred to as baseline properties hereafter.  The variation in the material properties 

may be caused by either an inclusion of a foreign material or degradation of material.  

Damage such as a crack can be also approximately represented by reducing the elastic 

material properties around damage without modifying the finite element model [Shi99]. 

: Boundary line of each predefined element group 

Damage 

Foreign material  

Fig 2.1 Problem definition and element groups 

: Finite element boundary 

Γ��

Γu

TT =

uu =

: Observation points 
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A variational statement of the equilibrium equation for a finite body can be represented 

as the following equation. 

 

uiii
V

iiij
V

ji udTudVbudVu
t

ˆ, ˆfor       ˆˆˆ υ∈∀Γ+=σ ∫∫∫
Γ

 (2.1)

}on   0ˆ|)(ˆ{ 1
ˆ uiiu uVHu Γ=∈≡υ  (2.2)

 
where, V, iû , jiu ,ˆ , σij, and bi are a material configuration, a virtual displacement vector, 

a derivative of the virtual displacement with respect to j’th material coordinate, a stress 

tensor, a body force vector, and respectively.  H1(V) denotes the Sobolev space of degree 

one on V [Str73, Hug87].  The stress tensor can be represented as the following equation 

using the Hooke’s law and the strain-displacement relationship. 

 
lkijklij uC ,=σ  (2.3)

 
where, Cijkl, ui and ui,j are a elasticity tensor, a displacement vector, and a derivative of the 

displacement vector with respect to j’th material coordinate, respectively.  The  

displacement vector ui belongs to the function space uυ defined as the following equation. 

 
}on   0|)({ 1

uiiu uVHu Γ=∈≡υ  (2.4)
 

Eq.(2.1) can be rewritten as the following equation by using Eq.(2.3) and considering the 

symmetry of Cijkl.   

uiii
V

ii
V

lkijklji udTudVbudVuCu
t

ˆ,, ˆfor       ˆˆˆ υ∈∀Γ+= ∫∫∫
Γ

 (2.5)

 
The unknown system parameters of the finite body can be identified by minimizing a 
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least squared error between displacements satisfying Eq.(2.5) and measured displacements 

at some part of traction boundary Γo. 

0)(  osubject  t ))()()((
2
1 Minmize ≤Γ−−=Π ∫

Γ

xRduxuuxu
o

m
ii

m
iiEx

 (2.6)

 
where x, m

iu , R are unknown system property representing Young’s modulus or Poisson 

ratio, the measured displacement vector at traction boundary Γo, a constraint for the system 

property, respectively. 

To represent stiffness properties of the body, the given domain is divided into a finite 

number of subdomains as shown in Fig. 2.1, and the Young’s moduli of the subdomains are 

selected as the system parameters.  The Poisson’s ratios of all the subdomains are fixed at 

the baseline property.  Each subdomain may consist of a finite element or a predefined 

element group, which contains several finite elements of the same system parameter.  For 

the simplicity of discussion, it is assumed that an element group for each subdomain is 

predefined. 

Since the displacement vector satisfying Eq.(2.5) is not available analytically in 

general cases, the displacement vector is obtained by applying finite element method to 

Eq.(2.5).  

ii PuxK =)(  (2.7)
 
where K, x, ui and Pi are the stiffness matrix, system parameter vector, nodal displacement 

vector of the structure, and the equivalent nodal load vector of the i-th load case, 

respectively.   

Instead of minimizing Eq.(2.6), a point-collocation method is applied to identify the 
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unknown system parameters of the finite body since the measured displacements are 

obtained at some discrete observation points located on Γt as shown in Fig. 2.1. 
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where, c

iu ��

m
iu ��and�

2
  ⋅  denote calculated displacement vector obtained by the finite 

element method, measured displacement vector of i’th load case at the discrete observation 

points, and the L2-norm of a vector [Wat80].  Linear constraints are used to set physically 

significant upper and lower bounds of the system parameters [Hje96].  The minimization 

problem defined in Eq. (2.8) is a constrained nonlinear optimization problem because the 

displacement vector c
iu  is a nonlinear implicit function of the system parameters x. 

The error function defined in Eq. (2.8) is rewritten in a single vector form as  

 
2

2
)(

2
1 mc

E UxU −=Π  (2.9)

 
where cU  and mU  are vectors obtained by arranging the vectors of the computed 

displacements and the measured displacements for each load case in a row.  The error 

function is normalized by the square of the Euclidean norm of the measured displacement 

vector, while system parameters are normalized with respect to the corresponding baseline 

properties.  The normalized quantities corresponding to EΠ , cU , mU  and x are 

denoted as Eπ , U~ , U  and ξξξξ  respectively.  The normalized minimization problem is 

written in the following form. 
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2.2 Ill-posedness of the Output Error Estimator  

Ill-posedness of the output error estimator are characterized by non-uniqueness of 

solution and discontinuity of solutions [Han98, Yeo00, Par01].  In particular, when 

measured data are polluted with noise or when a finite element model used for SI does not 

represent actual situations, the instabilities become very severe [Bui94, Par01]. 

Since the output error estimator of Eq. (2.10) is nonlinear optimization problem, it 

should be solved iteratively by linearizing Eq. (2.10) with respect to the system parameters.  

Therefore, inherent ill-posedness of Eq. (2.10) should be investigated by using the solution 

of the linearized form of Eq. (2.10).  

Sparseness of measurements cause rank deficiency in the sensitivity matrix under 

which no unique solution is guaranteed [Han98].  Noise in measurements violates the 

discrete Picard condition which ensures both continuity and convergence of the solution 

[Gro84, Han98].  In short, numerical instabilities of the output error estimator are caused 

by rank-deficiency of the sensitivity matrix and violation of discrete Picard.   

Numerical instabilities of linearized output error estimator will be investigated by 

singular value decomposition (SVD) [Gol96].  Two important kinds of ill-posedness, non-

uniqueness and discontinuity of solution of the output error estimator will be investigated 

by the SVD because it can be verified through the SVD whether either rank-deficiency or 

violation of Picard condition occurs.  
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2.2.1 SVD of the Output Error Estimator 

The solution of the minimization problem Eq. (2.10) is obtained by solving the 

following quadratic sub-problem iteratively. 

 

0) ( osubject  t
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where the subscript k denotes the iteration count, and 1−kS  and 1−kH  are the sensitivity 

matrix of 1
~

−kU  and the Hessian matrix of the error function, respectively.  The 

displacement residual r
k 1−U  is defined as 11

~
−− −= k

r
k UUU , and ξξξξ∆  is the increment of 

normalized system parameters at the current iteration step.  The Hessian matrix in Eq. 

(2.11) is approximated by the Gauss-Newton Hessian to avoid the computational 

complexity of calculating the second order sensitivities of displacements. 

 

111 −−− ≈ k
T
kk SSH  (2.12)

 
To simplify the expressions, the subscript (k-1) of all the variables in the incremental 

formulation presented hereafter is omitted. 

The linear constraints of Eq. (2.11) on the upper and lower bounds of system 

parameters can alleviate ill-posedness of the output error estimator to some extent.  

However, the inherent instabilities of the output error estimator cannot be suppressed in 

general by imposing linear constraints on the upper and lower bounds of system parameters, 

which has been reported by several researchers [Neu73, Neu75, Neu79, Yeo00].  This is 

because the instabilities of the output error estimator arise from the characteristics of the 
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Hessian and the errors in measurements.  Therefore, the instabilities of the SI algorithm 

should be investigated before the constraints are imposed, and thus the constraints are not 

considered for discussions on the stability of the SI algorithm hereafter.  In other words, 

the instabilities of the SI algorithm are presented in the original solution space, not in the 

solution space reduced by the constraints for the remaining parts of this chapter. 

The first-order necessary optimality condition for Eq. (2.11) without the constraints is 

given by the following linear equation. 

 
0=−∆ rT

u
T USSS ξξξξ  (2.13)

 
here, uξξξξ∆  denotes the solution of the unconstrained quadratic sub-problem of Eq. (2.11).  

By the singular value decomposition (SVD) [Gol96], the m×n sensitivity matrix S can be 

written as a product of an m×n matrix Z, an n×n diagonal matrix ΩΩΩΩ, and the transpose of an 

n×n V as expressed in Eq. (2.14).  In the definition, m is the total number of measured 

degrees of freedom for all the applied loads and n is the number of system parameters. 

 
TVZS ΩΩΩΩ=  (2.14)

 
where  
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 (2.15)

 
in which In is the identity matrix of order n, and jω  is a singular value of S which has the 

descending order of 1ω = maxω ≥… ≥ pω ≥ pε ≥ 1+ωp ≥…≥ nω = minω ≥0. pε  and p denotes 
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a threshold value to determine the rank and the rank of S, respectively [Gol96].    

From the mathematical points of view, the threshold value pε  is exact 0.  However, 

the threshold value, pε  cannot be 0 if the numerical calculations are used to obtain the 

singular values because it should be consistent with the machine precision used in the 

numerical calculations [Gol96].  In this study, the threshold value is determined 

considering the machine precision by the following equation because the singular values 

can be obtained by numerical calculations.   

 
∞δ=ε ||||ˆ Smp  (2.16)

 
where pε̂  and δm are a threshold value to determine the numerical rank p and the 

tolerance based on the machine precision, respectively.  ||⋅||∞ denotes the L∞-norm of the 

matrix [Wat80]. 

If p=n, the sensitivity matrix is called rank-sufficient while it is called rank-deficient if 

p<n.  More detailed discussions about rank-deficiency will be treated in section 2.2.2.  

The columns of Z are referred to as the left singular vectors (LSV) while the columns of V 

are referred to as the right singular vectors (RSV).  

 
2.2.2 Non-Uniqueness of the Solution  

Sparseness of measurements occurs when the ratio of the number of measurements to 

the unknown system parameters is very small.  Because of sparseness of measurements, 

minimization problem of the output error estimator becomes an underdetermined one in 

which there is infinite number of solutions.  As far as the linear algebra is concerned, an 
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underdetermined problem has rank-deficiency.  Therefore, sparseness of the measurement 

data in SI problems based on the output error estimator causes rank-deficiency of the 

sensitivity matrix mentioned in section 2.2.1.  The sparseness of the measured response 

occur very often in the area of SI for structural systems.  However, many remedies for the 

sparseness depend on ad-hoc method that enforces a simple condition that the number of 

measured responses should be always larger than that of the system parameters.  It should 

be noted that rank-deficiency may occur under even this condition unless independency of 

the measurements is provided sufficiently.  The most appropriate method which can 

measure the degree of the rank-deficiency, is singular value decomposition of the 

sensitivity matrix.  Once the sensitivity matrix is decomposed as Eq. (2.14), existence and 

degree of the rank-deficiency is revealed.  Rank-deficiency in the rank-deficient problems 

arises when the numerical rank of the sensitivity matrix r is smaller than n as mentioned in 

section 2.1.2.  

Using the properties of Eq. (2.15), the solution of the rank-deficient case can be 

represented as the following equation [Gol96, Han98]. 
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− γ+ω=∆
n
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jj
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jjju
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where vj and zj are column vectors which consist of the RSV and LSV corresponding to the 

j’th singular value ωj, and γj is an arbitrary real value. The arbitrariness of the coefficient γj 

causes the number of the solution infinite, which is ill-posedness as the non-uniqueness of 

the solution.  The first term of Eq. (2.17) is a constant solution part which is affected by 

the Ur directly while the second term is an arbitrary solution part which is not affected by 
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Ur and makes the number of the solution infinite.  In other words, the solution parts 

combined linearly with RSVs from vr+1 to vn has no influence on the residual Ur because 

they lie in the null space of the sensitivity matrix.   

 
2.2.3 Discontinuity of the Solution  

Noise in measurements is the main source which results in discontinuity of the 

solution in Eq. (2.13).  With noise in the measurements, the degree of discontinuity 

increases as the number of system parameters increases regardless of rank-deficiency.  

This phenomenon can be easily verified if SVD is applied to Eq. (2.13).  For the 

simplicity of explanation, Eq.(2.13) is assumed rank-sufficient.  

Using similar manipulation as in Eq. (2.17), the solution of the rank-sufficient problem 

is represented as the following equation. 
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Eq. (2.18) is defined as the a posteriori solution increment because it is determined purely 

by the measured displacements and the analytical model of a given structure without 

utilizing the a priori information on the system.  The term ZTUr in Eq. (2.18) is often 

referred to as the Fourier coefficients [Han92a, Han98].   

The displacement residual rU  cannot converge to zero for noise-polluted 

measurements because noisy displacements usually contain incompatible components that 

cannot be obtained just by adjusting the system parameters of a mathematical model.  In 

that case, in order to make uξξξξ∆  converge to zero, each column zj should become 
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orthogonal to Ur in an absolute sense through the minimization iterations.  Even so, the 

optimization iteration may diverge if some of the singular values become smaller than the 

corresponding Fourier coefficients during iterations.  In other words, the ratio of the 

singular value to the corresponding Fourier coefficients must converge to zero to guarantee 

the convergence of the nonlinear optimization.  Therefore, Fourier coefficients must 

converge faster than the corresponding singular value so that the optimization iteration can 

converge.  This condition is called discrete Picard condition. The discrete Picard 

condition can be represented with respect to a certain tolerance as the following equation. 

 
njjrT

jj ,...,1 ,1 =τ=ω− Uz  (2.19)
 
where τ is some number between 0 and 1.  Eq. (2.19) indicates that the Fourier coefficient 

must decay to zero more rapidly than the corresponding singular value as the j increases.  

Picard condition will be easily violated if either sensitivity matrix or measurements are 

polluted with noise components.  Especially, if the measurements are polluted with severe 

noise, the Picard condition may be violated because the Fourier coefficient corresponding 

to the smaller singular values will level off at the noise level while the corresponding 

singular value decay to zero [Han98]. 

There are two sources of noise when applying an SI algorithm; i.e. measurement errors 

and modeling errors.  The former represents noise caused by sensitivity of sensors or 

misreading of test equipment during actual measurements.  The latter occurs due to the 

discrepancy between a real structure and its mathematical model employed in the SI.  For 

example, in case the a priori information is not available on internal flaws like cracks in a 

structure, such flaws cannot be taken into account in the finite element model used for SI.  
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The modeling errors cannot be reduced in the minimization with a predefined finite 

element model.  The measurement errors are probabilistic while the modeling errors are 

systematic in nature. 

The measured displacement can be theoretically decomposed into the noise-free 

displacement fU and the noise vector e as follows. 

 
eUU += f

 (2.20)
 

The modeling errors, which lead to errors in the stiffness matrix, result in noise in the 

computed displacements, but not in measured displacements.  However, it is still possible 

to employ Eq. (2.20) by defining the noise-free displacements as the best-fitting 

displacements with measured ones obtainable by adjusting predefined system parameters in 

the mathematical model.  This decomposition of displacement cannot be achieved 

explicitly, and is purely conceptual. 

Substitution of Eq. (2.20) into Eq. (2.18) leads to the following expression. 
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where f

uξξξξ∆  and e
uξξξξ∆  represent the solution increments contributed by the noise-free 

displacement residual and by the noise in measurement, respectively.  Unless noise in 

measurement data is negligible or the noise vector is nearly orthogonal to the LSV, the 

solution increment for the noisy measurement deviates from the noise-free solution mainly 

due to the second term of Eq. (2.21).  In particular, the components of ZTe associated with 

small singular values amplify the deviation more severely.  Under this circumstances, the 
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discrete Picard condition in Eq.(2.19) is easily violated.  The solution is likely to lose 

physical significance due to the accumulation of solution components amplified by 

physically meaningless noise during optimization iterations.  A small change in noise may 

yield a totally different solution because small singular values amplify the change in 

measurements, which is a source of discontinuity characteristics in SI problems.  It can be 

concluded that the discontinuity of the solution increment also occur during the 

optimization iteration when the discrete Picard condition is violated.  

 
2.3 Regularization – Preserving Regularity of the Solution of SI 

There are several kinds of complex methodologies and techniques that can realize the 

regularization.  However, the main idea of the regularization is to preserve the regularity 

of the solution that defines a proper function space where the solution must exist [Tik77, 

Joh87, Bui94].  Since a proper function space for the solution is usually provided in a 

forward problem either explicitly or implicitly, the regularity of the solution is guaranteed 

and the forward problem is well-posed.  

To explain the regularity of the solution easily, the function spaces representing the 

system property and the displacement field, and mapping between the system property and 

displacement field are shown in Fig. 2.2.  x, x*, u, and u* represent the system property, an 

admissible system property, the displacement field, and an admissible displacement field, 

respectively.  In this study, the term ‘admissible’ implies that a function space representing 

a physical property should be regular so that it has both physical and mathematical 

significance.  Whether a function space is regular is judged by the regularity 

(integrability) of the function space [Joh83]. 
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In general, the forward mapping represented by a structural stiffness equation is 

performed from an admissible system property onto an admissible displacement field as 

shown in Fig. 2.2 since the stiffness equation is derived from the variational formulations.  

However, it is not guaranteed that the inverse mapping represented by the output error 

estimator between measured and calculated response is performed from the admissible.  

This is because a proper solution space of the system property is not defined by the output 

error estimator and the measurements inevitably contain random and modeling errors.  In 

other words, Ill-posedness of the inverse mapping represented only by the output error 

estimator occurs since there is no proper regularity condition of the system property.  

Therefore a proper regularity condition should be adopted to alleviate ill-posedness of the 

inverse mapping. 

In general, a strong form of the regularity conditions with respect to the model space is 

Fig. 2.2 System property, displacement field, forward mapping and inverse mapping 
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represented by the integrability of the model space [Joh83, Ode79]. 
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where, x 0 is the center of the function space given a priori.  The system property 

satisfying Eq.(2.22) is an admissible system property, x* in Fig. 2.2.  The topology of the 

system property depends on r. 

The weak from of the regularity is usually imposed in practice since it is impossible to 

employ the strong form of regularity condition directly.  

  
r
s

V

r RdVxx <−∫ 0  (2.23)

 
where, Rs denotes the size of the function space.  r and Rs is determined properly by the 

regularization technique by considering the physical and the mathematical characteristics 

of the system property as known a priori.  For example, standard Tikhonov regularization 

r=2, which means the original system property should be square-integrable in the vicinity 

of x0.  In other words, the system property defined by Tikhonov regularization is a 

subspace of the L2-space that consists of piecewise continuous functions [Joh87].  

�

22
0 s
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A subspace of function space x* satisfying Eq.(2.24) is also an admissible system 

property, x R determined by the regularization technique in Fig. 2.3. 
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Fig. 2.4 and Fig. 2.5 present the effect of the regularization that alleviate the typical ill-

posedness, non-uniqueness and the discontinuity of the solution.  xA, xI, and uA, denote 

elements that satisfy the following condition. 

Fig. 2.3 Inverse mapping with regularization 
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Fig. 2.4 Alleviation of the non-uniqueness of the solution by regularization 
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The non-uniqueness of the solution may occur when the solution corresponding to the 

displacement uA is not unique.  Solutions obtained from the inverse mapping 

corresponding to uA may include those in the admissible and inadmissible system property 

as shown in Fig.2.4.  If the regularity condition is enforced by the regularization technique, 

only the solution that belongs to an admissible system property can be obtained.  

The discontinuity of the solution occurs when the inverse mapping from the 

displacement field in the vicinity of uA to the system property yields large deviations 

depicted as the darkly shadowed region in the vicinity of xA.  The darkly shadowed region 

includes solutions of admissible and inadmissible system property.  In general, most of the 

darkly shadowed region lies in the inadmissible system property as shown in Fig. 2.5.  

Fig. 2.5 Alleviation of the discontinuity of the solution by regularization 
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Therefore, if the regularity condition is enforced by the regularization technique, solutions 

continuous with respect to the small perturbation of the output can be obtained, which lies 

in the admissible system property.   

 
2.4 Numerical Remedies for Output Error Estimator 

There are two major numerical remedies to reduce ill-posedness of the inverse 

problems.  One is truncated singular value decomposition (TSVD) [Gol96, Han98] which 

resolves the non-uniqueness of the solution, and the other is Tikhonov regularization 

technique [Tik77, Gro84, Bui94, Han98] which enhances both convergence and continuity 

of the solution.  However, both are equivalent each other because they convert ill-posed 

problem into well-posed one by imposing the positive definiteness on original ill-posed 

problems.  The degree of smoothness is proportional to that of positive definiteness which 

is determined by a truncation number of TSVD and a regularization factor in the 

regularization technique.  

In these numerical remedies, the most important issue is to keep consistent 

regularization effect on the parameter estimation, which is controlled by truncation number 

of TSVD [Vog86] and a regularization factor [Bui94, Han98, Par01] in the regularization 

technique.  Therefore, it is crucial to determine a well-balanced truncation number and 

regularization factor in order to obtain a physically meaningful and numerically stable 

solution of an inverse problem.  This section presents detailed description on the TSVD 

and regularization technique. Various schemes to determine an optimal truncation number 

and regularization factor are also presented.  
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2.4.1 Truncated Singular Value Decomposition 

As mentioned in section 2.2.2, there is an infinite number of solutions in the rank-

deficient problem. Truncated singular value decomposition(TSVD) is motivated from the 

simple idea that feasible solutions are smooth rather than oscillatory among an infinite 

number of solutions if the a priori estimates of the solution is smooth.  The degree of the 

smoothness of the solution can be measured by the L2-norm of the solution vector.  In the 

TSVD, the solution with the least L2-norm is defined as the most feasible one [Gol96, 

Han98].  Using this definition, the solution in Eq.(2.11) can be determined uniquely.   
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Substituting Eq. (2.17) into Eq. (2.26), Eq. (2.26) can be converted into the minimization 

problem with respect to the coefficient γj. 
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The minimization problem of Eq.(2.17) can be rewritten as the following equation because 

the first term is constant, the second term is 0 due to the orthogonality of the RSV in Eq. 

(2.27). 
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The solution jγ  to Eq. (2.28) can be obtained easily by differentiating Eq.(2.28) with 

respect to jγ  and making the differential equations equal to zero for all jγ .   
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The solution jγ  is determined as the following equation from Eq.(2.29) with j
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Thus an arbitrary solution in Eq. (2.17) can be determined uniquely incorporated with Eq. 

(2.30) as the following equation.  
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where the solution is denoted as TSVD
rξξξξ∆  since it can be obtained by the truncated singular 

value decomposition (TSVD) of the sensitivity matrix if r, the rank of the sensitivity matrix, 

is less than n [Han98]. 
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2.4.2 Tikhonov Regularization 

The concept of the Tikhonov regularization has been adopted to overcome ill-

posedness of inverse problems, and successfully applied to various types of inverse 

problems [Bec84, Sch92, Lee99, Lee00, Par01].  However, little attention has been paid to 

the regularization technique in the realm of structural engineering.  Recently, some 

regularization techniques have been tested for system identification and damage detection 

in structures [Bec84, Sch92, Lee99, Lee00, Par01]. 

The regularization can be interpreted as a process of mixing the a priori estimates of 

system parameters and the a posteriori solution [Bui94, Par01].  The baseline properties 

are selected as the a priori estimates of the system parameters in this paper.  The a priori 

estimates are taken into account in the problem statement of inverse problems by adding a 

regularization function with the a priori estimates of the system parameters to the error 

function.  The regularization function should be defined differently for different problems 

since each problem has different regularity condition that defines the feasible solution 

space as mentioned in section 2.3.  Focusing on the estimation of foreign material 

properties of elastic continua, the solution space should be defined as a subspace of L2(V), 

square-integrable with respect to the system property since the physical distribution of the 

system property is piecewise continuous.  The regularity condition of the solution space 

can be weakly imposed by adding the following regularization function to the output error 

estimator of Eq.(2.6). [Tik77, Gro84, Mor93]. 
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where, λ usually referred as the regularization factor that controls the degree of the 

regularity of the solution space [Tik77, Gro84, Mor93, Bui94, Par01].  Eq.(2.32) is 

referred as the standard Tikhonov regularization function. 

Since the group configuration of material properties are predefined as shown in Fig.2.1, 

Eq.(2.32) is converted into the discrete form. 
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where x0 denote the a priori estimates of system parameters.  By adding the regularization 

function normalized by the a priori estimates to the minimization problem of Eq. (2.10), a 

regularized system identification problem is written in the following form. 
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where 1 denotes a column vector which has unit values in all the components.  The 

objective function in Eq. (2.34) is referred to as the regularized error function or 

regularized output error estimator.  The regularization factor determines the degree of 

regularization in the system identification; i.e. the influence of the a priori estimates on the 

solution of Eq. (2.34).  The quadratic sub-problem of Eq. (2.34) is defined as 
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The stability of Eq. (2.35) is investigated under the unconstrained condition to clearly 

present the effect of the regularization.  Furthermore, the regularization factor should be 
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determined for the unconstrained problems so that it can overcome the original sources of 

instabilities explained in the previous section 2.2.1.  Once the regularization factor is 

obtained for the unconstrained problem, the quadratic sub-problem with the active 

constraints defined in Eq. (2.35) can be solved. 

The regularized solution of the unconstrained problem of Eq. (2.35) is obtained by use 

of the SVD. 
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where )/( 222 λ+ωλ=α jj .  With some mathematical manipulation of Eq. (2.36) by use 

of the orthogonal properties of V and Z, an intuitive expression is derived as follows. 

 

u
T

j
T

j
R
u

T diagdiag ξξξξξξξξ V1VV )1()( α−+α=  (2.37)
 
where 

 

uu
R
u

R
u ξξξξξξξξξξξξξξξξξξξξξξξξ ∆+=∆+=   ,  (2.38)

 
In Eq. (2.37), R

uξξξξ  and uξξξξ  represent the regularized solution and the a posteriori solution 

of the unconstrained problem at the current iteration, respectively.  The expression in Eq. 

(2.37) implies that the projection of the regularized solution onto V is a generalized 

average between the projections of the a priori estimates and the a posteriori solution onto 

V. 

The weighting factor αj, which varies with the regularization factor λ from 0 to 1, 

adjusts the relative magnitude between the a posteriori solution and the a priori estimates in 
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the regularized solution.  The weighing factor approaches zero as the regularization factor 

becomes smaller, and one as the regularization factor becomes larger.  Therefore, the 

solution converges to the a priori estimates for a large regularization factor while the 

solution converges to the a posteriori solution for a small regularization factor.  In case the 

regularization factor is fixed, the weighting factors become larger for smaller singular 

values.  This fact implies that the stronger effect of the a priori estimates is included in a 

solution component corresponding to the smaller singular value, and vice versa. 

Unlike Eq. (2.18), the orthogonality of the displacement residual rU  to each LSV is 

not required for the convergence of Eq. (2.36) because non-vanishing components in the 

first term can be cancelled out by the second term.  By decomposing the a posteriori 

solution increment into the noise-free components and error components using Eq. (2.14), 

the following expression is obtained. 
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where f

uξξξξ  denotes the noise-free a posteriori solution.  Since the weighting factors range 

from 0 to 1 for all singular values, the effect of noise on the solution can be reduced.  In 

particular, the components of ZTe associated with small singular values, which are 

responsible for the discontinuity and deviation from the noise-free solution, are mostly 

suppressed in the regularized solution by the regularization effect.  This is because the 

weighting factors corresponding to smaller singular values become almost one for a 

properly selected regularization factor. 
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2.5 Determination of an Optimal Regularization Factor 

Several well-defined methods have been proposed to determine an optimal 

regularization factor in linear inverse problems.  The L-curve method (LCM) proposed by 

Hansen [Han92a] and the generalized cross validation (GCV) method proposed by Golub 

et al. [Gol78] are well-known schemes.  Kaller and M. Bertrant utilized the GCV for 

medical image enhancing problems [Kal96].  While the aforementioned schemes have 

been proven to be effective in linear inverse problems, no rigorous schemes for nonlinear 

inverse analysis have been proposed yet.  Regularization factors of nonlinear inverse 

problems can be determined by applying the LCM and the GCV at each minimization 

iteration, where a linearized quadratic sub-problem is solved.  Eriksson et al. reported that 

the LCM yields non-convergent results for a nonlinear inverse problem with an explicit 

nonlinear function model [Eri96], which is also observed in the current research.  It has 

also been found through our extensive numerical experiments that the GCV often yields 

too small regularization factors, and is unable to effectively control the instabilities of the 

SI algorithms. 

A new scheme, defined as a geometric mean scheme (GMS) proposed Park et al., is 

successfully utilized to overcome drawbacks of existing schemes in the determination of 

the regularization factor for SI in elastic continua [Par01].  In this section several 

determination schemes including GMS will be presented. 

 
2.5.1 Geometric Mean Scheme (GMS) 

A new scheme of a geometric mean scheme (GMS) proposed by Park et al.(2001) 

determines the optimal regularization factor.  In this method, an optimal regularization 



 43

factor is defined as the geometric average between the maximum and the minimum 

singular value of the sensitivity matrix.  As shown in Eq. (2.37), the regularization effect 

on each component of the solution depends on the magnitude of the corresponding singular 

value.  Fig.2.6 illustrates the variation of weighting factors for the maximum and the 

minimum singular values with the regularization factor.  In the regularized solution, the 

maximum effect of the a priori information and the a posteriori solution occurs with the 

smallest singular value and the largest singular value, respectively.  On the other hand, the 

minimum effect of the a priori information and the a posteriori solution occurs for the 

largest singular value and the smallest singular value, respectively.  Based on this 

observation, the optimal regularization factor is defined as the one that yields the same 

maximum and minimum effect of the a priori information and the a posteriori solution, 

Minimum effect of a posteriori solution
Maximum effect of a posteriori solution

Minimum effect of a priori information
Maximum effect of a priori information

λopt 

��αmax�

1-αmin

αmin

αmax

λ

Fig. 2.6. Schematic drawing for an optimal regularization factor in the GMS 
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Maximum effect of the a posteriori solution

Maximum effect of the a priori information 
Minimum effect of the a posteriori solution
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which can be stated as 

minmax1 α=α− �� maxmin1 α=α−  (2.40)
 
where αmax and αmin are the weighting factors corresponding to the maximum singular 

value and the minimum singular value, respectively.  The first and the second equation in 

Eq. (2.40) represent the balancing conditions on the maximum and the minimum effect, 

respectively as shown in Fig. 2.6.  An Interesting point is that the two equations are 

identical and yield the geometric average between the smallest and the largest singular 

value for the optimal solution of λ. 

 

minmaxωω=λ opt  (2.41)
 
If zero singular values exist, the smallest non-zero singular value may be used for ωmin. 

 
2.5.2 The L-Curve Method (LCM) 

The L-curve is a log-log plot of the regularization function versus the error function 

for various regularization factors.  Hansen showed for linear inverse problems that the 

plot always formed a ‘L’ shaped curve as shown in Fig. 2.7, and that the optimal 

regularization factor corresponds to the sharp edge of the curve where the curvature of the 

curve becomes maximal [Han92a].  For nonlinear inverse problems, the L-curve is 

defined at each iteration for the linearized error function.  

To apply the LCM directly at each iteration, the following transformation between ∆ξξξξu 

and ∆χχχχ is necessary. 
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where ∆χχχχ is transformed regularized solution of Eq. (2.23). 

The regularization function Rπ  and the linearized error function l
Eπ  are expressed 

in terms of the weighting factor, which is a function of the regularization factor as follows.  
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where rr USb −−= )1(ξξξξ .  The parametric form of the L-curve for the current iteration 

step is given by the following expression. 
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�

The elimination of λ from Eq. (2.43) leads to the L-curve for the current iteration.  Since 

the regularization function and the linearized error function given in Eq. (2.42) are 

monotonically decreasing and monotonically increasing with respect to λ, respectively, Eq. 

(2.43) forms a ‘L’ shaped curve.  Since all the variables in Eq. (2.42) are calculated from 

the previous iteration, only one SVD for the sensitivity matrix is required to construct the 

L-curve.   

The curvature of the L-curve is given as  

�

5.122 ))()((
)(

η′+ρ′
η′ρ ′′−η ′′ρ′=λκ  (2.45)

�

where the superscript  ′  denotes the differentiation of a variable with respect to�λ�� �Since�

ρ�and�η�are continuous functions of�λ�and expressed explicitly for�λ��the derivatives in Eq. 

(2.44) are obtained analytically.  The optimal regularization factor that yields the 

maximum curvature of the L-curve is calculated precisely by a one-dimensional line search.�

However, for some nonlinear inverse problems, the solutions by the LCM do not 

converge but oscillate between two L-curves as schematically drawn in Fig. 2.8.  In view 

of the regularization factor, two optimal regularization factors are repeatedly obtained with 

a large and a small value.  The L-curve with a large regularization factor corresponds to 

the nonlinear problem more affected by the solution error in addition to the measurement 

noise.  On the other hand, the L-curve with a smaller regularization factor is affected by 

the measurement noise.   
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2.5.3 Variable Regularization Factor Scheme (VRFS) 

Recently, the variable regularization factor scheme (VRFS) is proposed by Lee et al. 

for nonlinear inverse problems to identify shapes of inclusions in finite bodies [Lee99, 

Lee00, Yeo00].  The VRFS is based on an argument that the regularization function 

should be smaller than the error function to prevent the regularization function from 

dominating the optimization process. 

In the VRFS, the regularization factor is defined as the inequality between the error 

function and the regularization function as follows. 

�
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When the regularization function becomes larger than the error function by the 

solution of the current iteration, the regularization factor is reduced by multiplying a 
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Fig. 2.8. Schematic drawing – Oscillating results of the LCM 
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prescribed reduction factor β ranging from 0 to 1.  Lee et al. demonstrated that 

identification results are relatively insensitive to moderate values of the reduction factor 

around 0.1.  The VRFS with β = 0.1 has been successfully applied to shape identification 

problems and damage detection in framed structures [Lee99, Lee00, Yeo00].  However, 

the VRFS fails to converge for some nonlinear problems with modeling errors as 

demonstrated by simulation studies.  One of the advantages of the VRFS is that the VRFS 

method can be easily applied to any type of regularization functions. 

 
2.5.4 Generalized Cross Validation (GCV) 

Generalized cross validation (GCV) has been a popular method not only for 

determining the regularization factor but for estimating the noise amplitude of 

measurements [Gol78, Han98].  GCV is based on the statistical idea that an appropriate 

regularization factor should predict missing measurements.  That is, if an arbitrary 

component of the measurement vector is left out, the corresponding regularization factor 

should predict this component of the measurement well.  The optimal regularization factor 

by GCV can be obtained from the minimization of GCV function with respect to the 

regularization factor [Gol78, Han98]. 
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where Rχχχχ∆ , Im, and S# are transformed regularized solution as Eq.(2.42), an identity 

matrix of order m, and regularized inverse, say, T

j
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Eq.(2.46) , respectively.  Trace(⋅) denotes summation of diagonals of a squared matrix. 
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2.6 Numerical Examples  

The effectiveness of the regularization is investigated through numerical simulation 

studies.  Noise caused by measurement error is simulated by adding random noise 

generated from a uniform probability function to displacements calculated by a finite 

element model [Shi94, Yeo99].  The uniform probability function is selected because it 

generates more widely distributed errors than the normal distribution for given amplitude 

of error.  The Monte Carlo simulation is carried out to illustrate the enhancement of 

continuity of the solution by regularization for both examples. 

The Young’s modulus of each element group is taken as the system parameter.  

Element groups are predefined to limit discussions to the regularization technique.  The 

convergence criterion, 310/ −≤∆ ξξξξξξξξ , is used to terminate optimization iterations unless 

otherwise stated.  The baseline properties are assumed to be the Young’s modulus of steel.  

The initial values of the system parameters are taken to be the same as the baseline 

properties for the optimization.  The following upper and lower bounds are used for each 

system parameter. 

 
GPa 630GPa  .10 0 ≤≤ x  (2.48)

 
The reduction factor of the VRFS, β=0.1, is used throughout the numerical study [Lee99].  

The recursive quadratic programming with the active set algorithm [Lue89] is utilized for 

optimization.  

 
2.6.1 Measurement error – Identification of a Foreign Inclusion in a Square Plate 

To investigate the effects of measurement errors on the identification, a simulated 
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study is carried out with an inclusion in a square plate under the plane stress condition.  

Fig. 2.9 illustrates the geometry, boundary conditions and applied traction.  The shadowed 

region in the figure denotes the inclusion.  Young’s modulus of the square plate is 210 

GPa, which is representative of steel.  Two types of inclusions – a soft inclusion of 

aluminum (E = 70 GPa) and a hard inclusion of tungsten (E = 380 GPa) – are considered. 

Displacements are measured at the observation points located on the outer boundary of 

the square plate.  Two different measurement cases are considered.  The observation 

points are depicted as solid circles and open squares in Fig. 2.10 for measurement cases I 

and II, respectively.  It is assumed that measurements are preformed independently for 

two load cases, tx and ty.  Both x- and y-component of displacements are measured at each 

10MPa 

100 cm 

 100 cm 

20 cm 

20 cm 

10MPa 

Fig. 2.9 Geometry and boundary conditions of a square plate 
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observation point.  The noise amplitudes of 5% and 1 % are applied for measurement 

cases I and II, respectively. 

The finite element model employed in the parameter estimation is identical to the 

model used for obtaining the measured displacement, which consists of 100 8-node 

quadratic elements and 384 nodes.  The predefined element groups are shown in Fig. 2.10, 

and each element group contains 4 elements. 

 
Measurement Case I 

Identified results for the soft inclusion by different regularization techniques are 

compared in Fig. 2.11.  Identification without regularization yields results that oscillate 

severely.  It is difficult to determine the existence of the inclusion from the identified 

results without regularization because the reduction in the Young’s modulus of element 

group 17 may be caused by either an actual inclusion or the oscillating results.    When a 

regularization technique is employed, however, the amplitude of oscillation is reduced for 

Fig. 2.10 Observation points and element group configuration of a square plate 
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the element groups in the matrix material.  From the figure, it is seen clearly that the GMS 

controls the oscillation of the identified results most effectively among the other schemes.  

Although the LCM and VRFS alleviate the oscillation magnitudes to some extent, they 

yield rather large oscillation magnitudes compared to the GMS.  Since Young’s modulus 

of the soft inclusion reduces prominently compared with the oscillation magnitude of the 

other element groups by the GMS, the existence of a soft inclusion is clearly assured. 

Fig. 2.12 illustrates the identification results for the hard inclusion with the 

measurements of case I.  The results by SI without the regularization severely oscillate as 

in the soft inclusion.  The identified results by the LCM are not drawn in the figure 

because optimization by the LCM does not converge as reported by Eriksson [Eri96].  

Both the GMS and VRFS converge to almost the same results for the element groups in the 

matrix material.  However, the GMS yields higher Young’s modulus of the inclusion than  
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VRFS.  Although Young’s modulus of the inclusion is estimated somewhat lower than the 

actual value, the identification results by the GMS are good enough to point out the 

existence of a stiff material at element group 17. 

Fig. 2.13 shows regularization factors at each iteration step obtained by the different 

schemes for the hard and soft inclusions, respectively.  By relating regularization factors 

shown in Fig. 2.13 to the identified results in Fig. 2.11 and Fig. 2.12, it is easily observed 

that a larger regularization factor yields less oscillating results.  For the hard inclusion 

case, the LCM yields periodically oscillating regularization factors between the two values, 

which causes non-convergent optimization iterations.  Fig. 2.14 shows the solutions 

corresponding to the lower and upper regularization factor during oscillations by the LCM 

together with the converged solution by the GMS.   In the LCM, the lower regularization 

factor yields more oscillating results with sharp resolution at the hard inclusion while the 
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upper regularization factor yields less oscillating results with smeared resolution at the hard 

inclusion.  The solution by the GMS seems to be a mixture of favorable aspects of the two 

solutions by the LCM, i.e., a less oscillating solution with sharper resolution at the hard 

inclusion.  

Fig. 2.15 shows distributions of singular values of three different Hessian matrices, the 

error function, the regularization function and the regularized error function of Eq. (2.34) at 

the first iteration step for the hard inclusion problem.  In the same figure, the weighting 

factors jα associated with the singular values are also drawn.  For drawing the weighting 

factors, the right vertical axis is used as the reference.  In the figure, it is observed that the 

lowest singular value of the error function is very small compared with the other singular 

values, which caused the oscillations in the identification without the regularization as 

�����2.15 Distribution of singular values and weighting factors by
GMS at the 1st iteration  (Hard inclusion - measurement case I)�
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shown in Fig. 2.12.  The singular values of the Hessian matrix of the regularized error 

function are shifted by the singular value of the regularization function.  However, the 

regularization function does not affect the distribution of the singular values of the 

regularized error function from the sixth singular value.  Therefore, the a priori estimates 

have a strong influence on the solution components corresponding to the smaller singular 

values, and the influence of the a priori estimates decrease drastically for larger singular 

values.  This phenomenon can be clearly observed by the distribution of the weighting 

factors in the same figure. 

 Fig. 2.16 and Fig. 2.17 illustrate the solution of the unconstrained quadratic sub-

problem in the RSV direction and in the system parameter direction at the first iteration 

corresponding to the noise-free and noise components in the measured displacements, 

respectively.  The SI algorithms with the GMS and without the regularization yield almost 

identical solution increments for the noise-free components, even though the GMS causes a 

little smeared increments corresponding to lower singular values.  However, for the noise 

components, the regularization develops surprising differences in the solution increments 

as demonstrated in Fig. 2.17.  Without regularization, the noise components of the 

measurements are amplified by the lowest singular value.  The solution increment caused 

by the noise components corresponding to the lowest singular value is about 30 times 

larger than the maximum solution increments caused by the noise-free components in the 

RSV direction.  The amplified noise component contaminates the whole solution 

increments with the noise in the system parameter direction.  Since the weighting factor 

for the lowest singular values in the GMS is almost 1 as shown in Fig. 2.15, most of the 

noise components corresponding to the lowest singular value in Eq. (2.37) are suppressed.   
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����� 2.16 Solution of the unconstrained sub-problem by the noise-free 
measurement at the 1st iteration (Hard inclusion - measurement case I) 
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Fig. 2.18 Singular value, Fourier coefficient and solution of the
unconstrained sub-problem at the converged iteration without
regularization (Hard inclusion - measurement case I) 
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Fig��2.19 Solution of the unconstrained sub-problem at the converged
iteration by the GMS (Hard inclusion - measurement case I) 
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Consequently, the solution increments caused by the noise components are very small in 

the SI with the GMS compared to those in SI without the regularization. 

Fig. 2.18 and Fig. 2.19 show the solution of the unconstrained quadratic sub-problem  

in the RSV direction at the converged stage for SI with the GMS and without regularization, 

respectively.  In Fig. 2.19, the absolute values of regularized solution increments are 

plotted in logarithmic scale for the left vertical axis while the increments associated with 

the a posteriori solution and a priori estimates are plotted in a linear scale for the right 

vertical axis.  Both the SI algorithms yield almost zero increments in the RSV direction at 

the converged state.  However, two schemes exhibit different patterns in reducing solution 

increments.  The norm of the displacement residual reduces only by 0.033 in the SI 

algorithm without regularization.  Nevertheless, the norm of the solution increments is 

converged to the specified criterion because the Fourier coefficients are reduced to below 

10-5 order and the singular values maintain relatively larger values than the Fourier 

coefficients.  On the other hand, the SI algorithm with the GMS reduces the solution 

increments by balancing the increments associated with the a priori estimates and a 

posteriori solution as shown in Fig. 2.19. 

To investigate continuity of solutions in various SI algorithms to measurement errors, a 

Monte-Carlo simulation with 30 trials at 5% noise amplitude is carried out.  A different 

set of measured data is used for each trial by generating different random noise from the 

uniform probability density function [Hje96].  The relative magnitude of the standard 

deviation to the mean value of each system parameter obtained by the Monte-Carlo 

simulation is a good indicator of the continuity of solutions because the standard deviation 

represents the degree of scatter of a statistical variable.  The computed mean and standard 
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deviation of each system parameter from the Monte Carlo simulations are compared in Fig. 

2.20 for different regularization schemes.  Results by the LCM are not presented since the 

LCM fails to converge in 15 out of 30 trials.  When the regularization is not employed in 

the SI algorithm, large standard deviations usually occur at the element groups of which 

estimated moduli are larger than the baseline property.  Meanwhile, SI with a 

regularization technique yields small and consistent standard deviations for all system 

parameters, which illustrates an enhancement of the continuity of solutions with a 

regularization technique.  Both the VRFS and GMS yield almost identical results and 

smaller elastic modulus of the inclusion than the actual value in an average sense.  

Despite the underestimation, the existence of an inclusion with a stiffer material at element 

group 17 is clearly distinguishable in general because oscillations in the other element gro- 
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����� 2.20 Mean values and standard deviations of estimated Young's
moduli by Monte-Carlo simulation (Hard inclusion - measurement case I) 
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����� 2.21 Estimated Young's moduli by different regularization
schemes (Soft inclusion - measurement case II) 
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����2.22 Estimated Young's modulus by different regularization schemes
(Hard inclusion - measurement case II) 
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-ups are negligible. 

 
Measurement Case II 

The influence of sparseness of measured data on estimated results is studied in Fig. 

2.21 and Fig. 2.22.  The sparseness of measured data is simulated by reducing the number 

of the observation points and by locating some of the observation points close to each other 

as shown in Fig 2.10.  Since the three observation points on each side of the square plate 

are closely placed, the independence of information supplied by those observation points is 

reduced, which deteriorates the quality of information. 

Fig. 2.21 and Fig 2.22 show the estimated Young’s modulus for the soft and hard 

inclusion case with 1% noise amplitude, respectively.  Although the noise amplitude of 

this measurement case is much smaller than that of measurement case I, the solutions by SI 

without the regularization oscillate more severely.  This is because the lowest singular 

value of the sensitivity matrix becomes much smaller in this measurement case than in the 

previous one due to the poor quality of information. 

All three regularization techniques yield very stable and accurate results for the soft 

inclusion.  However, the LCM fails to converge for the hard inclusion due to the 

oscillations of the regularization factor as explained in measurement case I.  The VRFS 

and GMS yield almost identical results, but underestimates the Young’s modulus of the 

hard inclusion as in measurement case I. 

 
2.6.2 Modeling Error – Identification of Three Internal Cracks in a Thick Pipe 

Behaviors of SI algorithms with respect to modeling errors are investigated in this 

example.  A thick pipe with three cracks is subjected to internal pressure as shown in  
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Fig. 2.23 Geometry and boundary conditions of a thick pipe 
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Fig. 2.24 Element group configuration of a thick pipe 
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Fig. 2.23.   Measured displacements at equally spaced 80 observation points on the outer 

surface of the pipe are obtained by a finite element model with 6400 8-node quadratic 

elements and 19608 nodes. Both x- and y-components of displacements are measured at 

each observation point.  To simulate actual behaviors of structures realistically, elastic-

perfect-plastic response of the pipe is considered with the von-Mises yield condition.  For 

the SI, the pipe is discretized by 480 8-node quadratic elements and 1520 nodes, and only 

the elastic behaviors are considered.  The element groups used in this example are 

illustrated in Fig. 2.24.  A total of 60 element groups are used, and each element group 

contains 8 elements.  The finite element model for the identification does not include the 

cracks while the model used for calculating displacements contains the cracks.  Therefore, 

this example contains modeling errors in the boundary conditions in addition to errors in 

the constitutive law. 

Identified results are shown in Fig. 2.25, in which arrows indicate the element groups 

with a real crack.  The SI algorithms without regularization and with the VRFS cannot 

yield converged solutions within 60 iterations, and thus only the solutions by the LCM and 

GMS are presented in the figure.  The GMS and LCM yield converged solutions at 30 and 

53 iterations, respectively, which demonstrates the stability of the GMS over the LCM. 

As shown in Fig. 2.25, both the LCM and GMS yield physically meaningful solutions 

in an overall sense.  The Young’s moduli of the element groups with a crack exhibit 

significant drops from the baseline property compared with the oscillation amplitudes at 

the other element groups.  However, the LCM predicts a large reduction in the Young’s 

modulus at element group 7, which is located beside element group 6 and does not contain 

an actual crack.  Both methods estimate a smaller Young’s modulus at element group 19 



 65

than that of element group 12.  From the physical point of view, this result may not 

represent the real situation of damage in the pipe properly because the length of the crack 

in element group 12 is longer than that in element group 19.  Despite such an inaccuracy 

in the assessment of actual damage, the existence of damage at three different locations in 

the pipe can be clearly identified by the SI algorithms with the LCM and GMS. 

Fig. 2.26 shows a singular value distribution of each Hessian matrix and the 

distribution of weighting factors at the first iteration step when the GMS is applied.  By 

comparing with Fig. 2.15, it is easily observed that this example is much more ill-posed 

than the hard inclusion case presented in the previous example since the 22 singular values 

are smaller than the regularization factor obtained by the GMS.  Severe ill-posedness of 

this problem is caused by the axis-symmetry of the observed points that are equally spaced 

on the outer boundary of the pipe.  The solution components contributed by the a 

Fig. 2.25 Estimated Young's Moduli by different regularization schemes 
(Thick pipe with three internal cracks)�
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posteriori solution corresponding to the 22 singular values are mostly suppressed, and the a 

priori estimates are dominant in the solution.  The contribution of the a priori estimates to 

the solution rapidly increases for singular values larger than the 39th singular value, and 

most parts of the regularized solution consist of the a posteriori solution.  The distribution 

of the weighting factors represents the relative magnitude of regularization corresponding 

to each singular value.   

The non-convergence of the SI algorithm without regularization can be clearly 

explained by Fig. 2.27, which shows the solution of the unconstrained quadratic sub-

problem in the RSV direction at the 60th iteration.  The Fourier coefficients are reduced to 

some extent in the figure.  However, since some of the singular values marked by solid 

circles in Fig. 2.27 become smaller than the corresponding Fourier coefficients, the 

Fig. 2.26 Distribution of singular values and weighting factors by GMS at the 
1st iteration (Thick pipe with three internal cracks)�
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solution increments are amplified and non-convergence of the optimization iterations is 

caused.  Meanwhile, SI with the GMS reduces the solution increments very effectively by 

balancing the a posteriori solution and the a priori estimates as in the previous example. 

To consider measurement error as well as the modeling error, 30 different sets of 

random noise of 5% magnitude are added to the measured displacements, and Monte Carlo 

trials are carried out for the 30 sets of simulated measurements.  Since the convergence 

criterion, 10-3, is too tight for 30 trials with modeling errors as well as measurement errors, 

a new convergence criterion of 10-2 is used for the Monte-Carlo simulation.  The average 

number of iterations for the new criterion is 10 for the GMS and 26 for the LCM, 

respectively, when 10 Monte-Carlo trials are carried out.  As the GMS and LCM yield 

almost identical results for 10 trials, and the LCM requires much more iterations than the 

Fig. 2.27 Singular value, Fourier coefficient and solution of the unconstrained
sub-problem at the 60th iteration without regularization  
(Thick pipe with three internal cracks)�
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GMS, the Monte-Carlo simulation with 30 trials are performed only for the GMS. 

The computed mean and standard deviation of the Young’s modulus of each group by 

the GMS from 30 Monte Carlo trials are drawn in Fig. 2.28.  In the Monte Carlo trials, the 

GMS successfully converges 29 out of 30 trials.  The mean values are almost identical 

with the estimated Young’s moduli from measurement data without measurement errors.  

Since the standard deviations are negligibly small, it can be concluded that the GMS is 

insensitive to different noise components in the measurements, and enhances the continuity 

of solution very effectively. 

To investigate  

The influence of sparseness of measured data on estimated results is also investigated. 

The sparseness of measured data is simulated by reducing the number of the observation 
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Fig. 2.28 Mean values and standard deviations of estimated Young's moduli
by Monte-Carlo simulation for noise-polluted measurements using 
GMS.  (Thick pipe with three internal cracks)�
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points from 80 to 40 by eliminating the observations points one after the other.  Singular 

value distributions of Hessian matrix and the regularization factor determined by the GMS 

at the 1st iteration are drawn in Fig. 2.29.  Though the number of measurements is reduced 

in half, the singular value distribution of 40 measurements above the regularization factor 

is almost same as that of 80 measurements except the 38th singular value.  Singular value 

distribution of 40 measurements below the regularization factor shows faster decreasing 

rate to zero than that of 80 measurements.  Identified results of 40 measurements are 

compared with those of 80 measurements in Fig. 2.30.  Though Young’s modulus of 

element group 7 is identified lower than that of element group 6, the other identified 

Young’s moduli of 40 measurements are almost same as those of 80 measurements.  The 

GMS successfully identifies the location of the internal cracks by reducing the Young’s 
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at the 1'st iteration 
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moduli of the element groups associated with three cracks even though measurement data 

are severely sparse.  
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Chapter 3 

System Identification for Damage Assessment of Framed Structures 

�

Many SI-based damage assessment algorithms have been proposed to detect damages 

of structures in a global sense [San91, Doe96, Hje96, Yeo00].  Though each method has 

its own advantages over the others on a specific target problem, a clear discussion on the 

applicability to different problems and the limitations of the method are not always pre-

sented.  To the author’s opinion, the previous remedies are too problem-dependent since 

they are developed without full consideration of the proper regularity condition of the solu-

tion mentioned in chapter 2. 

In this chapter a regularity condition of SI for framed structures is proposed.  It is 

shown that the solution space of SI for a framed structure is properly defined by the L1-

norm of the system property, which is referred to as the L1-regularization.  Data perturba-

tion and statistical approaches are incorporated with the L1-TSVD to assess the damage 

status of a framed structure. 

 
3.1 Previous SI-Based Damage Assessment Algorithms 

Previous studies to overcome difficulties caused by sparseness of measurements and 

measurement noise in SI-based damage assessment algorithms are presented.  Though 

each method is different from the others, a basic concept to treat the problem can be sum-

marized as shown in the following subsections. 

 
3.1.1 Grouping technique – Resolving Sparseness of Measurement 

An SI-based damage assessment algorithm ignoring the sparseness of measurements 
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yields unreliable results since SI results in an infinite number of solutions due to the rank-

deficiency as mentioned in chapter 2.  Two different types of techniques are proposed in 

the previous studies to overcome the difficulties caused by the sparseness of measurements; 

a measurement expansion technique and grouping technique.   

The responses corresponding to unmeasured degrees of freedom are approximated by 

interpolating measured responses in the measurement expansion technique.  An advantage 

of the measurement expansion algorithm is that the number of measurements can be in-

creased to a certain degree.  However, the approximated responses suffer from an inevita-

ble error caused by both approximation error and measurement noise.  An instability 

caused by the inevitable error may be more severe than that caused by the sparseness of 

measurements.  The measurement expansion technique is useful when both an approxima-

tion method and measurements are very accurate.   

The idea of grouping technique is to reduce the total number of unknown system pa-

rameters used in SI by grouping similar parameters together without modifying the finite 

element model.  Grouping the system parameters corresponding to undamaged members 

together, the number of system parameters can be reduced considerably since the number 

of the system parameters associated with the damaged members is very small.  Grouping 

technique is more promising than the measurement expansion technique since no modifica-

tion is required in either the measured responses or the finite element model.  

The parameter group updating scheme proposed by Shin [Shi94, Hje96] performs 

damage localization in a systematic manner.  At the first stage, predefined system parame-

ter groups with the baseline values are determined, which is referred as a baseline grouping.  

If a certain system parameter group contains damage, it is subdivided to separate damaged 
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members from undamaged ones by consecutive updates of the parameter groups.  At the 

last stage of the parameter group updating, a parameter group case is reached by clearly 

identifying all the damaged members.   

The most important issue in the parameter group updating scheme to determine is the 

most appropriate measure for subdivision of the system parameter groups to isolate all the 

damaged members.   The squared model error (SME) was proposed as the measure for 

subdivision of system parameter groups [Shi94]. 

 
0)(  osubject  t ),( )(2 Minimize 2 ≤σπ+π=π GGPGESME n

G

ξξξξξξξξ
ξξξξ

R  (3.1)

 
where, πE, ξξξξG, πP, nG, and 2σ are error function, the system parameter group vector, a 

penalty function, size of system parameter group vector, and the prior estimate of the aver-

aged random noise variance.   

From the viewpoints of optimization, the ultimate purpose of the parameter group up-

dating scheme is to find the global minimum of the SME with respect to the system pa-

rameter groups and the number of system parameter groups.  The configuration of system 

parameter groups associated with the global minimum of SME is an optimal one for dam-

age separation.  Parameter group updating scheme solves this optimization problem by 

consecutive subdivision of system parameter groups.  The final group configuration is not 

unique unless the subdivision process used in the parameter group updating scheme is 

unique.  For example, same system parameter group may be subdivided into either halves 

or quarters.  As the number of individual system parameters consisting of a specific sys-

tem parameter group increases, the combinations of subdivision also increase.  Whether 
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all the damaged members can be separated or not highly depends on which path the con-

secutive subdivisions follow.  This is referred as the path-dependency of the subdivision 

process in this study.  To avoid the path-dependency of subdivision, a specific system pa-

rameter group should be subdivided into individual system parameters, which conflicts 

with the original concept of the damage localization.  Therefore, the path-dependency of 

the parameter group updating scheme is inevitable as the number of system parameters in-

creases. 

 
3.1.2 Data perturbation – Considering Measurement Noise 

If a lot of measurement sets are available, it is possible to obtain meaningful statistical 

properties with respect to estimated system parameters from these measurement sets.  

However, if a few measurement sets are available in practice, it is almost impossible to ob-

tain satisfactory statistical properties.  In this case, data perturbation proposed by Shin 

[Shi94, Hje96] can be used to obtain a statistical distribution in the vicinity of a specific 

measurement set.  If the noise magnitude of a specific measurement set is estimated, data 

perturbation generates artificial sets of measurements around the specific measurement 

[Shi94, Hje96].   

The representative statistical properties of estimated system parameters obtained from 

the perturbed measurements are the mean and the standard deviation of the estimated sys-

tem parameters.  Using these properties, the damage indices that classify damaged mem-

bers from undamaged ones are determined.  Shin proposed two damage indices that con-

sist of the bias of the mean with respect to the baseline value (bias_cx) and the bias of the 

mean from the baseline property with respect to the standard deviation (bias_sd) [Shi94].  
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The bias_cx indicates the damage severity of the corresponding member while the bias_sd 

represents variation of the estimated results.  Whether a member is actually damaged 

highly depends on the bias_sd rather than bias_cx.  

Yeo proposed damage indices based on the hypothesis test [Yeo99, Yeo00].  In his 

study, estimated system parameters follows normal distribution by virtue of the regulariza-

tion scheme.  Damaged members are identified by a hypothesis test of the interval estima-

tion of a mean value.  Damage index is determined based on the results of the hypothesis 

test.  If the null hypothesis that a member is undamaged is rejected in the hypothesis test, 

the damage index of the member is 1.  If the null hypothesis is accepted, the damage in-

dex of the member is 0.  The damage severity of a member is 0 if the damage index is 0 

while it is the bias of the mean with respect to the baseline value if the damage index is 1. 

 
3.2. SI with L1-Regularization for Framed Structures 

3.2.1 A Regularity Condition of the System Property in SI for a Framed Structure 

In modeling a framed structure such as a truss or a frame, each member is idealized 

by a line representing the centroid of the member [McC96].  As a result of this idealiza-

tion, the mechanical properties of a member are considered to be concentrated at the cen-

troid of the member as shown in Fig. 3.1, in which i
z

i
y

i
x ηηη  ,  ,  represent a local coordi-

nate system for member i, and e
iV  denotes the volume of member i.  The centroid of the 

cross section at one end of a member is taken as the origin of the local coordinate system, 

and the trajectory of the centroid of each member is taken as the i
xη -axis.  The mechani-

cal properties include material properties and cross-sectional properties of a member.  The 
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structural volume V is the union of the member volumes, i.e., e
i

i
VV ∪= . 

The system property of a framed structure is defined in the structural volume as the 

collection of the mechanical properties of all members that are expressed in terms of the 

two-dimensional Dirac delta functions. 

 

)()(
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yiXx ηδηδ=∑

=

� � in�V (3.2)

 
where x, n, Xi, li, and δ are the system property, the number of members in a structure, the 

system parameter, the length of member i, and the Dirac delta function, respectively.  The 

system parameters represent the stiffness characteristics of members such as the axial ri-

gidities and/or the flexural rigidities.  The assumption on the system property given in 

(3.2) leads to one dimensional integration expression along the i
xη -axis for a member 

stiffness equation, in which the mechanical behaviors at the centroid represent those of a 

whole cross section. 
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Fig.3.1 Idealization of a framed structure
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The baseline value of system parameters of each member represents the original, un-

damaged system parameter of the member.  The baseline system property is obtained by 

replacing iX  with 0)( iX  in (3.2).  Here, 0)( iX  represents the baseline value of sys-

tem parameter of member i. 

To avoid the instabilities of SI caused by the aforementioned fact, a proper function 

space for the system property of the SI problems should be supplied along with the mini-

mization problem (2.10).  The solution space of the SI problems can be defined by the 

regularity condition that represents the integrability condition of the system property.  In 

case the solution of Eq. (2.10) is a square integrable function, the following regularity con-

dition defined by the L2-norm around the baseline value is appropriate. 

 
∞<−=−=Π ∫

V
VLR dVxxxx 2

0
        2

)(0 )(
2

 (3.3)

 

Here, V denotes the structural volume. �The regularity condition (3.3) are widely used for 

the identification of piecewise continuous functions in conjunction with various regulariza-

tion schemes.  The TSVD and the Tikhonov regularization presented in chapter 2 are 

weak statements of Eq.(3.3).  

The function space defined by Eq.(3.3) is too stringent for SI of the system property of 

a framed structure since the Dirac delta functions in Eq.(3.2) are not square-integrable. 
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Therefore, the TSVD and Tikhonov regularization may be inadequate to define the 

proper solution space of SI used in the damage assessment.  Either false warning events 

(FWE) or missing damage events (MDE) are frequently observed in the numerical studies 

of an SI-based damage assessment with Tikhonov regularization.  Undamaged structural 

members in the vicinity of the severely damaged ones are classified as damaged ones in the 

FWE while structural members with mild damages are regarded as undamaged ones in the 

MDE.  The FEW and MDE of the SI-based damage assessment may be caused by the 

smearing effect of the Tikhonov regularization. 

When the regularization is used in the SI-based damage assessment, the regularization 

function should be defined so that the associated solution space can include the exact solu-

tion.  A proper regularity condition for the function in Eq.(3.2) is defined by the L1-norm 

as follows. 

∞<−=−=Π ∫
V

VLR dVxxxx 0)(0 1
 (3.5)

 

The discretized form of Eq.(3.5) is obtained by performing the integral in Eq.(3.5) mem-

berwise. 
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Since the length of each member and the system parameters of a framed structure are finite, 

the regularity condition (3.6) is defined by the L1-norm of the normalized system parameter 

vector without loss of generality. 

 

∞<−=
−

=Π ∑
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1
1 0
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n
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ii
R X
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where 
1

  ⋅  denotes the L1-norm of a vector, respectively.  The regularity condition given 

in (3.7) should be imposed to the minimization problem (2.10) to obtain numerically stable 

and physically meaningful solutions of the SI problems for framed structures. 

It should be noted that even though the L2-norm of the system parameter vector itself 

is definable, it could not represent the actual regularity condition of the system property 

space of framed structures.  In case the L2-norm of the system parameter vector is used as 

a discrete regularization function, it restores piecewise continuous solutions, which are not 

actual solutions expressed by the Dirac delta functions.  In other words, the discrete regu-

larization function based on the L2-norm of system parameter vector merely filters out 

noise-polluted solution components without imposing the actual regularity condition.  
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Nevertheless, an SI scheme regularized by the L2 norm of the system parameter vector is 

referred to as the L2-regualarization scheme for comparative purpose in this study. 

 
3.2.2 TSVD solution for L1-regularity condition 

The regularity condition of a solution space given in Eq.(3.6) is imposed to the origi-

nal minimization problem (2.10) by the regularization techniques, among which the Tik-

honov regularization technique and the TSVD are widely used.  In the Tikhonov regulari-

zation technique, the regularity condition is added to the original error function defined in 

Eq.(2.10), and the optimization is performed for the error function with L1-regularization as 

follows.  

 

0)( osubject  t  )(~
2
1 Minimize

1

2

2
≤−λ+−=π ξξξξξξξξξξξξ

ξξξξ
R1UU  (3.8)

 

where λ is a regularization factor, which adjust the degree of regularization.  Eq.(3.8) is a 

nonlinear optimization problem with respect to the normalized system parameters.  How-

ever, a Newton type algorithm, which requires the gradient information of Π, cannot be 

applied to solve Eq.(3.8) since the L1-norm is not differentiable with respect to the normal-

ized system parameters.  

This study presents a new algorithm, which is referred to as the L1-TSVD, to impose 

the L1-regularity condition iteratively in the optimization of the error function using the 

TSVD.  In the proposed method, the incremental solution of the error function is obtained 

by solving the quadratic sub-problems without the constraints.  The noise-polluted solu-

tion components are truncated from the incremental solution.  Finally, the regularity con-
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dition is imposed to restore the truncated solution components and the constraints.  The 

above procedure is defined as follows. 

 

0)( and )(~ Minimize osubject  t   Minimize
2

21
≤−− ξξξξξξξξξξξξ

ξξξξξξξξ
RUU1  (3.9)

 
The incremental solution for the minimization of the error function is obtained by solving 

the following quadratic sub-problem. 

 
2

21   Minimize r
k−∆

−∆ US ξξξξ
ξξξξ

 (3.10)

 
where, ∆ξξξξ and S  are the solution increment, the sensitivity matrix�of the displacement 

fields with respect to the normalized system parameters at the observation points, respec-

tively, and the subscript k denotes the iteration count.  The displacement residual r
k 1−U  is 

defined as 11
~

−− −= k
r
k UUU , where 1

~
−kU  is the displacement field calculated by the 

converged system parameters at the previous iteration. 

The first-order necessary optimality condition for Eq.(3.10) is given by the following 

linear equation. 

 
01 =−∆ −

r
k

TT USSS ξξξξ  (3.11)
 
By the singular value decomposition, the m×n sensitivity matrix S can be written as a 

product of an m×n matrix Z, an n×n diagonal matrix ΩΩΩΩ, and the transpose of an n×n matrix 

V as Eq.(2.14).  Here, m is the total number of measured degrees of freedom for all the 

applied loads. 

Using the orthogonal properties defined in Eq.(2.15), the solution of Eq.(3.11) is 
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given as shown in Eq.(2.17). 

 

∑∑
+==

− γ+ω=∆
n

pj
jj

p

j

rT
jjj

11

1 vUzvξξξξ  (3.12)

 
where p is a numerical rank defined in section 2.2.1.  

The solution given in Eq.(3.12) satisfies Eq.(3.10) for all real γj in rank-deficient 

problems, which causes the non-uniqueness of solutions.  The regularity condition pro-

vides additional information to define the undetermined constants γj.  The solution com-

ponents corresponding to the smaller singular values are responsible for the discontinuity 

of the solution because noise components amplified by the smaller singular values pollute a 

whole solution.  To obtain stable solutions, the noise-polluted solution components should 

be removed from Eq.(3.12) by truncating the solution components associated with the sin-

gular values smaller than a critical singular value ωt ( pt ≤ ).  Here, t is a truncation 

number, which plays the crucial role of filtering out noise-polluted components in the in-

cremental solution, Eq.(3.12) [Vog86, Han98].  An algorithm to determine the optimal 

truncation number is presented in the next section. 

The truncated components of the incremental solution in (3.12) are replaced with a 

linear combination of the truncated RSVs, which increases the number of the undetermined 

constants. 
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where 
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The incremental form of Eq.(3.9) is expressed with respect to q as follows. 
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where ξξξξu and ξξξξl are an upper and a lower constraint vector for normalized system parame-

ter, respectively, and ),,,( 21 tt vvvV �= . The equality constraint of Eq.(3.15) represents 

that q should be a linear combination of the truncated RSVs.  Eq.(3.15) is a linear pro-

gramming with respect to q and is solved by the simplex method.  In this study, the 

simplex algorithm developed by Barrondale is employed [Bar73].  Hansen and 

Mosegaard presented a similar algorithm to identify piecewise continuous functions in 

linear inverse problems [Han96].  They referred to the algorithm as the piecewise 

polynomial truncated singular value decomposition (PP-TSVD). 

Once the optimal solution qopt is obtained from linear programming, the solution can 

be obtained by substituting qopt into Eq.(3.13) as the following equation. 

 

opt
1 q+∆=∆ TSVD

t
-TSVDL

t ξξξξξξξξ  (3.16)
 

To guarantee fast convergence, the error function is minimized by a line search method 

using the solution increment of Eq.(3.16). 

 )(~ Minimize
2

1
1 UU −∆β+−β

-TSVDL
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The solution at the k’th iteration is obtained by solution of Eq.(3.17). 

 
-TSVDL

tkk
1

opt1 ξξξξξξξξξξξξ ∆β+= −  (3.18)
 
where, βopt is an optimal solution of Eq.(3.17).  

 
3.2.3 Optimal Truncation Number by the Cross Validation 

The determination of a proper truncation number is a keystone in the TSVD.  The 

truncation number plays a similar role to the regularization factor in the Tikhonov regulari-

zation technique.  In case a truncation number is too small, most of the useful information 

on a structure is lost while too large a truncation number yields noise-polluted, meaningless 

solutions [Vog86, Han98].  Therefore, the truncation number should be determined so that 

as much useful information of a structure can be retained while most of noise-polluted so-

lution components are truncated.  The optimal truncation number for each iteration is de-

fined by the cross validation [Gol96]. 

In the cross validation, a reduced quadratic sub-problem is defined by omitting the i-

th row of the original quadratic sub-problem Eq.(3.10). 

2

21 )(Minimize ir
k
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−
−
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∆
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−
US

X
ξξξξ  (3.19)

 
where i−S  and ir

k
−

− )( 1U are the reduced sensitivity matrix and the displacement residual 

vector in which the i-th rows of both are omitted, respectively.  The L1-TSVD is per-

formed for Eq.(3.19) with a truncation number t, and the following residual is defined. 
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where is and i
r
kU )( 1−  are the i-th rows of the original sensitivity matrix and the dis-

placement residual vector, respectively, and i−∆ optξξξξ  is the L1-TSVD solution of Eq.(3.19) 

for the truncation number t.  The optimal truncation number is defined as the solution of 

the following minimization problem. 

 

∑
=

m

i

i
tt

r
1

ˆMinimize  for pt ≤≤1  (3.21)

 
Since it is difficult to solve Eq.(3.21) algorithmically, the objective function in Eq.(3.21) is 

evaluated for all truncation numbers, and the truncation number that yields the smallest 

value of the objective function in Eq.(3.21) is selected as the optimal truncation number.  

It should be noted that there sometimes exists no feasible solution to the L1-TSVD for a 

large truncation number.  This is because noise components severely amplified by small 

singular values are presented in the truncated solution of Eq.(3.19) for a large truncation 

number.  In this case, the L1-TSVD is performed up to the truncation number that yields a 

meaningful solution of Eq.(3.19). 

From the statistical point of view, the L2-norm of noise in a measurement can be esti-

mated by the converged solution of SI using the optimal truncation number of each itera-

tion defined in Eq.(3.21) as follows [Alt87, Hab00]. 

 

2opt2 ||)(|||||| 1 UUe −≈ -TSVDLξξξξ  (3.22)
 
where e is the noise vector in U , and -TSVDL1

optξξξξ is the converged solution by the L1-TSVD.  

The noise level eℵ  in the measurements is defined as follows. 
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3.3. Damage Assessment  

A damage assessment is a step to determine which members in a structure are actually 

damaged and how seriously they are damaged [Shi96, Yeo00].  Since not only the meas-

urement noise is unavoidable but also the measurements are not provided sufficiently, the 

estimated results using SI with L1-regularity condition is investigated in the statistical sense 

for a reliable damage assessment.  

A hypothesis test is performed to classify the damaged members from undamaged ones 

using the statistical properties of system parameters obtained from perturbed measurements 

[Yeo99, Yeo00].  Hypothesis test is accompanied by the fitness test to confirm whether the 

statistical distribution of estimated system parameters from perturbed measurements actu-

ally follows a normal distribution [Yeo99, Yeo00].  The damage index classifying the 

damage members and undamaged ones is determined using the hypothesis test.  After 

damage index is determined, the damage severity is obtained sequentially. 

 
3.3.1 Data Perturbation 

Data perturbation proposed by Shin [Shi94, Shi96] is used to obtain a statistical distri-

bution in the vicinity of a specific measurement set.  SI with the L1-regularization is 

adopted to estimate the system parameters for each perturbed measurement set generated 

by data perturbation.  The perturbation bound is determined by the residual of error func-

tion at the converged stage using the unperturbed measurements. 

The maximum perturbation amplitude, maxℑ , is defined by the estimated noise level given 
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in Eq.(3.23). 

 

 
 

2

2
max U

e
=ℵ=ℑ e  (3.24)

 
It is very time consuming to determine an optimal truncation number in every iteration 

for each set of perturbed data by the proposed method in the previous section.  It would be 

more convenient if a fixed optimal truncation number is used in every iteration for each set 

of perturbed data.   For this purpose, the discrepancy principle, which is originally pro-

posed for linear SI problems by Morozov [Mor93, Han98], is employed to choose a fixed 

truncation number as shown in Fig. 3.2.  This principle states the optimal truncation num-

ber is the largest one that satisfies the following criterion. 

 

22

* )(~ eUU ≥−tξξξξ  (3.25)

Truncation Number
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Figure 3.2 Optimal truncation number by the discrepancy principle 
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where *
tξξξξ  is the converged solution obtained by the L1-TSVD for a fixed truncation num-

ber t.  The TSVD optimization with a varying truncation number proposed in the previous 

section is performed only once for the original unperturbed data.  Once the noise level in 

the data is estimated by Eq.(3.23), a series of the TSVD optimization with a fixed trunca-

tion number is performed by increasing truncation numbers from 1 until the largest trunca-

tion number that satisfy Eq.(3.25) is obtained.  

 
3.3.2 Hypothesis Test, Damage Index, and Damage Severity 

In case normally distributed system parameters are obtained from perturbed measure-

ments, a hypothesis test can be applied to determine damaged members by statistical prop-

erties of system parameters.  Yeo adopted Kolmogorov-Smirnov goodness-of-fit test to 

confirm that the error function with Tikhonov regularization usually yields normally dis-

tributed system parameters from perturbed measurements [Yeo99, Yeo00].  Since all the 

system parameters estimated by output error estimator with Tikhonov regularization attain 

statistical properties sufficient for statistical evaluations using finite number of perturbed 

measurements, the goodness-of-fit test can be applied to each system parameter.  However, 

all the system parameters estimated by the L1-TSVD cannot attain sufficient statistical 

properties using finite number of perturbed measurements due to the solution characteris-

tics of the L1-TSVD.  The solution characteristics of the L1-TSVD in Eq.(3.15) can be ex-

plained by characterization of solution of generalized L1 approximation problem as the fol-

lowing equation. 

 
 )(Minimize 

11
arbAa

a
=−  (3.26)
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Here, A, a, b, and r are a given m by n matrix, an n-column vector to be sought for solution, 

a given n-column vector, a residual vector, respectively.  If the matrix A has rank t, there 

exists at least t zero’s in the residual vector [Wat80].  If this theorem is applied to 

Eq.(3.15), the solution characteristics of the L1-TSVD is revealed.  For the simplicity of 

discussion the upper and lower constraints are not considered.  Comparing Eq.(3.15) with 

Eq.(3.26), the following relationships can be established. 
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The rank of in Eq.(3.27) is directly connected with the truncation number t of Eq.(3.15) and 

is n-t.  Substituting Eq.(3.27) into Eq.(3.26), the residual vector of Eq.(3.26) has at least n-

t zero components.  In other words, the residual vector of Eq.(3.26) has at most t non-zero 

components.  Combining these results with Eq.(3.14), solution components corresponding 

to the zero residuals of Eq.(3.26) are determined by only the a prior estimates, not by the a 

posteriori solutions. 

 

1
ˆ1ˆ

−ξ−=ξ∆ k  (3.28)
 
where, ξ∆ˆ  and 1

ˆ
−ξ k  are a component of solution increment and a solution at k-1’th op-

timization iteration corresponding to the zero residuals of Eq.(3.26).  

It is empirically observed that solution increments associated with undamaged members are 

determined by the a priori estimates as shown in Eq.(3.28) from the 1’st optimization itera-
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tion to the converged stage.  Only the solution increments associated with actually dam-

aged members and some members in the vicinity of actually damaged ones are determined 

by the a priori estimates and the a posteriori information simultaneously.  Therefore, the 

solution increments associated with undamaged members are always zeroes during the op-

timization iterations if the initial value of each system parameter is assumed as the baseline 

value.  Only the solution increments associated with actually damaged ones and some 

members in the vicinity of actually damaged ones are non-zeroes throughout the optimiza-

tion iterations.   

Due to these solution characteristics of the L1-TSVD, not all system parameters are 

statistically distributed, but only a few system parameters associated with damaged mem-

bers and their neighboring members have statistical distributions.  Three different classes 

of distributions of the system parameters are defined in this study for statistical evaluation 

for damage assessment: a deterministic class, a probabilistic class, and an intermediate 

class. 

The deterministic class consists of only the deterministic samples of system parame-

ters that do not respond to random variations of measurements at all, and stay at the base-

line values for a specified number of perturbed data sets.  Therefore, the means and stan-

dard deviations of system parameters in this class are the baseline values and zero, respec-

tively.  A member in the deterministic class is considered to be an undamaged one without 

any statistical evaluations, and the corresponding damage index ID (Yeo et al. 2000) is set 

to zero for the member.   

The probabilistic class consists of only the probabilistic samples of the system parame-

ters that respond to random variations of measurements.  A goodness-of-fit test for the 
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normal distribution and hypothesis test are applied to assess the damage status of the mem-

bers in this class.  

The intermediate class consists of deterministic samples and probabilistic samples si-

multaneously for a specified number of perturbed data sets.  Since it is difficult to treat the 

intermediate class directly, this class is converted into either a deterministic class or a prob-

abilistic class according to the ratio of deterministic samples to probabilistic ones.  It is 

observed through our numerical experiences that most distributions of system parameters 

corresponding to the intermediate class consist of very limited probabilistic samples as 

shown in Fig. 3.3.  It is unreasonable to draw statistical meanings for this distribution be-

cause most of the samples are deterministic ones.  In this study, when more than 90% of 

the samples of a system parameter are deterministic ones, the intermediate class is consid-
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ered as a deterministic one.  If less than 90% of the samples of a system parameter are 

deterministic ones, additional perturbations should be performed to obtain probabilistic 

samples until the number of probabilistic samples reaches the specified sample size for the 

system parameter without deterministic samples.   

Once system parameters belonging to a probabilistic class pass the fitness test, a 

hypothesis test is adopted to assess the damage of each member using the statistical 

properties of system parameters [Yeo99, Yeo00].  In the hypothesis test, a statistical 

distribution of the baseline structures is assumed to obey the following normal distributions 

[Yeo00]. ),( 2
0 σxN  (3.29)

 
where, x0 and σ is baseline value and standard deviation of each system parameter obtained 

from the perturbed measurements. 

Eq.(3.29) is referred as baseline distribution for the system parameters.  The damage 

status of a member in a target structure is determined by applying a hypothesis test for the 

interval estimation of the mean value on the baseline distribution with a significance level 

α. The hypothesis test is defined as the following equation. 

 
00 : xH =Ξ  (3.30a)

01 : xH <Ξ  (3.30b)
 

where, Ξ is an unknown actual value of the system parameter.  The operating rule for the 

hypothesis test is to accept H0 if cx ≥ with a significance level µ.  Here, x  is the esti-

mated average of the system parameter for the current structure from the perturbed meas-

urements.  The critical value c, used to determine the acceptance region of H0 in the base-
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line distribution, can be obtained by solving the following equation for c. 

 
µ−=≥ 1]|[ 0HcxP  (3.31)

 

The one-sided probability statement of Eq.(3.31) can be modified into the standardized 

form. 

µ−=−Φ=≥ µµ 1)(]|[ 0 zHzzP  (3.32)
 
where, σ−=σ−= µ /)(,/)( 00 xczxxz

 
and Φ is the CDF of the standardized normal 

distribution.  The critical value c is obtained by inverting the CDF for zα in Eq.(3.32) and 

using the definition of zα 

σ+= µzxc 0  (3.33)
 
If the estimated mean value of a member is less than the critical value c, then the null hy-

pothesis H0 is rejected.  Subsequently, the member is regarded as a damaged member.  A 

member that has passed the hypothesis test is defined as undamaged with 100×(1-α) % 

confidence.  The damage index ID, which represents the damage status of a member with 

the significance level of α, is defined as the following equation. 
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0

0
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I D  (3.34)

 
The severity of damage SD, which indicates how seriously a member is damaged with the 

significance level of µ, is defined as a relative distance of the computed mean from the 

baseline value. 
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3.4. Numerical Examples – Damage Assessment of a two-Span Continuous Truss 

Numerical simulation studies are performed for three damage cases with the proposed 

method to determine the damage status of the two-span continuous truss presented by Yeo 

et. al. [Yeo00].  Damage cases I and II contain rather easy damage patterns to be identified, 

while the damage in case III is relatively difficult to identify for a large noise level.  De-

tailed discussions are presented for damage case III.  Fig. 3.4 shows the geometry, support 

conditions and the locations of 12 observation points, which are depicted as solid circles in 

the figure.  Horizontal displacements are measured at the roller supports and vertical dis-

placements are measured at the other observation points independently for each load case 

shown in Fig. 3.5. 

Proportional random noise generated by a uniform probability function between ± 

noise amplitude (AN) is added to the displacement obtained by a mathematical model to 

simulate real measurements.  Unless otherwise stated, the noise amplitude of 5% is used 
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Figure 3.4 Geometry, cross sectional areas and measured dofs of
the two-span continuous truss 
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in all examples.  The significance level µ is selected as 0.1 for the statistical damage as-

sessment (Yeo et al. 2000).  For the data perturbation, 30 Monte-Carlo trials are per-

formed.  Since more than 90% of the samples for system parameters in the intermediate 

class are deterministic for all examples, no additional perturbation is needed.  The trunca-

tion number is determined by the discrepancy principle for the original, unperturbed data, 

and is fixed throughout all Monte-Carlo trials.  The identification results by the proposed 

method are compared with those by the L2-regualarization scheme, in which all the algo-

rithms are exactly the same as the proposed method except that the L2-norm is used as the 

discrete regularization function. 

The rank-deficiency and ill-posedness of SI of the truss are demonstrated by investi-

gating the distribution of singular values of the sensitivity matrix.  Since the system char-

acteristics at the first iteration are solely determined by the baseline values of the system 

parameters and the locations of measurements, the distribution of the singular values at the 
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first iteration is a good indicator of the rank-deficiency and ill-posedness of all damage 

cases.  As shown in Fig. 3.6, 10 singular values are smaller than the threshold value є for 

the numerical rank of the sensitivity matrix.  Therefore, the sensitivity matrix of the truss 

for the given measurements is rank-deficient by 10 even though the number of independ-

ently measured data (60) is larger than those of the members (55).  Moreover, the sensitiv-

ity matrix is severely ill-posed after truncating those 10 small singular values because the 

ratio of the largest singular value to the smallest retained singular value is 61033.1 × .  

This fact implies that noise components in measurements may be amplified by a million 

times in the solution space, which results in a meaningless solution of SI even for very 

small noise levels. 
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3.4.1 Damage Case I 

Damage is simulated with 70% and 30% reduction in the sectional areas of two bottom 

members (member 16 and member 21) as shown in Fig. 3.7.  The error function evaluated 

by the converged solutions for each truncation number is presented in Fig. 3.8 together 

with estimated noise levels.  The noise levels for the L1- and the L2-regularization scheme 

are estimated as 2.6 % by the cross validation, and the truncation numbers are selected as 4 

and 7, respectively.   

Fig. 3.9 shows the averages and the standard deviations of the system parameters 

normalized by the baseline values for 30 Monte-Carlo trials.  The L1-regularization 

scheme yields sharp drops of the system parameters only at the damaged members, while 

the system parameters of undamaged members in the vicinity of the damaged members are 

reduced in the L2-regularization scheme.  In particular, most of the damage information of 

member 21 is smeared out to members 20 and 22 in the L2-regularization scheme.  Since 

the standard deviations of the system parameters are very small, it seems that both L2- and 

L1-regularization scheme effectively control the ill-posedness of SI.  The damage severity 

of each member assessed by the statistical approach is given in Fig. 3.10.  The damaged 

members are identified exactly, and the damage severity is accurately estimated by the L1-

regularization scheme.  Some of the undamaged members are identified as damaged me- 

Fig. 3.7 Case I – the 16th bottom member and the 21st bottom member
are damaged 
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Fig. 3.8 Variation of the error function with truncation numbers and 
estimated noise level for damage case I 
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-mbers, and the damage severity of member 21 is rather underestimated by the L2-

regularization scheme. 

 
3.4.2 Damage Case II 

It is assumed that diagonal member 48 and bottom member 22 are damaged by 30% 

in this damage case as shown in Fig. 3.11.  The error function evaluated by the converged 

solutions for each truncation number is presented in Fig. 3.12 together with estimated noise  
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Fig. 3.10. Identified damage severity for damage case I

Fig. 3.11 Case II – the 22nd bottom member and the 48th diagonal
member are damaged 
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Fig. 3.12 Variation of the error function with truncation numbers and 
estimated noise level for damage case II 
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levels.  The estimated noise levels for the L1- and L2-regularization schemes are 3.1% and 

3.0%, respectively, while the actual noise level is 3.3%.  The truncation number is se-

lected as 8 for L1-regularization scheme, and 9 for the L2-regularization scheme.  Fig. 3.13 

shows the averages and the standard deviations of the system parameters normalized by the 

baseline values for 30 Monte-Carlo trials.  Fig. 3.14 shows the identified damage severity 

of this damage case.  As in the previous damage case, the damaged members are identi-

fied exactly, and none of undamaged members are falsely identified as damaged by the L1 

regularization scheme.  However, the damage severity of member 22 is a little bit under-

estimated, while that of member 48 is overestimated a little bit.  It is believed that an un-

derestimated noise level in this damage case causes inaccuracy in the damage severity.  

Meanwhile, the L2-regularization scheme identifies several undamaged members as dam-

aged ones, which represents the smearing characteristics of the L2-norm of system parame-
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Fig. 3.14  Identified damage severity for damage case II
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ters (Hansen and Mosegaard 1996).  

 
3.4.3 Damage Case III 

This damage case contains 60%, 70% and 30% damage in member 17, 33 and 38, re-

spectively as shown in Fig. 3.15.  The error function evaluated by the converged solutions 

for each truncation number is presented in Fig. 3.16 together with estimated noise levels.  

The truncation number is selected as 5 for L1-regularization scheme, and 7 for the L2-

regularization scheme.  Fig. 3.17 shows the averages and the standard deviations of the 

system parameters normalized by the baseline values for 30 Monte-Carlo trials.  Fig. 3.18 

shows the identified damage status of the truss.  Both the L1- and L2-regularization 

scheme fail to identify the damage of the truss correctly.  The L1-regularization scheme 

identifies members 16 and 21, which are bottom members connected to the actually dam-

aged members 17 and 33, as damaged members.  The damage in member 38 is not de-

tected at all.  The L2-regularization detects the damage in member 17, but member 16 is 

estimated as more severely damaged than member 17.  Several undamaged members in 

the vicinity of members 33 and 38 are identified as damaged members, which is caused by 

the smearing characteristics of the L2-regularity condition. 

To investigate characteristics of this damage case systematically, several numerical  

Fig. 3.15 Case III – the 17th bottom member, the 33rd vertical member,
and the 39th diagonal member are damaged 
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Fig. 3.16 Variation of the error function with truncation numbers and 
estimated noise level for damage case III 
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Fig. 3.18 Identified damage severity for damage case III
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studies are performed.  Fig. 3.19 shows the variation of the estimated and the actual noise 

levels and the truncation numbers with actual noise amplitudes.  In the figure, the trunca-

tion numbers determined by the discrepancy principle are plotted for the right vertical axis 

while the estimated noise levels determined by the cross validation are plotted for the left 

vertical axis.  The estimated noise level is smaller than the actual noise level up to 3.2 % 

noise amplitude, and becomes larger than the actual noise level after 3.2% noise amplitude.  

As the noise amplitude increases, the truncation number becomes smaller because more 

solution components are polluted for larger noise amplitudes.  Fig. 3.19 illustrates that the 

truncation number varies with the noise amplitude in a stepwise fashion.  There are three 

distinct regions in the variation of the truncation number with the noise amplitude, that is, 

truncation numbers for the noise amplitudes of %6.2≤NA , %2.3%6.2 ≤< NA  and 
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NA<%2.3  are 22, 15 and 5, respectively. 

Fig. 3.20. shows the variations of the normalized system parameters of the damaged 

members with truncation numbers for noise-free measurements.  It is clearly seen that the 

cross section area of each damaged member suddenly drops to exact damage severity at a 

certain truncation number.  This is because the RSV corresponding to the truncation num-

ber that causes the sudden drop is associated with the damage information of the member.  

Therefore, to identify damage in a member, the RSV that contains damage information of 

the member should be included in the TSVD solution, (18).  For damage case III the dam-

age information of members 17, 33 and 38 is associated with the 9th, 16th and 19th RSV, 

respectively.  The truncation number determined by the estimated noise level shown in 

Fig. 3.19 is also drawn in Fig. 3.20 by using the right vertical axis as the noise amplitude.  

As shown in the figure, all damaged members can be identified for noise level smaller than 

2.6% since the truncation number for the noise level is 22, and all damage information is 

included in the TSVD solution.  In case the noise amplitude is larger than 2.6 % but 

smaller than 3.2 %, the truncation number becomes 15, and the damage information of 

members 33 and 39 is lost.  In this case only the damage of member 17 can be identified.  

For noise amplitude larger than 3.2 %, none of the damage information is included in the 

TSVD solution since the truncation number becomes 5.  Therefore, none of the damaged 

members can be identified in damage case III by the L1-TSVD.  It is believed that member 

17 is identified as a damaged member in the L2 regularization scheme not by the exact in-

formation but by just smearing effect of the L2-norm.  To identify the damaged members 

correctly, the noise amplitude should be kept smaller than 2.6%.   
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The damage severity of the damaged members is shown in Fig. 3.21 for 1 % and 3 % 

noise amplitude.  As explained above, all damaged members are identified for 1% noise 

amplitude, and only one damaged member, member 17, is identified for 3% noise ampli-

tude.  Member 52 and member 42 are falsely identified as damaged members for 1 % and 

3% noise amplitudes, respectively.  The damage severity of the other undamaged mem-

bers that are falsely assessed as damaged members is small compared with that of the dam-

aged members for both cases. 

The aforementioned points give very important insights in planning the damage de-

tection procedures.  Since the RSV that contains the damage information of a member is 

determined by structural information, load cases and measurement locations, the target 

noise amplitude is rigorously estimated to identify certain damage patterns, and experimen-

tal setups are designed accordingly. 
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Chapter 4 

Conclusions and Recommendations for Further Study 

�

Conclusions 

Regularization techniques in System Identification (SI) for the damage assessment of 

structures were proposed.  SI used in this study is based on the minimization of the least 

squared error between measured and calculated responses, which is nonlinear inverse prob-

lem.  SI based on the minimization of the least squared error between measured and 

calculated responses suffers from inherent instabilities caused by the ill-posedness of 

inverse problems, such as non-existence, non-uniqueness, and discontinuity unlike the 

forward problem.  

In the chapter 2, a general concept of regularity condition with respect to the system 

property for SI was presented.  By imposing a proper regularity condition, the inherent ill-

posedness of SI can be relieved satisfactorily.  A regularity condition of the system prop-

erty for elastic continua was presented.  Based on the proposed regularity condition, a 

regularization function based on the L2 norm with respect to the system properties was pro-

posed.  A regularity condition of system properties is discretized in terms of system pa-

rameters.  Two different approaches to impose the discretized regularity condition on 

minimization of error function were presented;  the truncated singular value decomposi-

tion (TSVD) and the Tikhonov regularization.   

In the TSVD, the truncation number determines degree of regularity while the regu-

larization factor does in the Tikhonov regularization.  In the Tikhonov regularization, the 

most important issue is to keep consistent regularization effect on the parameter estimation, 
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which is controlled by a regularization factor. Therefore, it is crucial to determine a well-

balanced regularization factor in order to obtain a physically meaningful and numerically 

stable solution of an inverse problem with the regularization technique.   

This study illustrated that the error function with the Tikhonov regularization function 

results in a solution of a generalized average between the a priori estimates and the a poste-

riori solution.  Here, the a priori estimates represent known baseline properties of system 

parameters, and the a posteriori solution denotes the solution obtained by given measured 

data.  A new idea of the geometric mean scheme (GMS) was presented to select optimal 

regularization factors in nonlinear inverse problems.  In the GMS, the optimal regulariza-

tion factor is defined as the geometric mean between the maximum and minimum singular 

value for balancing the maximum and minimum effect of the a priori estimates and the a 

posteriori solution in a generalized average sense.   

Numerical simulation studies are performed to demonstrate the validity and effective-

ness of the GMS, and numerical behaviors of other schemes.  The GMS yields the most 

accurate and reliable results regardless of random error and modeling error in measure-

ments among the three schemes.  

In chapter 3, it was shown that the regularity condition defined by the L2-norm of the 

system property is too stringent for framed structures.  To establish SI adequate for 

framed structures, a regularity condition of system properties for framed structures was 

proposed. Based on the proposed regularity condition, a regularization function based on 

the L1 norm with respect to the system properties was proposed.  The L1-regularity condi-

tion is imposed as an additional minimization problem to the minimization of the error 

function.  The TSVD is utilized to filter out noise components in a solution, and the trun-
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cated solution components are restored by the optimization of the L1-regularity condition, 

in which the simplex method is adopted.  The cross validation method is applied to de-

termine an optimal truncation number in the TSVD.  Damage status of each member is 

assessed statistically using a hypothesis test for the interval estimation of the mean value. 

The validity of the L1-regularity condition in SI for framed structures was presented by 

finding damages of a two-span continuous bridge with three damage scenarios for different 

noise amplitudes in measurements.  SI with L1-regularity condition could estimate the ac-

tual material properties of each member in the framed structure successfully to the maxi-

mum resolution limits of the error function regardless of the serious sparseness of meas-

urements and the measurement noise.   

 

Recommendations for further study 

Damage detectability with respect to damage severity and measurement noise 

It is very important to evaluate possible detectability or identifiability of each 

structural member in the current SI for damage assessment.  This study mainly 

investigates system characteristics affecting the identification results under the fixed 

measurement locations and loading conditions.  Even though the structural characteristics 

cannot be altered, the load case and measurement locations can be selected so as to 

improve the resolution of the damage detection.   

Detectability of each member can be evaluated through numerical simulations with 

various damage severity and measurement noise by using SI with regularization technique.  

After detectability of all the members with respect to damage severity and measurement 

noise is calculated from numerical simulations, it is possible to evaluate which members up 
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to how much damage severity can be identified when real responses of a structure are 

measured.  Based on the evaluation, loading condition, precision of sensors, locations of 

sensors can be rearranged to increase the detectability of members which are classified as 

undetectable.  Continuous researches on these fields should be intensively performed to 

apply SI-based damage detection schemes to actual problems. 

 
Investigation of relationships between probabilistic SI and SI with regularization 

The joint probability density function between the system parameters and measure-

ments can be obtained by probabilistic SI such as Bayesian approach [Tar87].  It is known 

that the Bayesian approach is closely connected with the SI with the Tikhonov regulariza-

tion [Neu79, Tar87].  For example, if both a priori distribution and posteriori distribution 

are assumed to be gaussian, the probability of the joint distribution with respect to the sys-

tem parameters is known to become maximal at the average of system parameters which is 

equivalent to the solution to the minimization problem of the L2-regularized error function 

[Tar87].  As far as damage assessment of structures is concerned, a damage detection al-

gorithm of structures based on a Bayesian approach was proposed by Sohn (1997).  Fur-

ther research on relationships between the regularized error function and the Bayesian ap-

proach is suggested since it can give strong backgrounds of probabilistic theory to the cur-

rent study. 

 
Improvement of signal to noise ratio 

There are two ways to increase the signal to noise ratio in SI for damage assessment.  

One is reduce the noise amplitude by using more precise sensors and filtering the noise 

components in signal.  The current study is focused on filtering the noise component ef-
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fectively.  The other is to amplify the signal by arranging the loading condition and sensor 

locations so that measurements can include sufficient information of damaged members.  

This is closely related with optimal loading conditions and optimal sensor locations.  

Therefore, further researches combining the regularized SI with optimal loading conditions 

and optimal sensor locations are strongly recommended because they may increase the 

resolution limit of the current SI up to in-situ noise magnitude. 

 

Application to Dynamic Responses 

Most measured responses of civil structures are dynamic responses such as accelera-

tion, natural frequencies and mode shapes.  The SI with regularization technique proposed 

in this study can be applied to these dynamic responses easily.  Moreover, the amount of 

measurements is tremendously larger than that of static responses used in this study, the SI 

with regularization may results in more meaningful and reliable results.  However, real-

time SI is very time-consuming since the calculation of sensitivity of dynamic responses in 

the time domain with respect to system parameters costs a lot of computational time.  Re-

search on the direct differentiation of frequency response function in frequency domain 

incorporated with fast Fourier transform technique will be very interesting since computa-

tional time of sensitivity of dynamic response in time domain may be reduced considerably, 

which is crucial to real-time SI. 
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