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ABSTRACT

Regularization techniques in system identification (SI) for damage assessment of
structures are proposed. This study adopts an Sl scheme based on the minimization of the
least squared error between measured and calculated responses, which is a nonlinear
inverse problem.

A general concept of the regularity condition of the system property is presented. By
imposing a proper regularity condition, inherent ill-posedness of the SI scheme is alleviated
satisfactorily. It is shown that the regularity condition for elastic continua is defined by
the L,-norm of the system properties. Tikhonov regularization technique is employed to
impose the regularity condition on the error function. The characteristics of nonlinear
inverse problems and the role of the regularization are investigated by the singular value
decomposition of a sensitivity matrix of responses. It is shown that the regularization re-
sults in a solution of a generalized average between the a priori estimates and the a posteri-
ori solution. Based on this observation, a geometric mean scheme (GMS) is proposed.
In the GMS, the optimal regularization factor is defined as the geometric mean between the
maximum singular value and the minimum singular value of the sensitivity matrix of re-
sponses. The validity of the GMS is demonstrated through numerical examples with
measurement errors and modeling errors.

It is shown that a solution space defined by the L,-norm of system property is not ap-
propriate for framed structures unlike elastic continua. The L;-norm of the system prop-
erty is introduced as a new regularization function for framed structures. The truncated

singular value decomposition (TSVD) is employed to filter out noise-polluted solution



components in quadratic sub-problems of the error function. The discretized regularity
condition defined by the L;-norm of the stiffness parameter vector is imposed as a separate
optimization problem in each quadratic sub-problem. The optimization of the L;-norm is
performed by the simplex method. The optimal truncation number is determined by the
cross validation. The final damage status of a framed structure is assessed by the statisti-
cal approach based on the data perturbation and the hypothesis test. The validity of the
proposed regularity condition for framed structures is presented by detecting damage of a

two-span continuous truss with different damage cases with measurement errors.

Key Words : system identification, regularization technique, damage assessment, ill-

posedness, regularity condition, geometric mean scheme

Student Number : 97415-807
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Chapter 1

Introduction

Civil infrastructures suffer from damages due to unexpected disasters such as earth-
quake, fire, and blast. As the traffic volume increases rapidly, structures such as bridges
are exposed to continuous overloads that may lead to fatigue failures. A proper design
enables structures endure unexpected events that may result in damages. However, it
cannot be always guaranteed that no damage occurs in the structure after unexpected events.
Once damage occurs in a structure, timely and proper actions should be taken to prevent an
irreparable catastrophe. Therefore, systematic and regular inspections are required to
clarify the existence of damage in structures.

Non-destructive testing (NDT) methods for the existing structures have been used to
assess damage. Visual inspection, ultrasonic techniques, magnetic flux leakage tech-
niques, radiographic techniques, penetrant techniques, eddy current techniques can be cate-
gorized as the local NDT methods [Bra89]. Since not only these methods are time-
consuming and expensive but also the vicinity of damage should be known a priori, they
are used for the inspection of local parts that are accessible easily.

Recently, structural health monitoring is an emerging area of civil engineering as the
number of large and complex infrastructures increases rapidly.  Structural health monitor-
ing can be defined as the science of inferring the health and safety of an engineered system
by monitoring its status [Akt00, Doe96]. Innovative developments of sensor, computer,
and information technologies enable engineers to design a well-established structural moni-

toring system. These technologies have made it possible to resolve the complexity of



relevant physical phenomena through detailed computer simulations and their signatures in
the measured data through innovative data acquisition and system identification methods.
Especially, the damage assessment based on the system identification (SI) is a beneficiary
of these innovations of the technologies since the Sl requires both measurements with a

high precision and a large amount of numerical calculations.

1.1 System Identification as an Inverse Problem

In general, engineering problems can be categorized into three different ones as shown
in Fig.1.1. The first problem is the forward problem that is usually referred to as analysis.
In the forward problem, the unknown output is obtained using the known input and model.
Most engineering problems belong to the forward problems. The second problem is the
reconstruction problem in which the unknown input is obtained using the known model and
output. The third problem is the system identification (SI) in which the unknown model
is obtained using the known input and output. The reconstruction problem and system
identification are usually referred to as inverse problems.

Applications of inverse problems to engineering areas go way back to the 1970’s in
aerospace engineering [Ali75, Bec84, Bec85]. Estimation of heat-flux generated on the
surface of the space shuttle is an important issue for successful navigation of the space
shuttle. Image enhancing technique of blurred images in the medical imaging and the as-
tronomy is popular areas of inverse problems [Car94, Fes94, Han96a, Fra00].

As far as the engineering mechanics is concerned, shape identification [Sch92, Lee99,
Lee00], estimation of material properties [Gio80, Nor89, Hon94, Mah96, Par01], recon-

struction of traction boundaries [Man89, Sch90], tomography [Bui94], and defect identifi-
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Fig.1.1 Engineering problems

cation [Tan89, Bez93, Mel95] are categorized as inverse problems.

It is well-known that inverse problems suffer from ill-posedness unlike the forward
problems that are usually well-posed. The solution of an inverse problem may suffer
from non-existence, non-uniqueness, and discontinuity unlike that of the forward problem,
which are referred as ill-posedness [Tik77, Gro84, Mor93, Bui94, Han98].

A. N. Tikhonov, a famous mathematician of the USSR, concentrated on this issue and
established a regularization theory to alleviate ill-posedness of an inverse problem [Tik77,

Gro84, Mor93]. Numerous researches on inverse problems in the engineering field that



are mentioned above have adopted regularization technique and obtained satisfactory re-
sults [Ali75, Bec84, Bec85, Man89, Sch90, Sch92, Lee99, Lee00, Yeo00, Par91]. There
are various kinds of schemes that can realize the regularization.

However, a common idea of several regularization techniques is to preserve the regu-
larity of solution by defining a proper function space in which the solution must exist

[Tik77, Joh87, Bui94].

1.2 A Damage Assessment Algorithm Using System Identification

Sl for the structural systems can be defined as the parametric correlation of structural
response characteristics predicted by a mathematical model and analogous quantities de-
rived from experimental measurements [Doe99]. Many S| methods using various meas-
ured responses have been developed for damage assessment in the last few decades.

From the 1970’s to the 1980’s, an offshore oil platform was the first target structure of
Sl-based damage assessment as a civil structure [Doe96, Doe99]. Several researches
were performed for damage assessment of an oil platform. Unfortunately, there were
many practical problems to produce satisfactory results in Sl of the offshore oil platform.
Environmental and structural uncertainties such as measurement noise caused by the ma-
chinery, hostile environments for instrumentation, and the change of foundation with time
were main enemies. In addition, the natural frequencies representing the measured re-
sponse were not sensitive enough to indicate the several types of damage to be identified.

Researchers have paid attention to the Sl-based damage assessment for the bridge and
roadways. Bridge failure may result in irreparable catastrophe like the collapse of the

Sungsoo bridge. Since the number of large scale complex bridges increases, the auto-



mated health monitoring system is necessary to prevent the catastrophes. The Sl-based
damage assessment plays an important role in the health monitoring system of the existing
structures.  Earlier works focused on the changes of the natural frequencies to detect the
damage. It becomes generally known that only the natural frequencies are not sufficient
to obtain both damage location and severity. More recently, mode shapes and modal fre-
quencies are used simultaneously to find the damage location and severity of damages
[Doe99]. Extensive and detailed literature reviews of almost every damage assessment
method using vibration responses are available in the technical report published by Los
Alamos laboratory in 1996 [Doe96]. Static data such as strain and displacement can be
used for the Sl-based damage assessment in addition to the modal data [San91, Shi94,
Yeo00].

Whatever a target structure is, an important assumption of the Sl-based damage as-
sessment is that the measured response of the structures changes if the structure experi-
ences damage and the change of measured response can lead to quantitative or qualitative
properties of damage [Doe96]. The purpose of the Sl-based damage assessment is not
only to identify the existence of damage but also to predict the location and the severity of
damage.

The most embarrassing difficulties of the Sl-based damage assessment are sparseness
of measurements and measurement noise [Shi94, Yeo00]. To obtain satisfactory results
by using the Sl-based damage assessment, inevitable ill-posedness of Sl due to sparseness
and noise of measurements should be resolved properly [Bui94, Yeo00, ParO1]. Sparse-
ness of measurements is unavoidable since the civil structures are usually large and com-

plex. Measurement noise is also inevitable due to the uncertain environment of sensor



instrumentation. Various Sl-based damage assessment algorithms have adopted intuitive
remedies to alleviate the difficulties without theoretical insight into an inherent ill-
posedness of SI.  With a strong theoretical background of S, a rigorous SI scheme for a
damage assessment algorithm can be established and a reliable damage assessment is pos-
sible.

Recently, Ge and Soong presented a damage identification scheme based on the mini-
mization of cost functional using the regularization method [Ge98a, Ge98b]. The SI-
based damage assessment algorithm proposed by Yeo adopted regularization technique and
yielded satisfactory results for damage assessment of framed structures [Yeo99, Yeo00].
In his work, conceptual explanations with schematic drawings about the Sl are presented to

explain ill-posedness of a Sl problem.

1.3 Objective and scope

The current study presents regularization techniques in SI for damage assessment of
structures. Sl is based on the minimization of the least squared error between measured
and calculated responses, which is a nonlinear inverse problem. Sl based on the minimi-
zation of the least squared error between measured and calculated responses suffers from
inherent instabilities caused by ill-posedness of inverse problems.

In chapter 2, a general concept of regularity condition with respect to the system prop-
erty for Sl is presented. By imposing a proper regularity condition, inherent ill-posedness
of Sl can be relieved satisfactorily. A regularity condition of the system property for elas-
tic continua is presented. Based on the proposed regularity condition, a regularization

function based on the L,-norm with respect to the system property is proposed. A regular-



ity condition of the system property is discretized in terms of system parameters. Two
different approaches to impose the discretized regularity condition on minimization of error
function were presented; the truncated singular value decomposition (TSVD) and the
Tikhonov regularization.

In Tikhonov regularization, the most important issue is to keep consistent regulariza-
tion effect through the parameter estimation, which is controlled by a regularization factor.
Therefore, it is crucial to determine a well-balanced regularization factor in order to obtain
a physically meaningful and numerically stable solution of an inverse problem with the
regularization technique.

This study illustrates that the minimization of the error function with the Tikhonov
regularization function results in a solution of a generalized average between the a priori
estimates and the a posteriori solution. Here, the a priori estimates represent known base-
line properties of system parameters, and the a posteriori solution denotes the solution ob-
tained by given measured data. A new idea of the geometric mean scheme (GMS) is pre-
sented to select optimal regularization factors in nonlinear inverse problems [Par01]. In
the GMS, the optimal regularization factor is defined as the geometric mean between the
maximum and minimum singular value for balancing the maximum and minimum effect of
the a priori estimates and the a posteriori solution in a generalized average sense. De-
tailed discussions on the behaviors of the GMS are presented and compared with identifica-
tion results from other schemes in the numerical examples. The numerical examples are
to estimate Young’s modulus of a foreign inclusion in a finite body from a given measure-
ments polluted with random noise and modeling error.

In chapter 3, it is shown that a solution space defined by Tikhonov regularization func-



tion is inadequate to SI for framed structures unlike elastic continua. To establish Sl ade-
guate for framed structures, a new regularity condition of the system property for framed
structures is proposed. Based on the proposed regularity condition, a regularization func-
tion based on the L;-norm with respect to the system parameters is proposed.

Minimization of error function with L;-based regularization function is performed us-
ing the TSVD and L;-optimization iteratively since the error function with L;-based regu-
larization function is usually nonlinear and non-differentiable with respect to the system
parameters. The cross validation method is utilized to determine an optimal truncation
number in each quadratic sub-problem. Also, a simplified method based on the discrep-
ancy principle is proposed to reduce computational effort in the final damage assessment
[Mor84, Mor93].

The statistical approach proposed by Yeo et al is adopted to assess the damage status of
a framed structure using identification results of SI [Yeo00]. Data perturbation is used to
obtain samples of system parameters [Shi94], and the damage status of each member is
determined by applying a hypothesis test for the interval estimation of the mean value.

The validity of the proposed damage assessment algorithm is presented by detecting
damage of a two-span continuous truss with different damage cases with measurement er-

rors



1.4 Notations
The symbols used in this study are defined where they first appear in the text and
whenever clarification is necessary. The most frequently used symbols are listed below.

Boldfaced characters represent vectors.

An  Noise amplitude
bi  Body force vector

b"  Displacement residual considering the axis transformation. (=S(€ -1) -U")
c Critical value in the hypothesis test

Cija  Elasticity tensor
e Noise vector in the measurement data

H'(V) Sobolev space of degree one on V
Ho  Null hypothesis

Hi  Alternative hypothesis
H,; Gauss Newton Hessian at the k-1’th optimization iteration (=S'S)

Ip Damage index

I Identity matrix of order n

k Iteration count for the nonlinear optimization

K Stiffness matrix

l; Length of member i in a framed structure
Lo(V) LyspaceonV

N  Size of system parameter group vector



N (a,b®) Normal distribution with mean a and standard deviation b

Pi

Ua

Ui

Numerical rank of sensitivity matrix

Nodal force vector of i’th load case

A linear combination of truncated RSVs [See Eq.(3.14)]

Optimal solution obtained by the linear programming [See Eq.(3.16)]
Constraint for the system property

Size of the function space

Constraint vector for the system parameters

Predicted displacement residual for truncation number t in the cross validation
[See Eq.(3.20)]

i-th row of the original sensitivity matrix at the k-1’th optimization iteration in
the cross validation

Damage severity

Sensitivity matrix of calculated displacements with respect to the system pa-
rameters at the k-1’th optimization iteration

Regularized inverse of the sensitivity matrix (= Vdiag(1—a ;)diag (L)ZT )
.
J

Reduced sensitivity matrix in which the i-th row is omitted at the k-1"th optimi-
zation iteration in the cross validation

Traction vector
Displacement field
Admissible displacement field

Element of u”

Displacement vector

10



Uy)i

UC

Um

cCi

C

r
Uk—l

(Uiy)™
Vi

Vv

Derivative of the displacement vector with respect to j’th material coordinate

Virtual displacement vector
Derivative of the virtual displacement with respect to j’th material coordinate

Measured displacement vector

Nodal displacement vector of i’th load case

Calculated displacement vector of i’th load case obtained by the finite element
method

Measured displacement vector of i’th load case at the discrete observation
points

i-th row of the original displacement residual vector at the k-1'th optimization
iteration in the cross validation

Vectors obtained by arranging the vectors of the computed displacements for
each load case in a row

Vectors obtained by arranging the vectors of the measured displacements for
each load case in a row

Normalized calculated displacement vector (U®)

Normalized measured displacement vector (U™)

Noise-free measurement vector

Displacement residual at the k-1"th optimization iteration (= Uu-u 1)

Reduced displacement residual vector in which the i-th row is omitted at the k-
1’th optimization iteration in the cross validation

j’th column vector of V

Material configuration; Structural volume

11



\VA Volume of member i in a framed structure

\Y/ Right singular matrix of the sensitivity matrix in the SVD
X System property

X Admissible system property

Subspace of X" determined by the regularization technique
Xa  Element of X

X;  Element not in x*

X System parameter vector

X, System parameter of member i in a framed structure

(X;), Baseline value of system parameter of member i in a framed structure
Zj  j’thcolumn vector of Z
z Standardized probabilistic variable
Z, Standardized critical value in the hypothesis test

Z Left singular matrix of the sensitivity matrix in the SVD
o;  Weighting factor corresponding to j’th singular value (= A° /(] +A%))

Omax  Weighting factor corresponding to the largest singular value
Omin Weighting factor corresponding to the smallest singular value
B Step length for the line search in the direction of the solution increment

B Optimal step length for the line search in the direction of the solution increment
Pt at the current iteration

Ax  Transformed regularized solution [See Eq.(2.42)]

12



Vi Avrbitrary real number [See Eq. (2.17)]
It Traction boundary

I,  Displacement boundary

o) Dirac delta function

Om  Tolerance based on the machine precision
€,  Threshold value to determine the numerical rank of the sensitivity matrix
() CDF of the standardized normal distribution
N(A) Logof 77, inthe LCM
N, . Ny . N Alocal coordinate system for member i of a framed structure
K(A)  Curvature of L-curve with respect to A in the LCM
A Regularization factor
)\opt Optimal regularization factor
U Significance level in the hypothesis test
7T, Normalized regularization function
T Normalized error function (I ;)
7T'E Linearized error function in the LCM [See Eq. (2.43)]
T  Penalty function of Tt

Te  Squared model error [See Eq. (3.1)]

Least squared error between the measured responses and the calculated re-

M .
E  sponses; Error function

13



§

&

L,-TSVD

opt

A&

Ag

A&

f
u

Regularization function

Logof 77, inthe LCM
Standard deviation of each system parameter obtained by data perturbation
Stress tensor

Prior estimate of the averaged random noise variance
Function space for the displacement

Function space for the virtual displacement

Decreasing rate of Fourier coefficients [See Eq. (2.19)]

j’th diagonal component value of V; j’th singular value

Diagonal matrix with singular values of the sensitivity matrix
Normalized system parameter vector (X)

System parameter group vector in parameter group updating scheme

Normalized system parameter vector at the k-1’th optimization iteration

Regularized solution of unconstrained nonlinear optimization problem at the

current iteration

Converged solution obtained by the L;-TSVD for a fixed truncation number t

Converged solution by the L;-TSVD with the truncation number determined by

the cross validation

Solution increment of constrained nonlinear optimization problem at the current

iteration without regularization

Solution increment of unconstrained nonlinear optimization problem at the cur-

rent iteration without regularization

Solution increments contributed by the noise-free displacement residual

14



A  Solution increments contributed by the noise in measurement

AETSD Solution increment by the TSVD at the current optimization iteration with trun-
t cation number t

AE ™" Optimal solution increment by the L,-TSVD at the current iteration

= Unknown actual value of each system parameter in the hypothesis test

Aa—i Solution increment by the L,-TSVD for truncation number t in the cross valida-
ot tion

U,  Noise level
Unex  Maximum perturbation amplitude
|| Eﬂl L;-norm of a function or a vector

|| Euz L,-norm of a function or a vector

|| [Hm L.-norm of a function or a vector

15



Chapter 2

System Identification for Elastic Continua

System identification (SI) algorithms have been widely used for the last few decades
in the area of structural engineering to identify mechanical systems [Bui94] and to detect
damage in structures [Hje96a, Shi99, Yeo00]. It is currently recognized that two different
approaches to SI exist, i.e. a model based one and a non-model based one [Lju87]. In a
model based approach, the system parameters are estimated by least square methods in
which the difference between calculated and measured response is minimized. The
calculated response is obtained from mathematical model simulating real physical
phenomena and the measured ones are obtained from real physical phenomena. In a non-
model based approach, the system parameters are obtained from a black box which can
accommodate a variety of systems without looking into the internal structures of the
physical phenomena. Neural network [Bis94, Sim99], and genetic algorithms [Gol89] are
well-known non-model based approaches.

Each approach has its own merits and drawbacks. In model based approaches, the
physical and mathematical theories are clearly defined for development of the SI algorithm
while appropriate remedies such as regularization techniques are required to resolve the
numerical instabilities. In non-model based approaches, algorithms are very robust and
easy to adapt to complex physical phenomena while they cannot yield good results without
a lot of well-refined information about the phenomenon.

No matter which approach is used in SI for structural systems, it should be noted that

two inherent problems are inevitable, i.e. sparseness and noise in measurements. [Shi94,
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Yeo00] Sparseness of measurements grows severe as the ratio of measured data to the
unknown system parameters decreases. Noise in measurements occurs due to sensitivity
of measuring instruments and uncertainty in experimental environments. Especially,
problems of both sparseness and noise in measurements are very serious in complex
structures like bridges because the number of measurable responses is much smaller than
that of the system parameters and uncertainty in experimental environments is very serious.

In this study, minimization of the least squared error between measured and calculated
response is adopted in SI for structural systems. Minimization of the least squared error is
referred to as the output error estimator hereafter. In many previous researches based on
the output error estimator for structural systems, however, inherent ill-posedness due to
sparseness and noise in measurements has not been fully recognized. A detailed
investigation of the instabilities is also rarely available.

Ill-posedness of SI based on the output error estimator is investigated in the context of
the inverse problems. Regularization technique is adopted to reduce the instabilities of

the output error estimator.

2.1 Output Error Estimator in the SI Scheme for Structural Systems

In structural systems, there are various measurable physical responses such as static
displacements, acceleration, natural frequencies, and mode shapes. Mass, damping, and
stiffness of the structural system may be identified in SI using these responses.  In this
study, it is assumed that structural system is time-invariant and linear. Two-dimensional
finite body with static response will be dealt with as a target structure for the simplicity of

further discussion. This simplification causes no loss of generality when it comes to the
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Fig 2.1 Problem definition and element groups

type of structural system, measured responses, and system parameters to be estimated
because any type of measured response and system parameters can be used in this
formulation.

Fig. 2.1 shows a two-dimensional finite body, for which the geometry and the
boundary conditions of the exterior boundary are known. Prescribed traction is applied
on [, and displacement is specified on I',. It is assumed that only small parts of a given
body have different material properties from the original, known material properties, which
are referred to as baseline properties hereafter. The variation in the material properties
may be caused by either an inclusion of a foreign material or degradation of material.
Damage such as a crack can be also approximately represented by reducing the elastic

material properties around damage without modifying the finite element model [Shi99].
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A variational statement of the equilibrium equation for a finite body can be represented

as the following equation.

LI

J'lj_ o.dV = Jﬁibidv + Iﬂi'ridr for 0Ju; v, 2.1)
v v Ty

v, = {0, OH'(V)|d, =0 onT,} 2.2)

where, V, U,, U, Ojj, and bj are a material configuration, a virtual displacement vector,

ijo
a derivative of the virtual displacement with respect to j’th material coordinate, a stress
tensor, a body force vector, and respectively. HI(V) denotes the Sobolev space of degree
one on V [Str73, Hug87]. The stress tensor can be represented as the following equation

using the Hooke’s law and the strain-displacement relationship.

0; =CiUy, (2.3)
where, Ciju, Ui and Ujj are a elasticity tensor, a displacement vector, and a derivative of the
displacement vector with respect to j’th material coordinate, respectively.  The

displacement vector U; belongs to the function space U, defined as the following equation.

U, ={u, OH'(V)|u, =0 onl,} (2.4)
Eq.(2.1) can be rewritten as the following equation by using Eq.(2.3) and considering the

symmetry of Cij.

[0, ,Cyau 0V = [abdv + [aTdr  for G, Ov, 2.5)
v v M

The unknown system parameters of the finite body can be identified by minimizing a
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least squared error between displacements satisfying Eq.(2.5) and measured displacements

at some part of traction boundary I,.

fw C0=uMu; (0 -uMdr  subject to RX)<O (26

o 1
Minmize 1, = —
X 2 K

where X, U;", R are unknown system property representing Young’s modulus or Poisson

ratio, the measured displacement vector at traction boundary [, a constraint for the system
property, respectively.

To represent stiffness properties of the body, the given domain is divided into a finite
number of subdomains as shown in Fig. 2.1, and the Young’s moduli of the subdomains are
selected as the system parameters. The Poisson’s ratios of all the subdomains are fixed at
the baseline property. Each subdomain may consist of a finite element or a predefined
element group, which contains several finite elements of the same system parameter. For
the simplicity of discussion, it is assumed that an element group for each subdomain is
predefined.

Since the displacement vector satisfying Eq.(2.5) is not available analytically in
general cases, the displacement vector is obtained by applying finite element method to
Eq.(2.5).

KX)u, =P, 2.7
where K, X, U;j and Pj are the stiffness matrix, system parameter vector, nodal displacement
vector of the structure, and the equivalent nodal load vector of the i-th load case,
respectively.

Instead of minimizing Eq.(2.6), a point-collocation method is applied to identify the

20



unknown system parameters of the finite body since the measured displacements are

obtained at some discrete observation points located on I'; as shown in Fig. 2.1.

nlc

Minmize M, :%Z‘uf(x)—u{“uz subject to R(X) <0 (2.8)
X i=1

where, U7, U, and || [ﬂ , denote calculated displacement vector obtained by the finite

element method, measured displacement vector of i’th load case at the discrete observation
points, and the L,-norm of a vector [Wat80]. Linear constraints are used to set physically
significant upper and lower bounds of the system parameters [Hje96]. The minimization

problem defined in Eq. (2.8) is a constrained nonlinear optimization problem because the
displacement vector U; is a nonlinear implicit function of the system parameters X.

The error function defined in Eq. (2.8) is rewritten in a single vector form as

Me :%HU%X)—U"“H (2.9)

2
2
where U® and U™ are vectors obtained by arranging the vectors of the computed
displacements and the measured displacements for each load case in a row. The error

function is normalized by the square of the Euclidean norm of the measured displacement

vector, while system parameters are normalized with respect to the corresponding baseline

properties. The normalized quantities corresponding to M, U°, U™ and x are

denoted as TI., U , U and & respectively. The normalized minimization problem is

written in the following form.
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c _m 2
Minmize T, = %% = %HG(E) —UHE
2

subject to R(§) <0

(2.10)

2.2 1ll-posedness of the Output Error Estimator

Ill-posedness of the output error estimator are characterized by non-uniqueness of
solution and discontinuity of solutions [Han98, Yeo00, ParO1]. In particular, when
measured data are polluted with noise or when a finite element model used for SI does not
represent actual situations, the instabilities become very severe [Bui94, Par01].

Since the output error estimator of Eq. (2.10) is nonlinear optimization problem, it
should be solved iteratively by linearizing Eq. (2.10) with respect to the system parameters.
Therefore, inherent ill-posedness of Eq. (2.10) should be investigated by using the solution
of the linearized form of Eq. (2.10).

Sparseness of measurements cause rank deficiency in the sensitivity matrix under
which no unique solution is guaranteed [Han98]. Noise in measurements violates the
discrete Picard condition which ensures both continuity and convergence of the solution
[Gro84, Han98]. In short, numerical instabilities of the output error estimator are caused
by rank-deficiency of the sensitivity matrix and violation of discrete Picard.

Numerical instabilities of linearized output error estimator will be investigated by
singular value decomposition (SVD) [Gol96]. Two important kinds of ill-posedness, non-
uniqueness and discontinuity of solution of the output error estimator will be investigated
by the SVD because it can be verified through the SVD whether either rank-deficiency or

violation of Picard condition occurs.
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2.2.1 SVD of the Output Error Estimator
The solution of the minimization problem Eq. (2.10) is obtained by solving the
following quadratic sub-problem iteratively.
.. 1
erlAtgllze {5 AETH, AE-NETS, U L_l}

@2.11)
subject to R(§,, +A&)<0

where the subscript K denotes the iteration count, and S,_, and H,_, are the sensitivity
matrix of Gk_l and the Hessian matrix of the error function, respectively. The

displacement residual U[_ is definedas UL, =U—U,_,and AZ is the increment of

normalized system parameters at the current iteration step. The Hessian matrix in Eq.
(2.11) is approximated by the Gauss-Newton Hessian to avoid the computational

complexity of calculating the second order sensitivities of displacements.

Hii =SS (2.12)
To simplify the expressions, the subscript (k-1) of all the variables in the incremental
formulation presented hereafter is omitted.

The linear constraints of Eq. (2.11) on the upper and lower bounds of system
parameters can alleviate ill-posedness of the output error estimator to some extent.
However, the inherent instabilities of the output error estimator cannot be suppressed in
general by imposing linear constraints on the upper and lower bounds of system parameters,
which has been reported by several researchers [Neu73, Neu75, Neu79, Yeo00]. This is

because the instabilities of the output error estimator arise from the characteristics of the
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Hessian and the errors in measurements. Therefore, the instabilities of the SI algorithm
should be investigated before the constraints are imposed, and thus the constraints are not
considered for discussions on the stability of the SI algorithm hereafter. In other words,
the instabilities of the SI algorithm are presented in the original solution space, not in the
solution space reduced by the constraints for the remaining parts of this chapter.

The first-order necessary optimality condition for Eq. (2.11) without the constraints is

given by the following linear equation.

S'SAE, -S"U" =0 (2.13)
here, A&, denotes the solution of the unconstrained quadratic sub-problem of Eq. (2.11).
By the singular value decomposition (SVD) [Gol96], the mxn sensitivity matrix S can be

written as a product of an mxn matrix Z, an nxn diagonal matrix Q, and the transpose of an

nxn V as expressed in Eq. (2.14). In the definition, m is the total number of measured

degrees of freedom for all the applied loads and n is the number of system parameters.

S=zQV' (2.14)
where
Z'z=1,
Viv=w'=1, (2.15)
Q =diag(w;)

in which I, is the identity matrix of order n, and j 1s a singular value of S which has the

descending order of =0, 2...2W,2€ 2W,,,2...2W, =W, 20. €, and p denotes

24



a threshold value to determine the rank and the rank of S, respectively [Gol96].

From the mathematical points of view, the threshold value € isexact 0. However,

p

the threshold value, €, cannot be 0 if the numerical calculations are used to obtain the

singular values because it should be consistent with the machine precision used in the
numerical calculations [Gol96]. In this study, the threshold value is determined
considering the machine precision by the following equation because the singular values

can be obtained by numerical calculations.

8, =8, IS, 2.16)
where ép and Oy are a threshold value to determine the numerical rank p and the

tolerance based on the machine precision, respectively. ||0k, denotes the L,-norm of the
matrix [Wat80].

If p=n, the sensitivity matrix is called rank-sufficient while it is called rank-deficient if
p<n. More detailed discussions about rank-deficiency will be treated in section 2.2.2.
The columns of Z are referred to as the left singular vectors (LSV) while the columns of V

are referred to as the right singular vectors (RSV).

2.2.2 Non-Uniqgueness of the Solution

Sparseness of measurements occurs when the ratio of the number of measurements to
the unknown system parameters is very small. Because of sparseness of measurements,
minimization problem of the output error estimator becomes an underdetermined one in

which there is infinite number of solutions. As far as the linear algebra is concerned, an
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underdetermined problem has rank-deficiency. Therefore, sparseness of the measurement
data in SI problems based on the output error estimator causes rank-deficiency of the
sensitivity matrix mentioned in section 2.2.1. The sparseness of the measured response
occur very often in the area of SI for structural systems. However, many remedies for the
sparseness depend on ad-hoc method that enforces a simple condition that the number of
measured responses should be always larger than that of the system parameters. It should
be noted that rank-deficiency may occur under even this condition unless independency of
the measurements is provided sufficiently. The most appropriate method which can
measure the degree of the rank-deficiency, is singular value decomposition of the
sensitivity matrix. Once the sensitivity matrix is decomposed as Eq. (2.14), existence and
degree of the rank-deficiency is revealed. Rank-deficiency in the rank-deficient problems
arises when the numerical rank of the sensitivity matrix r is smaller than n as mentioned in
section 2.1.2.

Using the properties of Eq. (2.15), the solution of the rank-deficient case can be

represented as the following equation [Gol96, Han98].
C 1,7 .
— — r
AE, = v,w'ZiU"+ D yv, (2.17)
j=1 j=p+l
where Vj and Zj are column vectors which consist of the RSV and LSV corresponding to the
J’th singular value (3, and Yj is an arbitrary real value. The arbitrariness of the coefficient y;

causes the number of the solution infinite, which is ill-posedness as the non-uniqueness of
the solution. The first term of Eq. (2.17) is a constant solution part which is affected by

the U" directly while the second term is an arbitrary solution part which is not affected by
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U" and makes the number of the solution infinite. In other words, the solution parts
combined linearly with RSVs from Vi1 to Vy has no influence on the residual U" because

they lie in the null space of the sensitivity matrix.

2.2.3 Discontinuity of the Solution

Noise in measurements is the main source which results in discontinuity of the
solution in Eq. (2.13). With noise in the measurements, the degree of discontinuity
increases as the number of system parameters increases regardless of rank-deficiency.
This phenomenon can be easily verified if SVD is applied to Eq. (2.13). For the
simplicity of explanation, Eq.(2.13) is assumed rank-sufficient.

Using similar manipulation as in Eq. (2.17), the solution of the rank-sufficient problem

is represented as the following equation.

AE, :Vdiag(wL)ZTUr =>v,w;'z;U" (2.18)

i i=
Eq. (2.18) is defined as the a posteriori solution increment because it is determined purely
by the measured displacements and the analytical model of a given structure without
utilizing the a priori information on the system. The term Z'U" in Eq. (2.18) is often

referred to as the Fourier coefficients [Han92a, Han98].

The displacement residual U" cannot converge to zero for noise-polluted
measurements because noisy displacements usually contain incompatible components that

cannot be obtained just by adjusting the system parameters of a mathematical model. In

that case, in order to make AEU converge to zero, each column z; should become
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orthogonal to U, in an absolute sense through the minimization iterations. Even so, the
optimization iteration may diverge if some of the singular values become smaller than the
corresponding Fourier coefficients during iterations. In other words, the ratio of the
singular value to the corresponding Fourier coefficients must converge to zero to guarantee
the convergence of the nonlinear optimization. Therefore, Fourier coefficients must
converge faster than the corresponding singular value so that the optimization iteration can
converge. This condition is called discrete Picard condition. The discrete Picard

condition can be represented with respect to a certain tolerance as the following equation.

-1, T — ] =
w,z;U" =1, j=1..,n (2.19)
where T is some number between 0 and 1. Eq. (2.19) indicates that the Fourier coefficient

must decay to zero more rapidly than the corresponding singular value as the | increases.
Picard condition will be easily violated if either sensitivity matrix or measurements are
polluted with noise components. Especially, if the measurements are polluted with severe
noise, the Picard condition may be violated because the Fourier coefficient corresponding
to the smaller singular values will level off at the noise level while the corresponding
singular value decay to zero [Han98].

There are two sources of noise when applying an SI algorithm; i.e. measurement errors
and modeling errors. The former represents noise caused by sensitivity of sensors or
misreading of test equipment during actual measurements. The latter occurs due to the
discrepancy between a real structure and its mathematical model employed in the SI.  For
example, in case the a priori information is not available on internal flaws like cracks in a

structure, such flaws cannot be taken into account in the finite element model used for SI.
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The modeling errors cannot be reduced in the minimization with a predefined finite
element model. The measurement errors are probabilistic while the modeling errors are
systematic in nature.

The measured displacement can be theoretically decomposed into the noise-free

displacementUf and the noise vector e as follows.

U=U"+e (2.20)

The modeling errors, which lead to errors in the stiffness matrix, result in noise in the

computed displacements, but not in measured displacements. However, it is still possible

to employ Eq. (2.20) by defining the noise-free displacements as the best-fitting

displacements with measured ones obtainable by adjusting predefined system parameters in

the mathematical model. This decomposition of displacement cannot be achieved
explicitly, and is purely conceptual.

Substitution of Eq. (2.20) into Eq. (2.18) leads to the following expression.

AE, :Vdiag%)f @' —U)+Vdiag<wi>ZTe = AE! +AE" 221)

j j
where AEJ and A& represent the solution increments contributed by the noise-free
displacement residual and by the noise in measurement, respectively. Unless noise in
measurement data is negligible or the noise vector is nearly orthogonal to the LSV, the
solution increment for the noisy measurement deviates from the noise-free solution mainly
due to the second term of Eq. (2.21). In particular, the components of Z'e associated with

small singular values amplify the deviation more severely. Under this circumstances, the
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discrete Picard condition in Eq.(2.19) is easily violated. The solution is likely to lose
physical significance due to the accumulation of solution components amplified by
physically meaningless noise during optimization iterations. A small change in noise may
yield a totally different solution because small singular values amplify the change in
measurements, which is a source of discontinuity characteristics in SI problems. It can be
concluded that the discontinuity of the solution increment also occur during the

optimization iteration when the discrete Picard condition is violated.

2.3 Regularization — Preserving Regularity of the Solution of Sl

There are several kinds of complex methodologies and techniques that can realize the
regularization. However, the main idea of the regularization is to preserve the regularity
of the solution that defines a proper function space where the solution must exist [Tik77,
Joh87, Bui94]. Since a proper function space for the solution is usually provided in a
forward problem either explicitly or implicitly, the regularity of the solution is guaranteed
and the forward problem is well-posed.

To explain the regularity of the solution easily, the function spaces representing the
system property and the displacement field, and mapping between the system property and
displacement field are shown in Fig. 2.2. X, X', U, and U’ represent the system property, an
admissible system property, the displacement field, and an admissible displacement field,
respectively. In this study, the term ‘admissible’ implies that a function space representing
a physical property should be regular so that it has both physical and mathematical
significance. =~ Whether a function space is regular is judged by the regularity

(integrability) of the function space [Joh83].
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u=K"'P

Minimize 1
X

Fig. 2.2 System property, displacement field, forward mapping and inverse mapping

In general, the forward mapping represented by a structural stiffness equation is
performed from an admissible system property onto an admissible displacement field as
shown in Fig. 2.2 since the stiffness equation is derived from the variational formulations.
However, it is not guaranteed that the inverse mapping represented by the output error
estimator between measured and calculated response is performed from the admissible.
This is because a proper solution space of the system property is not defined by the output
error estimator and the measurements inevitably contain random and modeling errors. In
other words, Ill-posedness of the inverse mapping represented only by the output error
estimator occurs since there is no proper regularity condition of the system property.
Therefore a proper regularity condition should be adopted to alleviate ill-posedness of the
inverse mapping.

In general, a strong form of the regularity conditions with respect to the model space is
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represented by the integrability of the model space [Joh83, Ode79].

1/r
(j|x—x0|'dvj <o, [<r<ow (2.22)
\Y

where, X o is the center of the function space given a priori. The system property
satisfying Eq.(2.22) is an admissible system property, X" in Fig. 2.2. The topology of the
system property depends on .

The weak from of the regularity is usually imposed in practice since it is impossible to

employ the strong form of regularity condition directly.

[lx=x,["dv <R} (2.23)
\

where, Ry denotes the size of the function space. r and Ry is determined properly by the
regularization technique by considering the physical and the mathematical characteristics
of the system property as known a priori. For example, standard Tikhonov regularization
r=2, which means the original system property should be square-integrable in the vicinity

of Xo. In other words, the system property defined by Tikhonov regularization is a

subspace of the L,-space that consists of piecewise continuous functions [Joh87].
2 2
[lx=x,["av <R; (2.24)
\Y

A subspace of function space X satisfying Eq.(2.24) is also an admissible system

property, X ® determined by the regularization technique in Fig. 2.3.
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Minimize 1 ; +Regularity condition
Fig. 2.3 Inverse mapping with regularization
Fig. 2.4 and Fig. 2.5 present the effect of the regularization that alleviate the typical ill-
posedness, non-uniqueness and the discontinuity of the solution. Xa, X;, and Ua, denote

elements that satisfy the following condition.

Fig. 2.4 Alleviation of the non-uniqueness of the solution by regularization
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Fig. 2.5 Alleviation of the discontinuity of the solution by regularization

x, Ox"
x, Ox (2.25)
u, Ou”

The non-uniqueness of the solution may occur when the solution corresponding to the
displacement U, is not unique.  Solutions obtained from the inverse mapping
corresponding to Ux may include those in the admissible and inadmissible system property
as shown in Fig.2.4. If the regularity condition is enforced by the regularization technique,
only the solution that belongs to an admissible system property can be obtained.

The discontinuity of the solution occurs when the inverse mapping from the
displacement field in the vicinity of Us to the system property yields large deviations
depicted as the darkly shadowed region in the vicinity of Xa. The darkly shadowed region
includes solutions of admissible and inadmissible system property. In general, most of the

darkly shadowed region lies in the inadmissible system property as shown in Fig. 2.5.
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Therefore, if the regularity condition is enforced by the regularization technique, solutions
continuous with respect to the small perturbation of the output can be obtained, which lies

in the admissible system property.

2.4 Numerical Remedies for Output Error Estimator

There are two major numerical remedies to reduce ill-posedness of the inverse
problems. One is truncated singular value decomposition (TSVD) [Gol96, Han98] which
resolves the non-uniqueness of the solution, and the other is Tikhonov regularization
technique [Tik77, Gro84, Bui94, Han98] which enhances both convergence and continuity
of the solution. However, both are equivalent each other because they convert ill-posed
problem into well-posed one by imposing the positive definiteness on original ill-posed
problems. The degree of smoothness is proportional to that of positive definiteness which
is determined by a truncation number of TSVD and a regularization factor in the
regularization technique.

In these numerical remedies, the most important issue is to keep consistent
regularization effect on the parameter estimation, which is controlled by truncation number
of TSVD [Vog86] and a regularization factor [Bui94, Han98, Par01] in the regularization
technique. Therefore, it is crucial to determine a well-balanced truncation number and
regularization factor in order to obtain a physically meaningful and numerically stable
solution of an inverse problem. This section presents detailed description on the TSVD
and regularization technique. Various schemes to determine an optimal truncation number

and regularization factor are also presented.
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2.4.1 Truncated Singular Value Decomposition

As mentioned in section 2.2.2, there is an infinite number of solutions in the rank-
deficient problem. Truncated singular value decomposition(TSVD) is motivated from the
simple idea that feasible solutions are smooth rather than oscillatory among an infinite
number of solutions if the a priori estimates of the solution is smooth. The degree of the
smoothness of the solution can be measured by the L,-norm of the solution vector. In the
TSVD, the solution with the least L,-norm is defined as the most feasible one [Gol96,

Han98]. Using this definition, the solution in Eq.(2.11) can be determined uniquely.

Min [€ -1, = Min [0, - (@-&,); (2.26)

Substituting Eq. (2.17) into Eq. (2.26), Eq. (2.26) can be converted into the minimization

problem with respect to the coefficient ;.

2

Min| > v,V +{Zvjw?zguf +(1‘5k)}
u j=1

j=r+l

2

> vw'z U = (1-§))

j=t

= Min

it

2 T
+2{Zvjw}12TjUrJ {Zijj) (2.27)
2

j=1 j=r+l

constant 0

2
2V,

j=r+l

+2 ivivi] (1-8,)+

i=r+l

2

The minimization problem of Eq.(2.17) can be rewritten as the following equation because
the first term is constant, the second term is 0 due to the orthogonality of the RSV in Eq.

2.27).
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Mm

>y,

j=r+l

+2(Zv. J(l— D) (228)

i=r+l

The solution Y; to Eq. (2.28) can be obtained easily by differentiating Eq.(2.28) with

respect to Y; and making the differential equations equal to zero for all ;.

ayjl

The solution Y; is determined as the following equation from Eq.(2.29) with VTjVj

RS

=r+l1

+2(Zy, J(1—§k)]:2v}vjyj+2vTj(1—Ek):0 (2.29)

r+l

equaling to 1.

Y, = —_ =vi(-§&) (2:30)

Thus an arbitrary solution in Eq. (2.17) can be determined uniquely incorporated with Eq.

(2.30) as the following equation.

TSVD zv wlzTUr + ZV vl (1 a ) (2.31)

j=r+l

aTSVD

where the solution is denoted as Ag, since it can be obtained by the truncated singular

value decomposition (TSVD) of the sensitivity matrix if r, the rank of the sensitivity matrix,

is less than n [Han98].
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2.4.2 Tikhonov Regularization

The concept of the Tikhonov regularization has been adopted to overcome ill-
posedness of inverse problems, and successfully applied to various types of inverse
problems [Bec84, Sch92, Lee99, Lee00, Par01]. However, little attention has been paid to
the regularization technique in the realm of structural engineering. Recently, some
regularization techniques have been tested for system identification and damage detection
in structures [Bec84, Sch92, Lee99, Lee00, Par01].

The regularization can be interpreted as a process of mixing the a priori estimates of
system parameters and the a posteriori solution [Bui94, Par01]. The baseline properties
are selected as the a priori estimates of the system parameters in this paper. The a priori
estimates are taken into account in the problem statement of inverse problems by adding a
regularization function with the a priori estimates of the system parameters to the error
function. The regularization function should be defined differently for different problems
since each problem has different regularity condition that defines the feasible solution
space as mentioned in section 2.3. Focusing on the estimation of foreign material
properties of elastic continua, the solution space should be defined as a subspace of L,(V),
square-integrable with respect to the system property since the physical distribution of the
system property is piecewise continuous. The regularity condition of the solution space
can be weakly imposed by adding the following regularization function to the output error

estimator of Eq.(2.6). [Tik77, Gro84, Mor93].

) R N
”R—E?\ VJ(X X,) dV (2.32)
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where, A usually referred as the regularization factor that controls the degree of the
regularity of the solution space [Tik77, Gro84, Mor93, Bui9%4, ParO1]. Eq.(2.32) is
referred as the standard Tikhonov regularization function.

Since the group configuration of material properties are predefined as shown in Fig.2.1,

Eq.(2.32) is converted into the discrete form.
_ 1y 2
Mg =2A X =%, (2.33)

where X, denote the a priori estimates of system parameters. By adding the regularization
function normalized by the a priori estimates to the minimization problem of Eq. (2.10), a

regularized system identification problem is written in the following form.

Minimize n:%HLNJ(E) - UHi +%)\2 [€-1> subjectto R(®) <0 (2.34)

where 1 denotes a column vector which has unit values in all the components. The
objective function in Eq. (2.34) is referred to as the regularized error function or
regularized output error estimator. The regularization factor determines the degree of
regularization in the system identification; i.e. the influence of the a priori estimates on the
solution of Eq. (2.34). The quadratic sub-problem of Eq. (2.34) is defined as

Ming{nize BAETSTSAE -NE'STU’ } +\? BAETAE -NE"(1- a)}

(2.35)
subject to R(§ +A&) <0

The stability of Eq. (2.35) is investigated under the unconstrained condition to clearly

present the effect of the regularization. Furthermore, the regularization factor should be
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determined for the unconstrained problems so that it can overcome the original sources of
instabilities explained in the previous section 2.2.1. Once the regularization factor is
obtained for the unconstrained problem, the quadratic sub-problem with the active
constraints defined in Eq. (2.35) can be solved.

The regularized solution of the unconstrained problem of Eq. (2.35) is obtained by use

of the SVD.
AE® = Vdiag(1-a )diag(——)Z" U’ +Vdiag(a V" (1-§) (2.36)
wW.
]

where o = N/ (00? +\’). With some mathematical manipulation of Eq. (2.36) by use

of the orthogonal properties of V and Z, an intuitive expression is derived as follows.

VTES =diag(a;)V'1+diag(l-a;)V'E, (2.37)

where

& =E+AE], §, =E+AE, (2.38)

In Eq. (2.37), EE and &, represent the regularized solution and the a posteriori solution

of the unconstrained problem at the current iteration, respectively. The expression in Eq.

(2.37) implies that the projection of the regularized solution onto V is a generalized

average between the projections of the a priori estimates and the a posteriori solution onto
V.

The weighting factor j, which varies with the regularization factor A from 0 to 1,

adjusts the relative magnitude between the a posteriori solution and the a priori estimates in
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the regularized solution. The weighing factor approaches zero as the regularization factor
becomes smaller, and one as the regularization factor becomes larger. Therefore, the
solution converges to the a priori estimates for a large regularization factor while the
solution converges to the a posteriori solution for a small regularization factor. In case the
regularization factor is fixed, the weighting factors become larger for smaller singular
values. This fact implies that the stronger effect of the a priori estimates is included in a

solution component corresponding to the smaller singular value, and vice versa.

Unlike Eq. (2.18), the orthogonality of the displacement residual U" to each LSV is
not required for the convergence of Eq. (2.36) because non-vanishing components in the
first term can be cancelled out by the second term. By decomposing the a posteriori
solution increment into the noise-free components and error components using Eq. (2.14),

the following expression is obtained.

VTES = {diag(a;)V'1+diag(l-a )V E;}

+diag(1-a, )diag(L)ZTe (239)
w.

j
where E,J denotes the noise-free a posteriori solution. Since the weighting factors range

from 0 to 1 for all singular values, the effect of noise on the solution can be reduced. In
particular, the components of Z'e associated with small singular values, which are
responsible for the discontinuity and deviation from the noise-free solution, are mostly
suppressed in the regularized solution by the regularization effect. This is because the
weighting factors corresponding to smaller singular values become almost one for a

properly selected regularization factor.
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2.5 Determination of an Optimal Regularization Factor

Several well-defined methods have been proposed to determine an optimal
regularization factor in linear inverse problems. The L-curve method (LCM) proposed by
Hansen [Han92a] and the generalized cross validation (GCV) method proposed by Golub
et al. [Gol78] are well-known schemes. Kaller and M. Bertrant utilized the GCV for
medical image enhancing problems [Kal96]. While the aforementioned schemes have
been proven to be effective in linear inverse problems, no rigorous schemes for nonlinear
inverse analysis have been proposed yet. Regularization factors of nonlinear inverse
problems can be determined by applying the LCM and the GCV at each minimization
iteration, where a linearized quadratic sub-problem is solved. Eriksson et al. reported that
the LCM vyields non-convergent results for a nonlinear inverse problem with an explicit
nonlinear function model [Eri96], which is also observed in the current research. It has
also been found through our extensive numerical experiments that the GCV often yields
too small regularization factors, and is unable to effectively control the instabilities of the
SI algorithms.

A new scheme, defined as a geometric mean scheme (GMS) proposed Park et al., is
successfully utilized to overcome drawbacks of existing schemes in the determination of
the regularization factor for SI in elastic continua [ParO1]. In this section several

determination schemes including GMS will be presented.

2.5.1 Geometric Mean Scheme (GMS)
A new scheme of a geometric mean scheme (GMS) proposed by Park et al.(2001)

determines the optimal regularization factor. In this method, an optimal regularization
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Fig. 2.6. Schematic drawing for an optimal regularization factor in the GMS

factor is defined as the geometric average between the maximum and the minimum
singular value of the sensitivity matrix. ~As shown in Eq. (2.37), the regularization effect
on each component of the solution depends on the magnitude of the corresponding singular
value. Fig.2.6 illustrates the variation of weighting factors for the maximum and the
minimum singular values with the regularization factor. In the regularized solution, the
maximum effect of the a priori information and the a posteriori solution occurs with the
smallest singular value and the largest singular value, respectively. On the other hand, the
minimum effect of the a priori information and the a posteriori solution occurs for the
largest singular value and the smallest singular value, respectively. Based on this
observation, the optimal regularization factor is defined as the one that yields the same

maximum and minimum effect of the a priori information and the a posteriori solution,
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which can be stated as

l-a . =a (2.40)
where Opax and Opi, are the weighting factors corresponding to the maximum singular
value and the minimum singular value, respectively. The first and the second equation in
Eq. (2.40) represent the balancing conditions on the maximum and the minimum effect,
respectively as shown in Fig. 2.6. An Interesting point is that the two equations are
identical and yield the geometric average between the smallest and the largest singular

value for the optimal solution of A.

A=W W

opt max - min

(2.41)

If zero singular values exist, the smallest non-zero singular value may be used for Wyp.

2.5.2 The L-Curve Method (LCM)

The L-curve is a log-log plot of the regularization function versus the error function
for various regularization factors. Hansen showed for linear inverse problems that the
plot always formed a ‘L’ shaped curve as shown in Fig. 2.7, and that the optimal
regularization factor corresponds to the sharp edge of the curve where the curvature of the
curve becomes maximal [Han92a]. For nonlinear inverse problems, the L-curve is
defined at each iteration for the linearized error function.

To apply the LCM directly at each iteration, the following transformation between A,

and AY is necessary.

AR =E+AEF -1 (2.42)
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Fig. 2.7. Basic concept of the L-curve method

where AY is transformed regularized solution of Eq. (2.23).

The regularization function 77, and the linearized error function 77 are expressed

in terms of the weighting factor, which is a function of the regularization factor as follows.

2

O

2

(2.43)
. =[0-U+sag* Hz =[sax® ~b"

2
2

=[(1 -2z o[ +|diag(a,)u"b"

2
2

where b" =S(§ —1)—=U". The parametric form of the L-curve for the current iteration

step is given by the following expression.

(PA),N(N)) = (log(TTy ), log(TT; )) (2.44)
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The elimination of A from Eq. (2.43) leads to the L-curve for the current iteration. Since
the regularization function and the linearized error function given in Eq. (2.42) are
monotonically decreasing and monotonically increasing with respect to A, respectively, Eq.
(2.43) forms a ‘L’ shaped curve. Since all the variables in Eq. (2.42) are calculated from
the previous iteration, only one SVD for the sensitivity matrix is required to construct the
L-curve.

The curvature of the L-curve is given as

k(hy =20
(@P) +(n)" )"

(2.45)

where the superscript ' denotes the differentiation of a variable with respect to A.  Since
p and n are continuous functions of A and expressed explicitly for A, the derivatives in Eq.

(2.44) are obtained analytically. The optimal regularization factor that yields the
maximum curvature of the L-curve is calculated precisely by a one-dimensional line search.

However, for some nonlinear inverse problems, the solutions by the LCM do not
converge but oscillate between two L-curves as schematically drawn in Fig. 2.8. In view
of the regularization factor, two optimal regularization factors are repeatedly obtained with
a large and a small value. The L-curve with a large regularization factor corresponds to
the nonlinear problem more affected by the solution error in addition to the measurement
noise. On the other hand, the L-curve with a smaller regularization factor is affected by

the measurement noise.
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Fig. 2.8. Schematic drawing — Oscillating results of the LCM

2.5.3 Variable Regularization Factor Scheme (VRFS)

Recently, the variable regularization factor scheme (VRFS) is proposed by Lee et al.
for nonlinear inverse problems to identify shapes of inclusions in finite bodies [Lee99,
Lee00, Yeo00]. The VRFS is based on an argument that the regularization function
should be smaller than the error function to prevent the regularization function from
dominating the optimization process.

In the VRFS, the regularization factor is defined as the inequality between the error

function and the regularization function as follows.

HU(E) - UH; 2N [E -1 (2.46)

When the regularization function becomes larger than the error function by the

solution of the current iteration, the regularization factor is reduced by multiplying a
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prescribed reduction factor [ ranging from 0 to 1. Lee et al. demonstrated that
identification results are relatively insensitive to moderate values of the reduction factor
around 0.1. The VRFS with 3 = 0.1 has been successfully applied to shape identification
problems and damage detection in framed structures [Lee99, Lee00, Yeo00]. However,
the VRFS fails to converge for some nonlinear problems with modeling errors as
demonstrated by simulation studies. One of the advantages of the VREFS is that the VRFS

method can be easily applied to any type of regularization functions.

2.5.4 Generalized Cross Validation (GCV)

Generalized cross validation (GCV) has been a popular method not only for
determining the regularization factor but for estimating the noise amplitude of
measurements [Gol78, Han98]. GCV is based on the statistical idea that an appropriate
regularization factor should predict missing measurements. That is, if an arbitrary
component of the measurement vector is left out, the corresponding regularization factor
should predict this component of the measurement well. The optimal regularization factor
by GCV can be obtained from the minimization of GCV function with respect to the

regularization factor [Gol78, Han98].

R _ |l |2
viin IISBX® =b" |2
» Trace(l, —SS")’

(2.47)

where AXR, I, and S* are transformed regularized solution as Eq.(2.42), an identity
. . . : . |
matrix of order m, and regularized inverse, say, Vdiag(1-a)diag(-—)Z" in
W:
j

Eq.(2.46) , respectively. Trace(Dldenotes summation of diagonals of a squared matrix.
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2.6 Numerical Examples

The effectiveness of the regularization is investigated through numerical simulation
studies. Noise caused by measurement error is simulated by adding random noise
generated from a uniform probability function to displacements calculated by a finite
element model [Shi94, Ye099]. The uniform probability function is selected because it
generates more widely distributed errors than the normal distribution for given amplitude
of error. The Monte Carlo simulation is carried out to illustrate the enhancement of
continuity of the solution by regularization for both examples.

The Young’s modulus of each element group is taken as the system parameter.

Element groups are predefined to limit discussions to the regularization technique. The

. . -3 . . . . . .
convergence criterion, |A§||/ ||§|| <107, is used to terminate optimization iterations unless

otherwise stated. The baseline properties are assumed to be the Young’s modulus of steel.
The initial values of the system parameters are taken to be the same as the baseline
properties for the optimization. The following upper and lower bounds are used for each

system parameter.

0.1 GPa < X, <630 GPa (2.48)

The reduction factor of the VRFS, 3=0.1, is used throughout the numerical study [Lee99].
The recursive quadratic programming with the active set algorithm [Lue89] is utilized for

optimization.

2.6.1 Measurement error — Identification of a Foreign Inclusion in a Square Plate

To investigate the effects of measurement errors on the identification, a simulated
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Fig. 2.9 Geometry and boundary conditions of a square plate

study is carried out with an inclusion in a square plate under the plane stress condition.
Fig. 2.9 illustrates the geometry, boundary conditions and applied traction. The shadowed
region in the figure denotes the inclusion. Young’s modulus of the square plate is 210
GPa, which is representative of steel. Two types of inclusions — a soft inclusion of
aluminum (E = 70 GPa) and a hard inclusion of tungsten (E = 380 GPa) — are considered.
Displacements are measured at the observation points located on the outer boundary of
the square plate. Two different measurement cases are considered. The observation
points are depicted as solid circles and open squares in Fig. 2.10 for measurement cases I
and II, respectively. It is assumed that measurements are preformed independently for

two load cases, t, and t,. Both X- and y-component of displacements are measured at each
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Fig. 2.10 Observation points and element group configuration of a square plate

observation point. The noise amplitudes of 5% and 1 % are applied for measurement
cases I and II, respectively.

The finite element model employed in the parameter estimation is identical to the
model used for obtaining the measured displacement, which consists of 100 8-node
quadratic elements and 384 nodes. The predefined element groups are shown in Fig. 2.10,

and each element group contains 4 elements.

Measurement Case |

Identified results for the soft inclusion by different regularization techniques are
compared in Fig. 2.11. Identification without regularization yields results that oscillate
severely. It is difficult to determine the existence of the inclusion from the identified
results without regularization because the reduction in the Young’s modulus of element
group 17 may be caused by either an actual inclusion or the oscillating results. When a

regularization technique is employed, however, the amplitude of oscillation is reduced for
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Fig. 2.11 Estimated Young's moduli by different regularization schemes
(Soft inclusion - measurement case 1)

the element groups in the matrix material. From the figure, it is seen clearly that the GMS
controls the oscillation of the identified results most effectively among the other schemes.
Although the LCM and VREFS alleviate the oscillation magnitudes to some extent, they
yield rather large oscillation magnitudes compared to the GMS. Since Young’s modulus
of the soft inclusion reduces prominently compared with the oscillation magnitude of the
other element groups by the GMS, the existence of a soft inclusion is clearly assured.

Fig. 2.12 illustrates the identification results for the hard inclusion with the
measurements of case I. The results by SI without the regularization severely oscillate as
in the soft inclusion. The identified results by the LCM are not drawn in the figure
because optimization by the LCM does not converge as reported by Eriksson [Eri96].
Both the GMS and VRFS converge to almost the same results for the element groups in the

matrix material. However, the GMS yields higher Young’s modulus of the inclusion than
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Fig. 2.13 Regularization factors by different regularization schemes
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VRFS. Although Young’s modulus of the inclusion is estimated somewhat lower than the
actual value, the identification results by the GMS are good enough to point out the
existence of a stiff material at element group 17.

Fig. 2.13 shows regularization factors at each iteration step obtained by the different
schemes for the hard and soft inclusions, respectively. By relating regularization factors
shown in Fig. 2.13 to the identified results in Fig. 2.11 and Fig. 2.12, it is easily observed
that a larger regularization factor yields less oscillating results. For the hard inclusion
case, the LCM yields periodically oscillating regularization factors between the two values,
which causes non-convergent optimization iterations. Fig. 2.14 shows the solutions
corresponding to the lower and upper regularization factor during oscillations by the LCM
together with the converged solution by the GMS.  In the LCM, the lower regularization

factor yields more oscillating results with sharp resolution at the hard inclusion while the

420
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|
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Young's modulus of tungsten

2107

Baseline property

Young's Modulus (GPa)

1 - LCM with the lower regularization factor
LCM with the upper regularization factor
°© GMS
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1 3 5 7 9 1 13 15 17 19 21 23 25

Element Group

Fig. 2.14 Two oscillating solutions by the LCM and the solution by the GMS
(Hard inclusion - measurement case I)
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upper regularization factor yields less oscillating results with smeared resolution at the hard
inclusion. The solution by the GMS seems to be a mixture of favorable aspects of the two
solutions by the LCM, i.e., a less oscillating solution with sharper resolution at the hard
inclusion.

Fig. 2.15 shows distributions of singular values of three different Hessian matrices, the
error function, the regularization function and the regularized error function of Eq. (2.34) at

the first iteration step for the hard inclusion problem. In the same figure, the weighting

factors 0 ; associated with the singular values are also drawn. For drawing the weighting

factors, the right vertical axis is used as the reference. In the figure, it is observed that the
lowest singular value of the error function is very small compared with the other singular

values, which caused the oscillations in the identification without the regularization as
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shown in Fig. 2.12. The singular values of the Hessian matrix of the regularized error
function are shifted by the singular value of the regularization function. However, the
regularization function does not affect the distribution of the singular values of the
regularized error function from the sixth singular value. Therefore, the a priori estimates
have a strong influence on the solution components corresponding to the smaller singular
values, and the influence of the a priori estimates decrease drastically for larger singular
values. This phenomenon can be clearly observed by the distribution of the weighting
factors in the same figure.

Fig. 2.16 and Fig. 2.17 illustrate the solution of the unconstrained quadratic sub-
problem in the RSV direction and in the system parameter direction at the first iteration
corresponding to the noise-free and noise components in the measured displacements,
respectively. The SI algorithms with the GMS and without the regularization yield almost
identical solution increments for the noise-free components, even though the GMS causes a
little smeared increments corresponding to lower singular values. However, for the noise
components, the regularization develops surprising differences in the solution increments
as demonstrated in Fig. 2.17. Without regularization, the noise components of the
measurements are amplified by the lowest singular value. The solution increment caused
by the noise components corresponding to the lowest singular value is about 30 times
larger than the maximum solution increments caused by the noise-free components in the
RSV direction. The amplified noise component contaminates the whole solution
increments with the noise in the system parameter direction. Since the weighting factor
for the lowest singular values in the GMS is almost 1 as shown in Fig. 2.15, most of the

noise components corresponding to the lowest singular value in Eq. (2.37) are suppressed.
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in measurements at the 1st iteration (Hard inclusion - measurement case I)
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Consequently, the solution increments caused by the noise components are very small in
the SI with the GMS compared to those in SI without the regularization.

Fig. 2.18 and Fig. 2.19 show the solution of the unconstrained quadratic sub-problem
in the RSV direction at the converged stage for SI with the GMS and without regularization,
respectively. In Fig. 2.19, the absolute values of regularized solution increments are
plotted in logarithmic scale for the left vertical axis while the increments associated with
the a posteriori solution and a priori estimates are plotted in a linear scale for the right
vertical axis. Both the SI algorithms yield almost zero increments in the RSV direction at
the converged state. However, two schemes exhibit different patterns in reducing solution
increments. The norm of the displacement residual reduces only by 0.033 in the SI
algorithm without regularization. Nevertheless, the norm of the solution increments is
converged to the specified criterion because the Fourier coefficients are reduced to below
10° order and the singular values maintain relatively larger values than the Fourier
coefficients. On the other hand, the SI algorithm with the GMS reduces the solution
increments by balancing the increments associated with the a priori estimates and a
posteriori solution as shown in Fig. 2.19.

To investigate continuity of solutions in various SI algorithms to measurement errors, a
Monte-Carlo simulation with 30 trials at 5% noise amplitude is carried out. A different
set of measured data is used for each trial by generating different random noise from the
uniform probability density function [Hje96]. The relative magnitude of the standard
deviation to the mean value of each system parameter obtained by the Monte-Carlo
simulation is a good indicator of the continuity of solutions because the standard deviation

represents the degree of scatter of a statistical variable. The computed mean and standard
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Fig. 2.20 Mean values and standard deviations of estimated Young's
moduli by Monte-Carlo simulation (Hard inclusion - measurement case I)

deviation of each system parameter from the Monte Carlo simulations are compared in Fig.
2.20 for different regularization schemes. Results by the LCM are not presented since the
LCM fails to converge in 15 out of 30 trials. When the regularization is not employed in
the SI algorithm, large standard deviations usually occur at the element groups of which
estimated moduli are larger than the baseline property. Meanwhile, SI with a
regularization technique yields small and consistent standard deviations for all system
parameters, which illustrates an enhancement of the continuity of solutions with a
regularization technique. Both the VRFS and GMS yield almost identical results and
smaller elastic modulus of the inclusion than the actual value in an average sense.
Despite the underestimation, the existence of an inclusion with a stiffer material at element

group 17 is clearly distinguishable in general because oscillations in the other element gro-
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-ups are negligible.

Measurement Case |1

The influence of sparseness of measured data on estimated results is studied in Fig.
2.21 and Fig. 2.22. The sparseness of measured data is simulated by reducing the number
of the observation points and by locating some of the observation points close to each other
as shown in Fig 2.10. Since the three observation points on each side of the square plate
are closely placed, the independence of information supplied by those observation points is
reduced, which deteriorates the quality of information.

Fig. 2.21 and Fig 2.22 show the estimated Young’s modulus for the soft and hard
inclusion case with 1% noise amplitude, respectively. Although the noise amplitude of
this measurement case is much smaller than that of measurement case I, the solutions by SI
without the regularization oscillate more severely. This is because the lowest singular
value of the sensitivity matrix becomes much smaller in this measurement case than in the
previous one due to the poor quality of information.

All three regularization techniques yield very stable and accurate results for the soft
inclusion. However, the LCM fails to converge for the hard inclusion due to the
oscillations of the regularization factor as explained in measurement case I. The VRFS
and GMS yield almost identical results, but underestimates the Young’s modulus of the

hard inclusion as in measurement case 1.

2.6.2 Modeling Error — Identification of Three Internal Cracks in a Thick Pipe
Behaviors of SI algorithms with respect to modeling errors are investigated in this

example. A thick pipe with three cracks is subjected to internal pressure as shown in
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Fig. 2.24 Element group configuration of a thick pipe
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Fig. 2.23.  Measured displacements at equally spaced 80 observation points on the outer
surface of the pipe are obtained by a finite element model with 6400 8-node quadratic
elements and 19608 nodes. Both x- and y-components of displacements are measured at
each observation point. To simulate actual behaviors of structures realistically, elastic-
perfect-plastic response of the pipe is considered with the von-Mises yield condition. For
the SI, the pipe is discretized by 480 8-node quadratic elements and 1520 nodes, and only
the elastic behaviors are considered. The element groups used in this example are
illustrated in Fig. 2.24. A total of 60 element groups are used, and each element group
contains § elements. The finite element model for the identification does not include the
cracks while the model used for calculating displacements contains the cracks. Therefore,
this example contains modeling errors in the boundary conditions in addition to errors in
the constitutive law.

Identified results are shown in Fig. 2.25, in which arrows indicate the element groups
with a real crack. The SI algorithms without regularization and with the VRFS cannot
yield converged solutions within 60 iterations, and thus only the solutions by the LCM and
GMS are presented in the figure. The GMS and LCM yield converged solutions at 30 and
53 iterations, respectively, which demonstrates the stability of the GMS over the LCM.

As shown in Fig. 2.25, both the LCM and GMS yield physically meaningful solutions
in an overall sense. The Young’s moduli of the element groups with a crack exhibit
significant drops from the baseline property compared with the oscillation amplitudes at
the other element groups. However, the LCM predicts a large reduction in the Young’s
modulus at element group 7, which is located beside element group 6 and does not contain

an actual crack. Both methods estimate a smaller Young’s modulus at element group 19
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Fig. 2.25 Estimated Young's Moduli by different regularization schemes
(Thick pipe with three internal cracks)
than that of element group 12. From the physical point of view, this result may not
represent the real situation of damage in the pipe properly because the length of the crack
in element group 12 is longer than that in element group 19. Despite such an inaccuracy
in the assessment of actual damage, the existence of damage at three different locations in
the pipe can be clearly identified by the SI algorithms with the LCM and GMS.

Fig. 2.26 shows a singular value distribution of each Hessian matrix and the
distribution of weighting factors at the first iteration step when the GMS is applied. By
comparing with Fig. 2.15, it is easily observed that this example is much more ill-posed
than the hard inclusion case presented in the previous example since the 22 singular values
are smaller than the regularization factor obtained by the GMS. Severe ill-posedness of
this problem is caused by the axis-symmetry of the observed points that are equally spaced

on the outer boundary of the pipe. The solution components contributed by the a
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Fig. 2.26 Distribution of singular values and weighting factors by GMS at the
Ist iteration (Thick pipe with three internal cracks)

posteriori solution corresponding to the 22 singular values are mostly suppressed, and the a
priori estimates are dominant in the solution. The contribution of the a priori estimates to
the solution rapidly increases for singular values larger than the 39" singular value, and
most parts of the regularized solution consist of the a posteriori solution. The distribution
of the weighting factors represents the relative magnitude of regularization corresponding
to each singular value.

The non-convergence of the SI algorithm without regularization can be clearly
explained by Fig. 2.27, which shows the solution of the unconstrained quadratic sub-
problem in the RSV direction at the 60" iteration. The Fourier coefficients are reduced to
some extent in the figure. However, since some of the singular values marked by solid

circles in Fig. 2.27 become smaller than the corresponding Fourier coefficients, the
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Fig. 2.27 Singular value, Fourier coefficient and solution of the unconstrained
sub-problem at the 60th iteration without regularization
(Thick pipe with three internal cracks)
solution increments are amplified and non-convergence of the optimization iterations is
caused. Meanwhile, SI with the GMS reduces the solution increments very effectively by
balancing the a posteriori solution and the a priori estimates as in the previous example.

To consider measurement error as well as the modeling error, 30 different sets of
random noise of 5% magnitude are added to the measured displacements, and Monte Carlo
trials are carried out for the 30 sets of simulated measurements. Since the convergence
criterion, 107, is too tight for 30 trials with modeling errors as well as measurement errors,
a new convergence criterion of 107 is used for the Monte-Carlo simulation. The average
number of iterations for the new criterion is 10 for the GMS and 26 for the LCM,
respectively, when 10 Monte-Carlo trials are carried out. As the GMS and LCM yield

almost identical results for 10 trials, and the LCM requires much more iterations than the
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Fig. 2.28 Mean values and standard deviations of estimated Young's moduli
by Monte-Carlo simulation for noise-polluted measurements using
GMS. (Thick pipe with three internal cracks)

GMS, the Monte-Carlo simulation with 30 trials are performed only for the GMS.

The computed mean and standard deviation of the Young’s modulus of each group by
the GMS from 30 Monte Carlo trials are drawn in Fig. 2.28. In the Monte Carlo trials, the
GMS successfully converges 29 out of 30 trials. The mean values are almost identical
with the estimated Young’s moduli from measurement data without measurement errors.
Since the standard deviations are negligibly small, it can be concluded that the GMS is
insensitive to different noise components in the measurements, and enhances the continuity
of solution very effectively.

To investigate
The influence of sparseness of measured data on estimated results is also investigated.

The sparseness of measured data is simulated by reducing the number of the observation
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Fig. 2.29 Comparison of singular value distribution and regularization factor
at the 1'st iteration

points from 80 to 40 by eliminating the observations points one after the other. Singular
value distributions of Hessian matrix and the regularization factor determined by the GMS
at the 1% iteration are drawn in Fig. 2.29. Though the number of measurements is reduced
in half, the singular value distribution of 40 measurements above the regularization factor
is almost same as that of 80 measurements except the 38" singular value. ~Singular value
distribution of 40 measurements below the regularization factor shows faster decreasing
rate to zero than that of 80 measurements. Identified results of 40 measurements are
compared with those of 80 measurements in Fig. 2.30. Though Young’s modulus of
element group 7 is identified lower than that of element group 6, the other identified
Young’s moduli of 40 measurements are almost same as those of 80 measurements. The

GMS successfully identifies the location of the internal cracks by reducing the Young’s
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moduli of the element groups associated with three cracks even though measurement data

are severely sparse.
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Chapter 3

System Identification for Damage Assessment of Framed Structures

Many Sl-based damage assessment algorithms have been proposed to detect damages
of structures in a global sense [San91, Doe96, Hje96, Yeo00]. Though each method has
its own advantages over the others on a specific target problem, a clear discussion on the
applicability to different problems and the limitations of the method are not always pre-
sented. To the author’s opinion, the previous remedies are too problem-dependent since
they are developed without full consideration of the proper regularity condition of the solu-
tion mentioned in chapter 2.

In this chapter a regularity condition of SI for framed structures is proposed. It is
shown that the solution space of SI for a framed structure is properly defined by the L,-
norm of the system property, which is referred to as the L,-regularization. Data perturba-
tion and statistical approaches are incorporated with the L;-TSVD to assess the damage

status of a framed structure.

3.1 Previous SI-Based Damage Assessment Algorithms

Previous studies to overcome difficulties caused by sparseness of measurements and
measurement noise in Sl-based damage assessment algorithms are presented. Though
each method is different from the others, a basic concept to treat the problem can be sum-

marized as shown in the following subsections.

3.1.1 Grouping technique — Resolving Sparseness of Measurement

An Sl-based damage assessment algorithm ignoring the sparseness of measurements
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yields unreliable results since SI results in an infinite number of solutions due to the rank-
deficiency as mentioned in chapter 2. Two different types of techniques are proposed in
the previous studies to overcome the difficulties caused by the sparseness of measurements;
a measurement expansion technique and grouping technique.

The responses corresponding to unmeasured degrees of freedom are approximated by
interpolating measured responses in the measurement expansion technique. An advantage
of the measurement expansion algorithm is that the number of measurements can be in-
creased to a certain degree. However, the approximated responses suffer from an inevita-
ble error caused by both approximation error and measurement noise. An instability
caused by the inevitable error may be more severe than that caused by the sparseness of
measurements. The measurement expansion technique is useful when both an approxima-
tion method and measurements are very accurate.

The idea of grouping technique is to reduce the total number of unknown system pa-
rameters used in SI by grouping similar parameters together without modifying the finite
element model. Grouping the system parameters corresponding to undamaged members
together, the number of system parameters can be reduced considerably since the number
of the system parameters associated with the damaged members is very small. Grouping
technique is more promising than the measurement expansion technique since no modifica-
tion is required in either the measured responses or the finite element model.

The parameter group updating scheme proposed by Shin [Shi94, Hje96] performs
damage localization in a systematic manner. At the first stage, predefined system parame-
ter groups with the baseline values are determined, which is referred as a baseline grouping.

If a certain system parameter group contains damage, it is subdivided to separate damaged
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members from undamaged ones by consecutive updates of the parameter groups. At the
last stage of the parameter group updating, a parameter group case is reached by clearly
identifying all the damaged members.

The most important issue in the parameter group updating scheme to determine is the
most appropriate measure for subdivision of the system parameter groups to isolate all the
damaged members.  The squared model error (SME) was proposed as the measure for

subdivision of system parameter groups [Shi94].

Min{imize Thye = 2T (&) + T, (N, ,G°) subject to R(§;) <0 3.1)

where, TE, &c, T, NG, and O’ are error function, the system parameter group vector, a

penalty function, size of system parameter group vector, and the prior estimate of the aver-
aged random noise variance.

From the viewpoints of optimization, the ultimate purpose of the parameter group up-
dating scheme is to find the global minimum of the SME with respect to the system pa-
rameter groups and the number of system parameter groups. The configuration of system
parameter groups associated with the global minimum of SME is an optimal one for dam-
age separation. Parameter group updating scheme solves this optimization problem by
consecutive subdivision of system parameter groups. The final group configuration is not
unique unless the subdivision process used in the parameter group updating scheme is
unique. For example, same system parameter group may be subdivided into either halves
or quarters. As the number of individual system parameters consisting of a specific sys-

tem parameter group increases, the combinations of subdivision also increase. Whether
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all the damaged members can be separated or not highly depends on which path the con-
secutive subdivisions follow. This is referred as the path-dependency of the subdivision
process in this study. To avoid the path-dependency of subdivision, a specific system pa-
rameter group should be subdivided into individual system parameters, which conflicts
with the original concept of the damage localization. Therefore, the path-dependency of
the parameter group updating scheme is inevitable as the number of system parameters in-

Creascs.

3.1.2 Data perturbation — Considering Measurement Noise

If a lot of measurement sets are available, it is possible to obtain meaningful statistical
properties with respect to estimated system parameters from these measurement sets.
However, if a few measurement sets are available in practice, it is almost impossible to ob-
tain satisfactory statistical properties. In this case, data perturbation proposed by Shin
[Shi%4, Hje96] can be used to obtain a statistical distribution in the vicinity of a specific
measurement set. If the noise magnitude of a specific measurement set is estimated, data
perturbation generates artificial sets of measurements around the specific measurement
[Shi%4, Hje96].

The representative statistical properties of estimated system parameters obtained from
the perturbed measurements are the mean and the standard deviation of the estimated sys-
tem parameters. Using these properties, the damage indices that classify damaged mem-
bers from undamaged ones are determined. Shin proposed two damage indices that con-
sist of the bias of the mean with respect to the baseline value (bias_cx) and the bias of the

mean from the baseline property with respect to the standard deviation (bias_sd) [Shi94].
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The bias_cx indicates the damage severity of the corresponding member while the bias_sd
represents variation of the estimated results. Whether a member is actually damaged
highly depends on the bias_sd rather than bias_cx.

Yeo proposed damage indices based on the hypothesis test [Ye099, Yeo00]. In his
study, estimated system parameters follows normal distribution by virtue of the regulariza-
tion scheme. Damaged members are identified by a hypothesis test of the interval estima-
tion of a mean value. Damage index is determined based on the results of the hypothesis
test. If the null hypothesis that a member is undamaged is rejected in the hypothesis test,
the damage index of the member is 1. If the null hypothesis is accepted, the damage in-
dex of the member is 0. The damage severity of a member is 0 if the damage index is 0

while it is the bias of the mean with respect to the baseline value if the damage index is 1.

3.2. Sl with L;-Regularization for Framed Structures
3.2.1 A Regularity Condition of the System Property in SI for a Framed Structure

In modeling a framed structure such as a truss or a frame, each member is idealized
by a line representing the centroid of the member [McC96]. As a result of this idealiza-

tion, the mechanical properties of a member are considered to be concentrated at the cen-

troid of the member as shown in Fig. 3.1, in which r|‘x , r|‘y , I‘]iZ represent a local coordi-

nate system for member i, and V.® denotes the volume of member i. The centroid of the
cross section at one end of a member is taken as the origin of the local coordinate system,
and the trajectory of the centroid of each member is taken as the ) 'X -axis. The mechani-

cal properties include material properties and cross-sectional properties of a member. The
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Centroid of a cross section

Fig.3.1 Idealization of a framed structure

structural volume V is the union of the member volumes, i.e., V =[] VE.
i

The system property of a framed structure is defined in the structural volume as the
collection of the mechanical properties of all members that are expressed in terms of the

two-dimensional Dirac delta functions.

X =2, X;3Nn)¥(n;) inV (32)
i=1

where X, n, X;, l;, and 0 are the system property, the number of members in a structure, the
system parameter, the length of member i, and the Dirac delta function, respectively. The
system parameters represent the stiffness characteristics of members such as the axial ri-
gidities and/or the flexural rigidities. The assumption on the system property given in
(3.2) leads to one dimensional integration expression along the r]ix-axis for a member

stiffness equation, in which the mechanical behaviors at the centroid represent those of a

whole cross section.
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The baseline value of system parameters of each member represents the original, un-

damaged system parameter of the member. The baseline system property is obtained by
replacing X, with (X,), in (3.2). Here, (X,), represents the baseline value of sys-

tem parameter of member |.

To avoid the instabilities of SI caused by the aforementioned fact, a proper function
space for the system property of the SI problems should be supplied along with the mini-
mization problem (2.10). The solution space of the SI problems can be defined by the
regularity condition that represents the integrability condition of the system property. In
case the solution of Eq. (2.10) is a square integrable function, the following regularity con-

dition defined by the L,-norm around the baseline value is appropriate.

Mg =[x =X,

L= J=x,) AV <o (33)

\Y

Here, V denotes the structural volume. The regularity condition (3.3) are widely used for
the identification of piecewise continuous functions in conjunction with various regulariza-
tion schemes. The TSVD and the Tikhonov regularization presented in chapter 2 are
weak statements of Eq.(3.3).

The function space defined by Eq.(3.3) is too stringent for SI of the system property of

a framed structure since the Dirac delta functions in Eq.(3.2) are not square-integrable.
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Mg =x=xoL0,= 2 J-(X O\

=3 (X =(Xp)p)Pam, ~x,)8(n, ~x,) AV
"V (3.4)
=2 [OX =(X)s)7 80, = X,)*8(n, ~X,)*dn,dn,dn,

= 32X, = (X)) 1 xB(0) x5(0) - o0

Therefore, the TSVD and Tikhonov regularization may be inadequate to define the
proper solution space of SI used in the damage assessment. Either false warning events
(FWE) or missing damage events (MDE) are frequently observed in the numerical studies
of an Sl-based damage assessment with Tikhonov regularization. Undamaged structural
members in the vicinity of the severely damaged ones are classified as damaged ones in the
FWE while structural members with mild damages are regarded as undamaged ones in the
MDE. The FEW and MDE of the SI-based damage assessment may be caused by the
smearing effect of the Tikhonov regularization.

When the regularization is used in the SI-based damage assessment, the regularization
function should be defined so that the associated solution space can include the exact solu-
tion. A proper regularity condition for the function in Eq.(3.2) is defined by the L;-norm

as follows.

Me =x =% [0 = j|X_X0|dV <o (3.5)

\

The discretized form of Eq.(3.5) is obtained by performing the integral in Eq.(3.5) mem-

berwise.
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M =X =Xy = 2 [lx=xolav

eve

=3 I X = (X)), 180, =X,)8(n, ~x,)dV
v (3.6)
= I X =(X)q 1300, =X,)8(n, =X, )dn,dn, dn,

€ ye

:Z| Xi=(Xi)o Il <o

Since the length of each member and the system parameters of a framed structure are finite,
the regularity condition (3.6) is defined by the L;-norm of the normalized system parameter

vector without loss of generality.

- X~ (X4,
Z (Xi)o

i=1

=g -1, <o (3.7)

where || [H . denotes the L;-norm of a vector, respectively. The regularity condition given

in (3.7) should be imposed to the minimization problem (2.10) to obtain numerically stable
and physically meaningful solutions of the SI problems for framed structures.

It should be noted that even though the L,-norm of the system parameter vector itself
is definable, it could not represent the actual regularity condition of the system property
space of framed structures. In case the L,-norm of the system parameter vector is used as
a discrete regularization function, it restores piecewise continuous solutions, which are not
actual solutions expressed by the Dirac delta functions. In other words, the discrete regu-
larization function based on the L,-norm of system parameter vector merely filters out

noise-polluted solution components without imposing the actual regularity condition.
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Nevertheless, an SI scheme regularized by the L, norm of the system parameter vector is

referred to as the L,-regualarization scheme for comparative purpose in this study.

3.2.2 TSVD solution for L;-regularity condition

The regularity condition of a solution space given in Eq.(3.6) is imposed to the origi-
nal minimization problem (2.10) by the regularization techniques, among which the Tik-
honov regularization technique and the TSVD are widely used. In the Tikhonov regulari-
zation technique, the regularity condition is added to the original error function defined in
Eq.(2.10), and the optimization is performed for the error function with L,-regularization as

follows.
Minimize TT= %HG(E) - U +A & -1], subject toRE <0 (3.8)

where A is a regularization factor, which adjust the degree of regularization. Eq.(3.8) is a
nonlinear optimization problem with respect to the normalized system parameters. How-
ever, a Newton type algorithm, which requires the gradient information of I, cannot be
applied to solve Eq.(3.8) since the L;-norm is not differentiable with respect to the normal-
ized system parameters.

This study presents a new algorithm, which is referred to as the L;-TSVD, to impose
the L;-regularity condition iteratively in the optimization of the error function using the
TSVD. In the proposed method, the incremental solution of the error function is obtained
by solving the quadratic sub-problems without the constraints. The noise-polluted solu-

tion components are truncated from the incremental solution. Finally, the regularity con-
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dition is imposed to restore the truncated solution components and the constraints. The

above procedure is defined as follows.

Mini{mize ||E —1||1 subject to Mini{mize HU(E) —UHE and R(§) <0 (3.9)

The incremental solution for the minimization of the error function is obtained by solving

the following quadratic sub-problem.

. . . 2
Mmlgnlze HSAE -U, H2 (3.10)
A
where, A and S are the solution increment, the sensitivity matrix of the displacement

fields with respect to the normalized system parameters at the observation points, respec-

tively, and the subscript k denotes the iteration count. The displacement residual U, _, is

defined as U,_ :U—Gk_l, where lNJk_1 is the displacement field calculated by the

converged system parameters at the previous iteration.
The first-order necessary optimality condition for Eq.(3.10) is given by the following

linear equation.

T T —

S'SAE-S'U,_, =0 (3.11)
By the singular value decomposition, the mxn sensitivity matrix S can be written as a
product of an mxn matrix Z, an nxn diagonal matrix Q, and the transpose of an nxn matrix

V as Eq.(2.14). Here, m is the total number of measured degrees of freedom for all the
applied loads.

Using the orthogonal properties defined in Eq.(2.15), the solution of Eq.(3.11) is
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given as shown in Eq.(2.17).

INE ZV w,'zjU" + ZV v, (3.12)

j=p+l
where p is a numerical rank defined in section 2.2.1.

The solution given in Eq.(3.12) satisfies Eq.(3.10) for all real Yj in rank-deficient
problems, which causes the non-uniqueness of solutions. The regularity condition pro-
vides additional information to define the undetermined constants Yj. The solution com-
ponents corresponding to the smaller singular values are responsible for the discontinuity
of the solution because noise components amplified by the smaller singular values pollute a
whole solution. To obtain stable solutions, the noise-polluted solution components should

be removed from Eq.(3.12) by truncating the solution components associated with the sin-

gular values smaller than a critical singular value & (t< p). Here, t is a truncation

number, which plays the crucial role of filtering out noise-polluted components in the in-
cremental solution, Eq.(3.12) [Vog86, Han98]. An algorithm to determine the optimal
truncation number is presented in the next section.

The truncated components of the incremental solution in (3.12) are replaced with a
linear combination of the truncated RSVs, which increases the number of the undetermined

constants.

A= 1y, + Zy v, =D +q (3.13)

j=1 i j=t+

where
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AaTSVD _Zt:Z}UL—IV — Zn: v
o T2 Vi AT 2V, (3.14)
j

j=1 (L)J- j=t+1

The incremental form of Eq.(3.9) is expressed with respect to ( as follows.

Minimize|q - (1 -, —AE, )|,
q (3.15)
subjectto V/q =0 and § &, —Af <q<&, & —AE,

where &, and & are an upper and a lower constraint vector for normalized system parame-

ter, respectively, and V, =(Vv,,V,,---,V,). The equality constraint of Eq.(3.15) represents

that g should be a linear combination of the truncated RSVs. Eq.(3.15) is a linear pro-
gramming with respect to q and is solved by the simplex method. In this study, the
simplex algorithm developed by Barrondale is employed [Bar73]. Hansen and
Mosegaard presented a similar algorithm to identify piecewise continuous functions in
linear inverse problems [Han96]. They referred to the algorithm as the piecewise
polynomial truncated singular value decomposition (PP-TSVD).

Once the optimal solution Qo is obtained from linear programming, the solution can

be obtained by substituting (op; into Eq.(3.13) as the following equation.

AELTVP = NETHP +q,, (3.16)

To guarantee fast convergence, the error function is minimized by a line search method

using the solution increment of Eq.(3.16).

Minimize [0, ., +pag-°) - UH2 (3.17)
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The solution at the k’th iteration is obtained by solution of Eq.(3.17).

& =& TR, AL TP (3.18)

where, Bopt is an optimal solution of Eq.(3.17).

3.2.3 Optimal Truncation Number by the Cross Validation

The determination of a proper truncation number is a keystone in the TSVD. The
truncation number plays a similar role to the regularization factor in the Tikhonov regulari-
zation technique. In case a truncation number is too small, most of the useful information
on a structure is lost while too large a truncation number yields noise-polluted, meaningless
solutions [Vog86, Han98]. Therefore, the truncation number should be determined so that
as much useful information of a structure can be retained while most of noise-polluted so-
lution components are truncated. The optimal truncation number for each iteration is de-
fined by the cross validation [Gol96].

In the cross validation, a reduced quadratic sub-problem is defined by omitting the i-

th row of the original quadratic sub-problem Eq.(3.10).
: : 12
Minimize[S™AE™ ~(U[_)7 | (3.19)
AX”! 2

where S™ and (U - )™ are the reduced sensitivity matrix and the displacement residual

vector in which the i-th rows of both are omitted, respectively. The L;-TSVD is per-

formed for Eq.(3.19) with a truncation number t, and the following residual is defined.

;=08 —(U),) (3.20)
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where S;and (U,_,); are the i-th rows of the original sensitivity matrix and the dis-

placement residual vector, respectively, and AE;]; is the L;-TSVD solution of Eq.(3.19)

for the truncation number t. The optimal truncation number is defined as the solution of

the following minimization problem.

m .
Minimize Y f' for 1st<p (3.21)
‘ i=1

Since it is difficult to solve Eq.(3.21) algorithmically, the objective function in Eq.(3.21) is
evaluated for all truncation numbers, and the truncation number that yields the smallest
value of the objective function in Eq.(3.21) is selected as the optimal truncation number.
It should be noted that there sometimes exists no feasible solution to the L;-TSVD for a
large truncation number. This is because noise components severely amplified by small
singular values are presented in the truncated solution of Eq.(3.19) for a large truncation
number. In this case, the L;-TSVD is performed up to the truncation number that yields a
meaningful solution of Eq.(3.19).

From the statistical point of view, the L,-norm of noise in a measurement can be esti-
mated by the converged solution of SI using the optimal truncation number of each itera-

tion defined in Eq.(3.21) as follows [Alt87, Hab00].

lell, = UEq"") - Ul (3.22)

opt

L,-TSVD
opt

where e is the noise vector in U, and & is the converged solution by the L;-TSVD.

The noise level [, in the measurements is defined as follows.
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3.3. Damage Assessment

A damage assessment is a step to determine which members in a structure are actually
damaged and how seriously they are damaged [Shi96, Yeo00]. Since not only the meas-
urement noise is unavoidable but also the measurements are not provided sufficiently, the
estimated results using SI with L,-regularity condition is investigated in the statistical sense
for a reliable damage assessment.

A hypothesis test is performed to classify the damaged members from undamaged ones
using the statistical properties of system parameters obtained from perturbed measurements
[Ye099, Yeo00]. Hypothesis test is accompanied by the fitness test to confirm whether the
statistical distribution of estimated system parameters from perturbed measurements actu-
ally follows a normal distribution [Ye099, Yeo00]. The damage index classifying the
damage members and undamaged ones is determined using the hypothesis test. After

damage index is determined, the damage severity is obtained sequentially.

3.3.1 Data Perturbation

Data perturbation proposed by Shin [Shi94, Shi96] is used to obtain a statistical distri-
bution in the vicinity of a specific measurement set. SI with the L;-regularization is
adopted to estimate the system parameters for each perturbed measurement set generated
by data perturbation. The perturbation bound is determined by the residual of error func-

tion at the converged stage using the unperturbed measurements.

The maximum perturbation amplitude, [l is defined by the estimated noise level given

max
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in Eq.(3.23).

e
O =0, = ”_”2 (3.24)

It is very time consuming to determine an optimal truncation number in every iteration
for each set of perturbed data by the proposed method in the previous section. It would be
more convenient if a fixed optimal truncation number is used in every iteration for each set
of perturbed data.  For this purpose, the discrepancy principle, which is originally pro-
posed for linear SI problems by Morozov [Mor93, Han98], is employed to choose a fixed
truncation number as shown in Fig. 3.2.  This principle states the optimal truncation num-

ber is the largest one that satisfies the following criterion.

[0&) -], >, (329

Estimated noise level

uonouny J0uy paSIoAuo))

Z‘c>1)t
Truncation Number

Figure 3.2 Optimal truncation number by the discrepancy principle
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where &, is the converged solution obtained by the L,-TSVD for a fixed truncation num-

bert. The TSVD optimization with a varying truncation number proposed in the previous
section is performed only once for the original unperturbed data. Once the noise level in
the data is estimated by Eq.(3.23), a series of the TSVD optimization with a fixed trunca-
tion number is performed by increasing truncation numbers from 1 until the largest trunca-

tion number that satisfy Eq.(3.25) is obtained.

3.3.2 Hypothesis Test, Damage Index, and Damage Severity

In case normally distributed system parameters are obtained from perturbed measure-
ments, a hypothesis test can be applied to determine damaged members by statistical prop-
erties of system parameters. Yeo adopted Kolmogorov-Smirnov goodness-of-fit test to
confirm that the error function with Tikhonov regularization usually yields normally dis-
tributed system parameters from perturbed measurements [Ye099, Yeo00]. Since all the
system parameters estimated by output error estimator with Tikhonov regularization attain
statistical properties sufficient for statistical evaluations using finite number of perturbed
measurements, the goodness-of-fit test can be applied to each system parameter. However,
all the system parameters estimated by the L;-TSVD cannot attain sufficient statistical
properties using finite number of perturbed measurements due to the solution characteris-
tics of the L;-TSVD. The solution characteristics of the L;-TSVD in Eq.(3.15) can be ex-
plained by characterization of solution of generalized L, approximation problem as the fol-

lowing equation.

Minimize|Aa - b, =[r(a), (3.26)

88



Here, A, a, b, and r are a given m by n matrix, an n-column vector to be sought for solution,
a given n-column vector, a residual vector, respectively. If the matrix A has rank t, there
exists at least t zero’s in the residual vector [Wat80]. If this theorem is applied to
Eq.(3.15), the solution characteristics of the L;-TSVD is revealed. For the simplicity of
discussion the upper and lower constraints are not considered. Comparing Eq.(3.15) with

Eq.(3.26), the following relationships can be established.

A=V Vi, Vy) (3.27a)

a= (Vo> Yesaseo Vo) (3.27b)
t

b E-[Ek_l ‘1+ZV,-°0}12TJUL1J (3.27¢)
i=1

The rank of in Eq.(3.27) is directly connected with the truncation number t of Eq.(3.15) and
is n-t.  Substituting Eq.(3.27) into Eq.(3.26), the residual vector of Eq.(3.26) has at least n-
t zero components. In other words, the residual vector of Eq.(3.26) has at most t non-zero
components. Combining these results with Eq.(3.14), solution components corresponding
to the zero residuals of Eq.(3.26) are determined by only the a prior estimates, not by the a

posteriori solutions.

AE=1-¢, (3.28)

where, Aé and 2k—1 are a component of solution increment and a solution at k-1’th op-

timization iteration corresponding to the zero residuals of Eq.(3.26).
It is empirically observed that solution increments associated with undamaged members are

determined by the a priori estimates as shown in Eq.(3.28) from the 1’st optimization itera-
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tion to the converged stage. Only the solution increments associated with actually dam-
aged members and some members in the vicinity of actually damaged ones are determined
by the a priori estimates and the a posteriori information simultaneously. Therefore, the
solution increments associated with undamaged members are always zeroes during the op-
timization iterations if the initial value of each system parameter is assumed as the baseline
value. Only the solution increments associated with actually damaged ones and some
members in the vicinity of actually damaged ones are non-zeroes throughout the optimiza-
tion iterations.

Due to these solution characteristics of the L;-TSVD, not all system parameters are
statistically distributed, but only a few system parameters associated with damaged mem-
bers and their neighboring members have statistical distributions. Three different classes
of distributions of the system parameters are defined in this study for statistical evaluation
for damage assessment: a deterministic class, a probabilistic class, and an intermediate
class.

The deterministic class consists of only the deterministic samples of system parame-
ters that do not respond to random variations of measurements at all, and stay at the base-
line values for a specified number of perturbed data sets. Therefore, the means and stan-
dard deviations of system parameters in this class are the baseline values and zero, respec-
tively. A member in the deterministic class is considered to be an undamaged one without
any statistical evaluations, and the corresponding damage index Ip (Yeo et al. 2000) is set
to zero for the member.

The probabilistic class consists of only the probabilistic samples of the system parame-

ters that respond to random variations of measurements. A goodness-of-fit test for the
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normal distribution and hypothesis test are applied to assess the damage status of the mem-
bers in this class.

The intermediate class consists of deterministic samples and probabilistic samples si-
multaneously for a specified number of perturbed data sets.  Since it is difficult to treat the
intermediate class directly, this class is converted into either a deterministic class or a prob-
abilistic class according to the ratio of deterministic samples to probabilistic ones. It is
observed through our numerical experiences that most distributions of system parameters
corresponding to the intermediate class consist of very limited probabilistic samples as
shown in Fig. 3.3. It is unreasonable to draw statistical meanings for this distribution be-
cause most of the samples are deterministic ones. In this study, when more than 90% of

the samples of a system parameter are deterministic ones, the intermediate class is consid-

— CDF of normal distribution
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Fig.3.3 Two typical types of statistical distribution of system parameters using L;-
TSVD
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ered as a deterministic one. If less than 90% of the samples of a system parameter are
deterministic ones, additional perturbations should be performed to obtain probabilistic
samples until the number of probabilistic samples reaches the specified sample size for the
system parameter without deterministic samples.

Once system parameters belonging to a probabilistic class pass the fitness test, a
hypothesis test is adopted to assess the damage of each member using the statistical
properties of system parameters [Ye099, Yeo0O]. In the hypothesis test, a statistical

distribution of the baseline structures is assumed to obey the following normal distributions
[Yeo00]. N(X,,0°) (3.29)
where, Xo and O is baseline value and standard deviation of each system parameter obtained

from the perturbed measurements.

Eq.(3.29) is referred as baseline distribution for the system parameters. The damage
status of a member in a target structure is determined by applying a hypothesis test for the
interval estimation of the mean value on the baseline distribution with a significance level

o. The hypothesis test is defined as the following equation.
HO : E = XO (3303)
H :=<Xx, (3.30b)
where, = is an unknown actual value of the system parameter. The operating rule for the

hypothesis test is to accept Hy if X = C with a significance level [l. Here, X is the esti-

mated average of the system parameter for the current structure from the perturbed meas-

urements. The critical value C, used to determine the acceptance region of Hy in the base-
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line distribution, can be obtained by solving the following equation for C.
P[X=c|H,]=1-u (3.31)

The one-sided probability statement of Eq.(3.31) can be modified into the standardized

form.
P[22 7, |H,]=®(~2,) = 1-1 (3.32)
where, Zz=(X-X,)/0, 2z, =(C—X,)/0 and ® is the CDF of the standardized normal

distribution. The critical value ¢ is obtained by inverting the CDF for z, in Eq.(3.32) and
using the definition of Z,

C=X,+2,0 (3.33)
If the estimated mean value of a member is less than the critical value c, then the null hy-
pothesis Hy is rejected.  Subsequently, the member is regarded as a damaged member. A
member that has passed the hypothesis test is defined as undamaged with 100x(1-0) %

confidence. The damage index lp, which represents the damage status of a member with

the significance level of q, is defined as the following equation.

(3.34)

D

_ |0 if H accepted : (X = C)
1 if H, rejected : (X <)

The severity of damage Sp, which indicates how seriously a member is damaged with the

significance level of |, is defined as a relative distance of the computed mean from the

baseline value.
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x|, x100(%) (3.35)

0
3.4. Numerical Examples — Damage Assessment of a two-Span Continuous Truss
Numerical simulation studies are performed for three damage cases with the proposed
method to determine the damage status of the two-span continuous truss presented by Yeo
et. al. [Yeo00]. Damage cases I and II contain rather easy damage patterns to be identified,
while the damage in case Il is relatively difficult to identify for a large noise level. De-
tailed discussions are presented for damage case III.  Fig. 3.4 shows the geometry, support
conditions and the locations of 12 observation points, which are depicted as solid circles in
the figure. Horizontal displacements are measured at the roller supports and vertical dis-
placements are measured at the other observation points independently for each load case
shown in Fig. 3.5.
Proportional random noise generated by a uniform probability function between +
noise amplitude (Ay) is added to the displacement obtained by a mathematical model to

simulate real measurements. Unless otherwise stated, the noise amplitude of 5% is used

T

12m
u, U,
| u, u u, u; U u, U U U, U, I
[ 12@10 >
®: Observation point
Member Area (cm’) Member Area (cm’)
Top 250 Vertical 200
Bottom 300 Diagonal 220

Figure 3.4 Geometry, cross sectional areas and measured dofs of
the two-span continuous truss
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Figure 3.5 Member ID numbers and load cases of a two-span continu-
ous truss

in all examples. The significance level M is selected as 0.1 for the statistical damage as-

sessment (Yeo et al. 2000). For the data perturbation, 30 Monte-Carlo trials are per-
formed. Since more than 90% of the samples for system parameters in the intermediate
class are deterministic for all examples, no additional perturbation is needed. The trunca-
tion number is determined by the discrepancy principle for the original, unperturbed data,
and is fixed throughout all Monte-Carlo trials. The identification results by the proposed
method are compared with those by the L,-regualarization scheme, in which all the algo-
rithms are exactly the same as the proposed method except that the L,-norm is used as the
discrete regularization function.

The rank-deficiency and ill-posedness of SI of the truss are demonstrated by investi-
gating the distribution of singular values of the sensitivity matrix. Since the system char-
acteristics at the first iteration are solely determined by the baseline values of the system

parameters and the locations of measurements, the distribution of the singular values at the
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Fig. 3.6. Distribution of singular values for the two-span continuous truss

first iteration is a good indicator of the rank-deficiency and ill-posedness of all damage
cases. As shown in Fig. 3.6, 10 singular values are smaller than the threshold value € for
the numerical rank of the sensitivity matrix. Therefore, the sensitivity matrix of the truss
for the given measurements is rank-deficient by 10 even though the number of independ-
ently measured data (60) is larger than those of the members (55). Moreover, the sensitiv-
ity matrix is severely ill-posed after truncating those 10 small singular values because the
ratio of the largest singular value to the smallest retained singular value is 1.33x10°.
This fact implies that noise components in measurements may be amplified by a million
times in the solution space, which results in a meaningless solution of SI even for very

small noise levels.

96



3.4.1 Damage Case |

Damage is simulated with 70% and 30% reduction in the sectional areas of two bottom
members (member 16 and member 21) as shown in Fig. 3.7. The error function evaluated
by the converged solutions for each truncation number is presented in Fig. 3.8 together
with estimated noise levels. The noise levels for the L,- and the L,-regularization scheme
are estimated as 2.6 % by the cross validation, and the truncation numbers are selected as 4
and 7, respectively.

Fig. 3.9 shows the averages and the standard deviations of the system parameters
normalized by the baseline values for 30 Monte-Carlo trials. The L;-regularization
scheme yields sharp drops of the system parameters only at the damaged members, while
the system parameters of undamaged members in the vicinity of the damaged members are
reduced in the L,-regularization scheme. In particular, most of the damage information of
member 21 is smeared out to members 20 and 22 in the L,-regularization scheme. Since
the standard deviations of the system parameters are very small, it seems that both L,- and
L,-regularization scheme effectively control the ill-posedness of SI. The damage severity
of each member assessed by the statistical approach is given in Fig. 3.10. The damaged
members are identified exactly, and the damage severity is accurately estimated by the L;-

regularization scheme. Some of the undamaged members are identified as damaged me-

1/551 X24” X271 X28 X2d4 X34 X31 X341 X33 X34 X34 \Z2
3 0 4\ | 4 4

_,%_13 14 15 16 17 18 19 20 21 22 23 24? )

Fig. 3.7 Case I — the 16" bottom member and the 21 bottom member
are damaged
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Fig. 3.8 Variation of the error function with truncation numbers and
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Fig. 3.9 Mean values and standard deviations of estimated system parameters
for damage case |
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Fig. 3.10. Identified damage severity for damage case |

-mbers, and the damage severity of member 21 is rather underestimated by the L,-

regularization scheme.

3.4.2 Damage Case Il

It is assumed that diagonal member 48 and bottom member 22 are damaged by 30%
in this damage case as shown in Fig. 3.11. The error function evaluated by the converged

solutions for each truncation number is presented in Fig. 3.12 together with estimated noise

1/551 X24” X271 X28 X2d X34 X31 X310 X33 X34 X34 N2
3 b 4 s 4

b
Q13 1@ 15 16 17 18&19 20 21 22 23 250

Fig. 3.11 Case II — the 22™ bottom member and the 48" diagonal
member are damaged
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Fig. 3.14 Identified damage severity for damage case 11

levels. The estimated noise levels for the L;- and L,-regularization schemes are 3.1% and
3.0%, respectively, while the actual noise level is 3.3%. The truncation number is se-
lected as 8 for L,-regularization scheme, and 9 for the L,-regularization scheme. Fig. 3.13
shows the averages and the standard deviations of the system parameters normalized by the
baseline values for 30 Monte-Carlo trials. Fig. 3.14 shows the identified damage severity
of this damage case. As in the previous damage case, the damaged members are identi-
fied exactly, and none of undamaged members are falsely identified as damaged by the L,
regularization scheme. However, the damage severity of member 22 is a little bit under-
estimated, while that of member 48 is overestimated a little bit. It is believed that an un-
derestimated noise level in this damage case causes inaccuracy in the damage severity.
Meanwhile, the L,-regularization scheme identifies several undamaged members as dam-

aged ones, which represents the smearing characteristics of the L,-norm of system parame-
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ters (Hansen and Mosegaard 1996).

3.4.3 Damage Case Il

This damage case contains 60%, 70% and 30% damage in member 17, 33 and 38, re-
spectively as shown in Fig. 3.15. The error function evaluated by the converged solutions
for each truncation number is presented in Fig. 3.16 together with estimated noise levels.
The truncation number is selected as 5 for L;-regularization scheme, and 7 for the L,-
regularization scheme. Fig. 3.17 shows the averages and the standard deviations of the
system parameters normalized by the baseline values for 30 Monte-Carlo trials. Fig. 3.18
shows the identified damage status of the truss. Both the L;- and L,-regularization
scheme fail to identify the damage of the truss correctly. The L,-regularization scheme
identifies members 16 and 21, which are bottom members connected to the actually dam-
aged members 17 and 33, as damaged members. The damage in member 38 is not de-
tected at all. The L,-regularization detects the damage in member 17, but member 16 is
estimated as more severely damaged than member 17. Several undamaged members in
the vicinity of members 33 and 38 are identified as damaged members, which is caused by
the smearing characteristics of the L,-regularity condition.

To investigate characteristics of this damage case systematically, several numerical

2 3 4 S 6 7 R 9 10 11

125 X24” X271 X283 X24 X3¢ X31 X3 3 X34 X34 \2
6 \J38 \J 40 4N | 46 : 4

_,%13 14 15 16 17 18 19 20 21 22 23 24g )

Fig. 3.15 Case III — the 17" bottom member, the 33™ vertical member,
and the 39™ diagonal member are damaged
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studies are performed. Fig. 3.19 shows the variation of the estimated and the actual noise
levels and the truncation numbers with actual noise amplitudes. In the figure, the trunca-
tion numbers determined by the discrepancy principle are plotted for the right vertical axis
while the estimated noise levels determined by the cross validation are plotted for the left
vertical axis. The estimated noise level is smaller than the actual noise level up to 3.2 %
noise amplitude, and becomes larger than the actual noise level after 3.2% noise amplitude.
As the noise amplitude increases, the truncation number becomes smaller because more
solution components are polluted for larger noise amplitudes. Fig. 3.19 illustrates that the
truncation number varies with the noise amplitude in a stepwise fashion. There are three

distinct regions in the variation of the truncation number with the noise amplitude, that is,

truncation numbers for the noise amplitudes of Ay <2.6%, 2.6% < A, <3.2% and
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Fig. 3.20 Identified normalized stiffness parameters for noise-free data
versus the truncation number
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3.2% < A are 22, 15 and 5, respectively.

Fig. 3.20. shows the variations of the normalized system parameters of the damaged
members with truncation numbers for noise-free measurements. It is clearly seen that the
cross section area of each damaged member suddenly drops to exact damage severity at a
certain truncation number. This is because the RSV corresponding to the truncation num-
ber that causes the sudden drop is associated with the damage information of the member.
Therefore, to identify damage in a member, the RSV that contains damage information of
the member should be included in the TSVD solution, (18). For damage case III the dam-
age information of members 17, 33 and 38 is associated with the 9", 16™ and 19™ RSV,
respectively. The truncation number determined by the estimated noise level shown in
Fig. 3.19 is also drawn in Fig. 3.20 by using the right vertical axis as the noise amplitude.
As shown in the figure, all damaged members can be identified for noise level smaller than
2.6% since the truncation number for the noise level is 22, and all damage information is
included in the TSVD solution. In case the noise amplitude is larger than 2.6 % but
smaller than 3.2 %, the truncation number becomes 15, and the damage information of
members 33 and 39 is lost. In this case only the damage of member 17 can be identified.
For noise amplitude larger than 3.2 %, none of the damage information is included in the
TSVD solution since the truncation number becomes 5. Therefore, none of the damaged
members can be identified in damage case III by the L;-TSVD. It is believed that member
17 is identified as a damaged member in the L, regularization scheme not by the exact in-
formation but by just smearing effect of the L,-norm. To identify the damaged members

correctly, the noise amplitude should be kept smaller than 2.6%.
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Fig. 3.21 Identified damage severity of damage case III
for 1% and 3 % noise amplitude

The damage severity of the damaged members is shown in Fig. 3.21 for 1 % and 3 %
noise amplitude. As explained above, all damaged members are identified for 1% noise
amplitude, and only one damaged member, member 17, is identified for 3% noise ampli-
tude. Member 52 and member 42 are falsely identified as damaged members for 1 % and
3% noise amplitudes, respectively. The damage severity of the other undamaged mem-
bers that are falsely assessed as damaged members is small compared with that of the dam-
aged members for both cases.

The aforementioned points give very important insights in planning the damage de-
tection procedures. Since the RSV that contains the damage information of a member is
determined by structural information, load cases and measurement locations, the target
noise amplitude is rigorously estimated to identify certain damage patterns, and experimen-

tal setups are designed accordingly.
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Chapter 4

Conclusions and Recommendations for Further Study

Conclusions

Regularization techniques in System Identification (SI) for the damage assessment of
structures were proposed. Sl used in this study is based on the minimization of the least
squared error between measured and calculated responses, which is nonlinear inverse prob-
lem. Sl based on the minimization of the least squared error between measured and
calculated responses suffers from inherent instabilities caused by the ill-posedness of
inverse problems, such as non-existence, non-uniqueness, and discontinuity unlike the
forward problem.

In the chapter 2, a general concept of regularity condition with respect to the system
property for Sl was presented. By imposing a proper regularity condition, the inherent ill-
posedness of Sl can be relieved satisfactorily. A regularity condition of the system prop-
erty for elastic continua was presented. Based on the proposed regularity condition, a
regularization function based on the L, norm with respect to the system properties was pro-
posed. A regularity condition of system properties is discretized in terms of system pa-
rameters. Two different approaches to impose the discretized regularity condition on
minimization of error function were presented; the truncated singular value decomposi-
tion (TSVD) and the Tikhonov regularization.

In the TSVD, the truncation number determines degree of regularity while the regu-
larization factor does in the Tikhonov regularization. In the Tikhonov regularization, the

most important issue is to keep consistent regularization effect on the parameter estimation,
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which is controlled by a regularization factor. Therefore, it is crucial to determine a well-
balanced regularization factor in order to obtain a physically meaningful and numerically
stable solution of an inverse problem with the regularization technique.

This study illustrated that the error function with the Tikhonov regularization function
results in a solution of a generalized average between the a priori estimates and the a poste-
riori solution. Here, the a priori estimates represent known baseline properties of system
parameters, and the a posteriori solution denotes the solution obtained by given measured
data. A new idea of the geometric mean scheme (GMS) was presented to select optimal
regularization factors in nonlinear inverse problems. In the GMS, the optimal regulariza-
tion factor is defined as the geometric mean between the maximum and minimum singular
value for balancing the maximum and minimum effect of the a priori estimates and the a
posteriori solution in a generalized average sense.

Numerical simulation studies are performed to demonstrate the validity and effective-
ness of the GMS, and numerical behaviors of other schemes. The GMS yields the most
accurate and reliable results regardless of random error and modeling error in measure-
ments among the three schemes.

In chapter 3, it was shown that the regularity condition defined by the L,-norm of the
system property is too stringent for framed structures. To establish Sl adequate for
framed structures, a regularity condition of system properties for framed structures was
proposed. Based on the proposed regularity condition, a regularization function based on
the L; norm with respect to the system properties was proposed. The L;-regularity condi-
tion is imposed as an additional minimization problem to the minimization of the error

function. The TSVD is utilized to filter out noise components in a solution, and the trun-
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cated solution components are restored by the optimization of the L;-regularity condition,
in which the simplex method is adopted. The cross validation method is applied to de-
termine an optimal truncation number in the TSVD. Damage status of each member is
assessed statistically using a hypothesis test for the interval estimation of the mean value.
The validity of the L;-regularity condition in Sl for framed structures was presented by
finding damages of a two-span continuous bridge with three damage scenarios for different
noise amplitudes in measurements. Sl with L;-regularity condition could estimate the ac-
tual material properties of each member in the framed structure successfully to the maxi-
mum resolution limits of the error function regardless of the serious sparseness of meas-

urements and the measurement noise.

Recommendations for further study
Damage detectability with respect to damage severity and measurement noise

It is very important to evaluate possible detectability or identifiability of each
structural member in the current SI for damage assessment. This study mainly
investigates system characteristics affecting the identification results under the fixed
measurement locations and loading conditions. Even though the structural characteristics
cannot be altered, the load case and measurement locations can be selected so as to
improve the resolution of the damage detection.

Detectability of each member can be evaluated through numerical simulations with
various damage severity and measurement noise by using Sl with regularization technique.
After detectability of all the members with respect to damage severity and measurement

noise is calculated from numerical simulations, it is possible to evaluate which members up
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to how much damage severity can be identified when real responses of a structure are
measured. Based on the evaluation, loading condition, precision of sensors, locations of
sensors can be rearranged to increase the detectability of members which are classified as
undetectable. Continuous researches on these fields should be intensively performed to

apply Sl-based damage detection schemes to actual problems.

Investigation of relationships between probabilistic SI and SI with regularization

The joint probability density function between the system parameters and measure-
ments can be obtained by probabilistic SI such as Bayesian approach [Tar87]. It is known
that the Bayesian approach is closely connected with the SI with the Tikhonov regulariza-
tion [Neu79, Tar87]. For example, if both a priori distribution and posteriori distribution
are assumed to be gaussian, the probability of the joint distribution with respect to the sys-
tem parameters is known to become maximal at the average of system parameters which is
equivalent to the solution to the minimization problem of the L,-regularized error function
[Tar87]. As far as damage assessment of structures is concerned, a damage detection al-
gorithm of structures based on a Bayesian approach was proposed by Sohn (1997). Fur-
ther research on relationships between the regularized error function and the Bayesian ap-
proach is suggested since it can give strong backgrounds of probabilistic theory to the cur-

rent study.

Improvement of signal to noise ratio
There are two ways to increase the signal to noise ratio in SI for damage assessment.
One is reduce the noise amplitude by using more precise sensors and filtering the noise

components in signal. The current study is focused on filtering the noise component ef-
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fectively. The other is to amplify the signal by arranging the loading condition and sensor
locations so that measurements can include sufficient information of damaged members.
This is closely related with optimal loading conditions and optimal sensor locations.
Therefore, further researches combining the regularized SI with optimal loading conditions
and optimal sensor locations are strongly recommended because they may increase the

resolution limit of the current Sl up to in-situ noise magnitude.

Application to Dynamic Responses

Most measured responses of civil structures are dynamic responses such as accelera-
tion, natural frequencies and mode shapes. The Sl with regularization technique proposed
in this study can be applied to these dynamic responses easily. Moreover, the amount of
measurements is tremendously larger than that of static responses used in this study, the SI
with regularization may results in more meaningful and reliable results. However, real-
time Sl is very time-consuming since the calculation of sensitivity of dynamic responses in
the time domain with respect to system parameters costs a lot of computational time. Re-
search on the direct differentiation of frequency response function in frequency domain
incorporated with fast Fourier transform technique will be very interesting since computa-
tional time of sensitivity of dynamic response in time domain may be reduced considerably,

which is crucial to real-time SI.
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