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Abstract

New stabilization schemes which correct the equation error estimator (EEE) in the
inverse analysis using dynamic responses of linear elastic continua are presented.
The goal of the inverse analysis run in these cases is the proper identification of
material properties. Stabilization schemes consist of the acceleration-energy filter
and the bias compensation.

The acceleration-energy filter stabilizes the ill-posedness of the inverse
analysis.  The acceleration-energy filter replaces the techniques known as
truncated singular value decomposition (TSVD), L;-norm regularization and L,-
norm regularization (or Tikhonov regularization).  Existing regularization
techniques do not work properly for cases involving hard inclusions, i.e., tumors of
organ and suspensions of vehicles. The Acceleration-energy filter, however, work
properly for cases involving both hard and soft inclusions. The acceleration-
energy filter is separated into the acceleration filter and the energy filter. Dividing
them in this manner simplifies a filtering process.

The acceleration filter imposes finiteness condition of accelerations, the
second derivatives of the measured displacements.  Accelerations can be
considered as finite functions when impact loads do not exist. The acceleration
filter requires two initial and two final values, but the overlapping moving time

window technique is employed so that the initial and final values can be ignored.



The final form of the acceleration filter is a low-pass finite impulse response (FIR)
filter. However, the acceleration filter differs from typical low-pass FIR filters
because it has physical meaning which guarantees consistency with the energy
regularization.

The energy filter imposes finiteness of strain energy, which is internal energy
of linear elastic continua. The final form of the energy filter is very similar to
low-pass spatial filters used with image processing, but the energy filter has three
advantages. The first of these are the boundary conditions. The boundary
conditions of the energy filter are identical to these of an equilibrium equation for
the continuum, and are always satisfied by all continuum examples. The second is
the available meshes. The energy filter involves the connectivity information of
nodes and can handle complicatedly meshed FEM models, whereas typical low-
pass spatial filters can handle only rectangular meshes. The third advantage is the
physical meaning which guarantees consistency with the acceleration filter.

The acceleration filter and the energy filter must satisfy consistency of the
elastic waves and the temporal wave. The solution of the inverse analysis without
the consistency is not trustable because the strain and the acceleration do not have
equivalent information. The physical meaning of two filters gives consistency
between two filter.

The biases of the solutions are ignored in existing studies. However, the
inverse analysis using EEE for linear elastic continua must consider the biases. If

the noise variances are known, the biases of the solution could be perfectly
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eliminated by means of bias compensation.
Aluminum plate and medical imaging examples are demonstrated to show the

effectiveness of the schemes described above.
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1. Introduction

Currently, system identification (SI) is an important issue in many fields, including
the civil engineering, mechanics, signal processing, shipbuilding, medical
engineering and other fields. Sl reconstructs material properties and provides
important information for the maintenance and safety of structures. Sl is also
known as inverse analysis.

Inverse analysis is known to be able to identify unknown system parameters
and to reconstruct inputs for producing desired outputs. The inverse analysis for
unknown system parameters detects damage in engineering structures and/or
tumors in human bodies. The identified stiffness, mass or damping can take the
form of damage indexes. The inverse analysis for the reconstruction of the input
is used for control and signal processing, but these areas are outside the scope of
this thesis.

Error minimization schemes are employed to define the inverse analysis.
Two types of error estimators, output error estimation (OEE) and equation error
estimation (EEE), are typically used. EEE estimates errors in the governing
equation or the weak form of it. The inverse analysis using EEE is suitable for
real-time processes because it is a quadratic optimization problem and a
parallelizable algorithm when the governing equation of the structure is linear

[Hjelmstad 1995]. Medical imaging, feedback control and structural safety



management require the real-time inverse analysis. OEE estimates errors between
responses from unknown models and measured responses. The inverse analysis
using OEE is an iterative scheme and not a parallelizable algorithm [Hjelmstad
1995, Banan 1995, Huang 2001]. Since quadratic problems have a lot of
advantages, EEE is utilized in this thesis.

The target structures are described by the linear elastic continua because the
continuum explain mosts of engineering solid structures. To solve the inverse
analysis numerically, the target continuum must be discretized by a numerical
model. In this thesis, the finite element method (FEM) is used as a numerical
model. The FEM is the best model with regard to forward analysis for continua;
however, the FEM amplifies noise in measurement when it is employed to solve the
inverse analysis. The relationship between strain and displacement amplifies the
noise.

The inverse analysis using minimization schemes leads to ill-posedness when
modeling errors and measurements noise exist [Bui 1994, Hansen 1998]. The
regularization has been proposed to reduce ill-posedness [Vogel 1986, Park 2007,
Lee 1999, Park 2001]. The regularization schemes work well for cases involving
soft inclusions. However, these efforts do not apply to cases involving hard
inclusions.  Soft inclusion cases are the most common type of engineering damage,
but there are a number of hard inclusion cases, such as impurities of concrete
structures, tumors in human bodies and suspension stiffening of vehicles. The

acceleration-energy filter is proposed to stabilize the ill-posedness which arises in



cases involving both soft and hard inclusions. It imposes the physical laws which
the measurements must satisfy. The measurements must satisfy two laws of the
continuum, the finiteness of the strain energy and acceleration. The acceleration-
energy filter is separated into the acceleration filter and the energy filter. Dividing
them in this manner simplifies a filtering process. Both filters function as low-
pass filters to suppress noise amplification from differentiations. The effects of
the acceleration filter are similar to those of existing noise suppression filters.
However, the physical meaning of the acceleration filter is related to the physical
meaning of the energy filter, thus provides consistency between the two filters.
The energy filter is similar to low-pass spatial filters, which is used for image
processing. However, the modeling information of the target continuum is
included in the energy filter. While image filters consider only nodes arranged in
a rectangular, the modeling information allows for the energy filter to consider
nodes in more complicated connection. Moreover, the energy filter can consider
nodes around boundaries properly, as the boundary condition used in the energy
filter is identical to that of the continuum. The acceleration filter and the energy
filter must satisfy consistency of the elastic waves and the temporal wave. The
solution of the inverse analysis without the consistency is not trustable because the
strain and the acceleration do not have equivalent information. The physical
meaning of two filters gives consistency between two filter.

Solutions of the inverse analysis using EEE have not only ill-posedness but

also bias in the solution. When the measurement is polluted by noise, the EEE



includes squared error terms, which are directly proportional to the variance of the
noise. In most inverse analyses using EEE, the bias is negligible or easy to
remove [Nguyen 1993, Hjelmstad 1995, Haykin 2008, Ikenoue 2009, Zhang 2011].
However, the bias inherent in the inverse analysis using EEE for the linear elastic
continua cannot be ignored, as the noise is amplified twice during the inverse
analysis process and is complexly involved in the FEM model. The squared error
terms lead to fixed direction errors of the solutions, i.e., the biases, and cannot be
eliminated by an infinite measuring time. The bias compensation can reconstruct
the bias terms and remove the biases of the solutions when the variance of the noise
is known. A case of unknown variance is also introduced in this thesis.

A time-domain analysis using dynamic displacement is employed rather than a
frequency-domain analysis. A time-domain analysis is more sensitive to local
inclusion than a frequency-domain analysis. A frequency-domain analysis has
advantages which simplify problems, but is not sensitive to local inclusion
[Raghavendrachar 1992]. Laser displacement measures are commonly used [Park
2013, Choi 2013]. This equipment is more expensive than accelerometers and
requires reference points. However, laser displacement measures are more
accurate than accelerometers. Moreover, LIDAR, a laser scanning technique,
provides a high spatial resolution. Recently, there have been numerous studies
which have attempted to reduce cost of the displacement measure. Several studies
have focused on a vision-based displacement measurement technique [Kim 2012,

Kim 2013a, Kim 2013b]. It requires only a small number of video cameras to



measure the displacement of large structures. A light emitting diode (LED) can be
applied to improve the vision-based displacement measurement technique [Wahbeh
2003]. Kinect, an input device developed by Microsoft as part of their XBOX 360,
is applied as displacement measure to reduce costs [Qi 2014]. Specifically, a
ultrasonic elastography device provides displacement measurements [Bercoff 2003,
Bercoff 2004, Park 2006, Park 2009]. Ultrasonic elastography devices incur low
costs and provide high-quality information for diagnosis.

An example and an application are introduced to assess the acceleration-
energy filter and the bias compensation. The first example is an aluminum plate
which is under a plane stress condition. It shows how the inverse analysis using
EEE and stabilization schemes work. The second example is a human skin tissue.
It uses the Helmholtz equation, which is an equation for incompressible continuum.
The inverse analysis and stabilization schemes are slightly different from those of
the inverse analysis for the original continuum. The example shows an algorithm

for medical imaging using ultrasonic equipment.






2. Equation Error Estimator in Inverse Analysis
Using Dynamic Displacement

2.1 Definition of Inverse Problem Using Minimization

There are numerous engineering demands to identify unknown system
parameters of continua, especially stiffness parameters. These identifying
schemes are known as system identification (SI) and/or inverse analysis. Inverse

analysis typically uses various types of measurements, including the displacement,
velocity, acceleration, and strain. With regard to the types of measurements,
displacement includes the lowest frequency information. It works well with
massive structures such as civil structures, aircraft, and ships. For wave problems
such as those in ultrasonic medical imaging, only displacement is valid because it
includes the information pertaining to frequencies around OHz. Acceleration and
velocity do not include this type of information.

Unknown stiffness parameters are estimated by inverse analysis for linear
elastic continua. The governing equation of the continuum is a function of the
displacement, system parameters and external forces.

o°u, o°u,

Coy—*+b —p—>t=0
ijkl an8X| i —P (21)

where Cijk,, X, U, t, bi, p and O are the elasticity tensor, the Cartesian



tensor, the displacement tensor, the time dimension, the body force tensor, the mass
density and the symbol of partial differentiation, respectively. The displacement
can be calculated via the system parameters and the external forces.

Error minimization schemes are employed for identifying the stiffness
parameters, which are parts of the system parameters. Output error estimation
(OEE) and equation error estimation (EEE) are typical error estimators.

OEE estimates errors between responses from unknown models and measured
responses. The next equation represents inverse analysis using OEE which uses

the L,-norm [Hjelmstad 1996, Ge 1998, Huang 2001, Kang 2005].

minTi = [ jvt Ju(Cya) - UHE dvdt (2.2)

Here, T, V,, C;,, U and U are the total measuring time, the whole domain

of the continuum, the unknown stiffness parameter, the calculated displacement
from the governing equation (or from a numerical model of the equation) and the
measured displacement, respectively. Fig. (2.1) shows the basic concept of

inverse analysis using OEE. Eg. (2.2) is a non-linear minimization problem

because u(CijkI) is calculated by solving forward problems, including a matrix

inversion calculation. Accordingly, inverse analysis using OEE requires a

considerable amount of computational effort and is not suitable for real-time SI.



( )

. unknown _
input — U
system
\_ W,

( . )

. govermng L5

equation

Figure 2.1 Concept of OEE

However, responses of all degrees of freedom (DOF) do not have to be measured.
This is one advantage for selecting measurement points. Also, inverse analysis
using OEE does not have biases in its solutions.

EEE estimates errors in the governing equation or the weak form of it. The

inverse analysis using EEE with the L,-norm is in the next.

2
o°U, o,
2

C. 2k
Moxox ot

dvdt (2.3)

minl‘[:J't Iv[

In this equation, T, V,, C;,, U and p are the total measurement time, the

whole domain of the continuum, the unknown stiffness parameters, the measured
displacements and the (known) mass densities, respectively. Fig. (2.2) shows the
basic concept of inverse analysis using EEE. Minimization problems using EEE
are quadratic problems when the equations are linear with respect to unknowns.

The quadratic problem requires a short and predictable computational time.
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Figure 2.2 Concept of EEE

Inverse analysis of linear elastic continua using EEE is a parallelizable algorithm,
because each time step and each of the terms are perfectly independent from each
other. The quadratic object function and the parallelizable algorithm make inverse
analysis using EEE suitable for real-time or semi-real-time processes. However,
the solutions from the inverse analysis using EEE contain biases. The biases must
be handled by a bias compensation scheme, as introduced in section 2.4.  Another
disadvantage is that all displacements, velocities and accelerations on the all DOF
are required. If only one of these responses is measured, the other responses must
be derived by differentiation or integration. The noise sources in the measurement
are amplified during the differentiation and integration process. The amplified
noise amplifies the ill-posedness and the bias of the solutions. This amplification

must be handled by the acceleration-energy filter, which is introduced in chapter 3.

10



As introduced in chapter 1, inverse analysis using EEE is feasible for real-time
processes and thus the acceleration-energy filter in this paper focus on EEE. The
filter here can be applied to inverse analysis using OEE, but this is outside the
scope of this thesis.

Several assumptions are necessary to simplify the problems. The first is that
the external forces and the body forces are ignored because forces from outside of
the continua are difficult to measure. Transient loads, which are released

immediately before the measurement processes start, satisfy the first assumption.
When this assumption is valid, the body force term b, in Eq. (2.1) becomes zero.

A second assumption is that damping can be ignored. A short measurement time
makes damping ignorable. This assumption is satisfied when relatively few
vibrations are included in the measurement time. A third assumption is that the
mass density and the Poisson ratio are known. The final assumption here is the

assumption of isotropy continuum.

2.2 FEM for Discretizing EEE

Eg. (2.3) must be discretized, as measured displacements are usually
discretized in both temporal and spatial dimensions. The finite element method
(FEM), the rectangle method and the central finite difference method (FDM) are
utilized for discretizing the spatial domain, the temporal integration and the

temporal differentiation, respectively.

11



Originally, Eq. (2.3) is discretized but cannot be. The weak form of the
governing equation is employed for replacing the governing equation in the Eq.

(2.3). Spatial discretization starts with the variation of Eq. (2.1), without the body

force b;,.

o4 _ 0T,
[, 30.Cy —kdv - |, dtp v 2.4)

Here, U; is the measured displacement. The equation above is integrated by

parts and discretized by FEM.

oo, ou, ou,

J. ou; p I dV J. —t C”k| _dV J. ou; C|]k| 8X n;ds (25a)
j |

J

zSU{ZUpeNTNdVJEJrZE"UBTDBdV]U}zo (2.5b)
e Ve e Ve

where N, B, D, U and E® are the shape function matrix, the first
derivatives of the shape function matrix, the constitutive matrix with the unit

Young’s modulus, the measured displacement vector and the Young’s modulus of

each element, respectively. The superscript e refers to each element. Z()

represents a structural compatibility summation. The last term in Eq. (2.5a) is a
boundary condition and is eliminated on the fixed and free boundaries. The

sufficient condition of Eq. (2.5b) is the next.

12



(Ip NTNdV] +YE UEBTDBdVJU (2.62)

e e

_ZmLU+ZE *U=0 (2.6b)
m® and Q° are defined below
e T
m° = [pN"NdV (2.72)
Ve
e T
q° = [B"DBdV (2.70)
VE

Since solutions of Eqg. (2.6b) are the optimal solutions of the equilibrium

equation (Eq. 2.1), Eq. (2.6b) replaces the equilibrium equation in Eg. (2.3).

dt (2.8)

2
minTI :J.t HZmeU +> E‘q°U
e S 2

The rectangle method and the central FDM are employed for descretizing the

temporal integration and the displacement-acceleration relationship, respectively.

(2.93)

_ 2

minTT~ > > m°U, +> E°q°U,| At
t e e 2
2

~ ) > m°L,U, + D Eq°U, | At
t e € 2

(2.9b)
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The subscript t indicates each time step. The central FDM matrix for second

order derivatives using second order accuracy L, is defined below.

L, = . (2.10)

Since At in Eq. (2.9b) does not effect to result of the minimization problem,

the discretized object function of inverse analysis using EEE is given below.

2
minIT=> 1> m°L,U, +> E°‘q°U, (2.12)
t e € 2
The solution of the quadratic minimization problem is given below.
oIl T it e 11 117 eniT ~eNTT
E:Z Ui D> (@ m°L,)U [+ | U DY (Efg  g°)U, |=0 (2.12)
t e t e

The number of these equations is identical to the number of elements. A

matrix form of the equation above is in the next.

M+QE=0 (2.139)
E=-Q'M (2.13b)

M, Q and E are defined below.

14



. (2.14a)
t=1 :
U/q° (ml+m2+ +me)L2Ut
T e
U/q"q'U, U/q"'q’U, - Ulg'q7,
n 2 17 T 2T 2 2 el
Q-y|Uia @'l Ula’ o'l via”a'v, (2.14b)
t=1 : : :
—7 T 1 eT el e1]
Ulg° q'U, Ulg q’U, Uia®q°U, |
El
E2
E = ] (214C)
Ee

It is important to note that the measured displacement vector U is squared.
The squared terms cause bias in the solutions. This is discussed in the next

section.

2.3 Effect of Noise in Displacement

2.3.1 Noise Amplification by Differentiation

The measured displacement always includes noise. The noise is amplified by
displacement-acceleration and displacement-strain relationships, which are the
second and the first order differentiations, respectively. To understand the noise
amplification of differentiations, a frequency-domain analysis is useful. The

Fourier transform and the transfer function provide information on the frequency

15



domain. [Bracewell 2000]
The Fourier transform (Eg. 2.15) provides frequency domain information from

a function or signal of the original domain.
FLF (0] = [* fedx=f () (2.15)

Here, ¥, f(X) and fA(co) denote the Fourier transform, a function/signal of

the original domain and a function/signal of the frequency domain, respectively.
The original domain is a temporal or spatial domain in this paper, and the frequency
domain is a temporal or spatial frequency domain as well.

A function of the frequency domain is a transfer function. The definition if
the transfer function is the linear mapping of the input and the output in the

frequency domain.
Y (®) =H ()X (w) (2.16)

Where o, H(®), Y(®w) and X(w) are the frequency in radian, the transfer

function, the Fourier transform of the output and the Fourier Transform of the input,

respectively. The Fourier transform of the differentiation is the next equation.

?{dn f ﬂ = (i0)" () (217)
dx
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In this equation, i and n are the unit of a imaginary number and the order of the
differentiation. The transfer function H(w)=(im)" is a monotonically

increasing function and indicates that the high frequency signal is amplified by the
differentiation. The amplified high-frequency noise, especially near the Nyquist
frequency, act as a series of Dirac delta functions. Fig. (2.3) shows the
amplification levels of second differentiation at a normalized sampling rate
(original sampling rate = 10° Hz; for the Nyquist frequency = 5x 10*Hz; normalized
by radian). Amplification levels of the second FDM are also displayed in the

same graph. Even if the noise amplification of the FDM is lower than the

1 —2nd order FDM .
1 = 2nd order diff J’

> o
T ..2. .7
\

N
T

abs of transfer function

00 T T T T I

I
0 0.5 1 1.5 2 2.5 3
normalized frequency (radian)

Figure 2.3 Transfer function of the second differentiation (absolute value)
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amplification of exact differentiation, it remains critical. Figs. (2.4a, b and c)
show the noise-free and noisy differentiation of the harmonic function combination.
Fig. (2.4a) is displacement u(t) = sin(300x2xat) + cos(250x2xnt) and the noised
displacement. Fig. (2.4b and c) are the accelerations, the second derivatives of the
exact/noisy displacements and the large scale of (b), respectively. As shown in the
Fig. (2.4b), the amplified high-frequency noise acts as a series of Dirac delta
functions. This breaks physical laws, the finiteness of the strain energy and
acceleration, for the dynamic response of the continuum and causes error in the

solutions of the inverse analyses.
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2.3.2 Decomposition of Noise Effects

The amplified noise in the measured displacement effects to the solutions of

EEE. To analyze effects of noise in the measured displacements, U,in Egs.

(2.14a and b) is replaced by (U,+U,). U, and U, represent the exact

displacement and the noise in the measured displacement, respectively.

(=1 1T 1+ — T o
L|1uigta'u, - Uld" gy,
Q=> : 3 :
| =7 e 1 —T T et
" Ulg* q'U, - Ulq° q°U,
Ul "q'u, - UlgeU,
t=1 UeququUe Uzquque
[Ure"qU, - Urat'e, (2182
+ : g :
1 Ulg*'q'U, - Ulg* q'U,
(7T 1T 177 7Tl T 1T TIT AT meTT TIT LT NeTT
SlVea al,+Uiq g, - Uqg qgU,+U,q q'U,
+> : s :
1 Ulg*'q'U, +Ulq* q'U, - Ulg*q°U,+Ulq" q°U,
= Qexact + Qbias + QCOV
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U:qlT (m1 ++méL.U (2.18Db)

[0 e LT, O LT,
+2

=1 UequT(m1+---+m L.U +UTqe (m et m )LU
=M

m* .0
T\ Ui+,

)L

=

e

exact + M bias + MCOV

Where Q..o Qpias: Qeov: Mewetr Myis @and My, are the exact term of

Q, the bias term of Q, the covariance term of Q, the exact term of M, the bias

term of M and the covariance term of M, respectively. Eq. (2.13a) is

decomposed into the next form by Eq. (2.18a and b).
Mexaot + M bias + MCOV + (Qexact + Qbias + QCOV)E = O (219)

Qo and M., are exact terms which are determined by the noise-free

displacements.  These terms include noise-free information and give exact

solutions.
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Eexact = Q_l M

exact exact

(2.20)

Here, E is the vector of the exact solution for the unknown Young’s

exact

modulus vector E.
Qus and M, in Eq. (2.19) are bias terms which are created by the

squared noise. Bias terms have the characteristic of variance because the
summations of the squared noise are directly proportional to variance of the noise.
These terms create biases in solutions because the noise is squared before the
summation in each case. The terms do not disappear, even when the measurement
times are infinite, and they converge to specific matrixes. The matrixes are
proportional to the variance of the noise. Error seeds do not effect to the bias of
the solutions. If the bias terms are known, the bias of the solution can be

eliminated by the next equation.

0=M-M bias T (Q _Qbias)E (2.21)

The terms in Eq. (2.21) are defined in Egs. (2.14a,b) and (2.18a,b).

To demonstrate the bias of the solution, a human skin tissue example is
employed (Fig. 2.5). The example is modeled by 100x100 Q4 plane strain
elements and Helmholtz equation for analyzing both forward and backward
problems. Exact shear modulus of normal and inclusion elements are 36kPa

and 72kPa, respectively. Shear modulus of each elements are estimated by
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Figure 2.5 Human skin tissue example

Eq. (2.13b). Figs. (2.6) ~ (2.8) show the results on the line (A-A’) of Fig. (2.5).
Fig. (2.6) shows the biases from different error rates. A greater error rate results
in greater bias. Fig. (2.7) shows that the bias is not affected by the noise sets.
Even when the noise seeds are different, the same variance results in the same bias.
Fig. (2.8) shows the solutions using Eq. (2.21). The biases are removed, but ill-

posedness remains in the solutions.  This ill-posedness occurs from the covariance

terms.
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Qcoy and M, are the covariance terms. These terms come from the

interaction between the noise and the noise-free displacement, meaning that the
covariance terms are proportional to the covariances between the noise and the
noise-free displacement. These terms disappear when the measurement time is
infinite, as the covariance between the white noise and the other signals is zero in
each case. However, the terms are never removed with a finite measurement time.
Under such a condition, the terms are completely unknown and are not predictable.
No schemes have been devised to reconstruct the covariance terms. The ill-
posedness of inverse analysis is caused by the randomness of the covariance terms.

Sl schemes which are defined by a minimization problem contain ill-posedness in

25



their solutions [Bui 1994, Hansen 1998]. Fig. (2.8), which is a solution using the
bias compensation, shows the randomness of solutions containing ill-posedness.
The instability of the solution can be explained by the lack of information. Noise
in the measurement and modeling errors always exist with inverse analysis, and
they cause information losses. The non-uniqueness and discontinuity of the
solution are caused by a lack of information and cause instability in the solution.
Regularization schemes are existing for stabilizing the solutions.  The
regularization schemes impose prior information to handle the lack of information.

This issue is minutely discussed in section 2.5.

2.4 Bias Compensation

The inverse analysis using EEE is disturbed not only by ill-posedness but also
by biases [Hjelmstad 1995]. The biases of the solutions are caused by error terms
in Eqg. (2.19). The biases are not eliminated even when the measurement time is
long enough. Biases in solutions exist in all types of inverse analysis using EEE,
not only in the inverse analysis for linear elastic continuum using dynamic
displacement. However, the biases of the solutions are not seriously considered in
many studies. The adaptive filters employ the inverse analysis using EEE for real-
time processes [Haykin 2008]. Although the reference does not use ‘EEE’ as the
name of the error estimator, the process for estimating error of the target system is
identical to EEE. The result of the process has bias, but it is very small and

negligible when the noise is properly taken into account by noise suppression filters.
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Additionally, it is easy to remove the bias from the solutions, since only the noise
variances have relationship with the bias in each case. The extraction of the flutter
derivatives uses the inverse analysis using EEE [Hong 2012, Cha 2015]. This
method includes the bias of the solutions as well, but it is ignorable for the same
reason given with the adaptive filter [Cha 2015].

However, the bias of EEE for the inverse analyses of linear elastic continuum
is not ignorable because the noise is amplified twice in the spatial and temporal
differentiation processes. The bias of the solution is eliminated by Eq. (2.21). If
the noise values are known, the bias terms are also known by Eqg. (2.12a and b).
However, the noise values are always unknown and the bias terms are unknown as
well.

Bias compensation is suggested to handle the bias with reconstructed bias
terms. The bias compensation reconstructs the bias terms by the variances instead
of with the noise values themselves. The bias compensation requires three
assumptions. The first is that the noise is white noise. The second is that
correlation between colored noise from different white noise is zero. The final is

that the measured data is long enough and the bias terms are converged enough.

The bias terms in Egs. (2.18a and b) consist of the colored noise vectors uL or

i : i i :
L,u: , and the square matrixes ' q° or q' m°. The colored noise vectors are

represented by C, and the square matrix is represented by A.
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Here, o and sum[-] denote the element multiplication of the matrixes and the

summation of all elements in a matrix, respectively. GEJ (n,m) is the covariance

between the n™ element of the colored noise vector ¢, and the m™ element of the

colored noise vecto

When the noise is white noise, Q,;,, and M,;
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by Eq. (2.22c).

is the number of time steps.

in Egs. (2.18a and b) are

2 le
mqmm

2 2,6
mqmm

(2.23a)

2 qee

mqm m
|
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2 ~21 2 .n2,2 2 a2,8
-2 Zcmmm,m+zgmmm,m+'“+zcmmm,m
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My, = ot (2.23b)

2 el 2 n8,2 2 e
szmm,m + zcmmm,m +eeet Zcmmm,m
L m m m

In this equations, &2, q-! and my.) are the variance values of white noise in

m,n

the m™ measuring point, the (m,n) element of the matrix qiqu and the (m,n)

element of the matrix qiij, respectively. —2At™ of Eq. (2.23b) represents
the middle coefficient of the central FDM for second order derivatives using second

order accuracy. abias and Mbias are substituted into Q,;,, and M, of Eq.

bias
(2.21), and then the biases in the solutions are eliminated.
Figs. (2.6) and (2.8) are solutions of the EEE without/with bias compensation,

respectively. In Fig. (2.8), the biases of the solutions are eliminated by the bias

compensation, while ill-posedness is remained.

Bias Compensation without Noise Variance Information

Bias compensation requires the noise variances, but it is difficult to determine
the exact values in the most cases. The bias terms are directly proportional to the
noise variance and thus, the noise variances can be rebuilt from a minimization
problem. The object function is the difference between the measured and the

analyzed displacement.
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minI(e®) =T, - u,(E, ()], (2.24)

Where ¢°> and U, are the unknown noise variance vector and the measured
t

displacement, respectively. U, (E,(6%)) is the analyzed displacement which is

calculated by the bias compensated elastic modulus using &2. ||||§ indicates the

L,-norm minimization. Since the number of noise variance is identical to the
number of nodes, Eq. (2.24) has too much unknowns. Thus, additional
information is required for reducing the number of the unknown. A proportional

noise assumption or an absolute noise assumption can be the additional information.

2.5 Regularization

To remove the ill-posedness of the inverse analysis, missed information must
be complemented. Regularization schemes have been used for stabilizing the ill-
posedness of the inverse analyses. Unstable information is replaced by prior
information, which is imposed by regularity conditions. Material property
conditions are the most commonly used information in many studies.
Regularizations impose the condition in which the material property functions of
the continuum must be in the L,-function space.

Three types of regularization are typically used in many fields. The first is

known as truncated singular value decomposition (TSVD) [Vogel 1986]. TSVD is

not a regularization scheme, but it has the basic concept of regularization. Q in
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Eqg. (2.13b) is divided by means of singular value decomposition (SVD).

i ) 1 1
E=-Q'M=-VAVIM=-} v viM= —Z}L—(VTjM)vj (2.25)
=R =y

Ix1

T

Here, V, V,, Vi, A, A; and n are the singular vector matrix, the j" left

singular vector, the j™ right singular vector, the singular value matrix (diagonal

matrix), the jth singular value and the number of unknown system parameters,
respectively. The singular values and vectors are ordered in a descending order of
singular values. The left singular vector matrix is a transpose of the right singular
vector matrix because Q is a square matrix. Small singular values and their
vectors are minor factors in the input-output relationship, but they have major

effects on the noise amplification process [Hansen 1998]. Zero singular values
take on infinite values due to the inverse process of Q. Truncating small

singular values and vectors stabilizes the inverse analysis.

no1 t viM
E=-QM=-Y ~(v]M)v; ~-> ==, (2:26)
j=1 1 1 j=1 j

J

In this equation, t is the truncation number. The truncation number denotes the
number of singular values which have useful information. Too large truncation
number makes TSVD meaningless, whereas too small truncation number leads to a

loss of useful information. A bilinear fitting method (BFM) is utilized to decide
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the truncation number [Park 2007]. Truncated singulars contain part of the
information, even if it is polluted. The truncated information is another source of
noise in the solution. This noise is related to the uniqueness of the solution.
Solutions from Sl using TSVD may be not precise solutions but may instead be
another set of solutions from the same input-output values. This indicates that
even if the solution itself is incorrect, the input-output relationships from the
solution is exact. Thus, TSVD is usually used with adaptive filters, signal
processes and control fields. These fields focus on the input-output relationships
of target systems, not systems overall.

L;-norm regularization has been proposed to correct the non-uniqueness of

TSVD [Park 2007]. Prior information replaces the truncated singular parts of

TSVD.
. Zt:vEM Z”:
E=-Q'M~-— v.+ > yv.v.=E +E
RPN = e (2.27)
Subjectto V/E, =0 and E,,., —E <E <E, . —E

Here, v and Y which satisfy the condition of j > 1, are the rebuilt singular
vectors and the undetermined constants of the rebuilt vectors, respectively. E,,

E A6 E and E denote the solution by TSVD, the linear combination of

r? lower upper

the truncated singular vectors, the lower bound of the solution and the upper bound

of the solution, respectively. E. is determined by prior information which is that
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the stiffness functions of the continua in the spatial domain must be in the L,-norm
function space [Park 2007]. The prior condition is imposed by the L;-norm form

of the L,-norm function space condition.

rréirn Y, = HV(E— E

=|VIE, - (Epier —E)]|
-E, <E, <E

prior)
(2.28)

Subjectedto V,E, =0 and E E,

lower upper

Since the optimization problem defined in Eq. (2.28) is a linear programming
with respect to E,, L;-norm regularization is an iterative scheme which requires a

considerable amount of computational time.

L,-norm regularization is suggested to build a quadratic problem. The prior
and measured information are mixed at the rate of the regularization factor and the
singular values. The prior information used with L,-norm regularization is also
used in this case, but the prior information is imposed in a L,-norm form. The
prior information is imposed by means of Tikhonov regularization [Lee 1999, Park

2001].

2
Meee = ] (2.29)

m
k=1

D> m;+> Eq;

2
+ BHE - Eprior
2

Eq. (2.29) is a quadratic problem when the equilibrium equation is linear with
respect to E. It is not an iterative problem, and it requires low computational

efficiency.
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The three regularization schemes above have been used in many fields. Most
cases are soft inclusion cases, for which the above regularization schemes work
well. However, regularization does not work properly in cases involving hard
inclusion. Tumors in human bodies, suspensions of vehicles and other such
examples are hard inclusion cases. Figs. (2.9) and (2.10) show the results of soft
and hard inclusion cases when using L,-norm regularization, respectively. These
examples are the ultrasonic elastography examples discussed in section 2.3.2 (Fig.
2.5). In the soft inclusion case, L,-norm regularization gives a useful solution.
On the other hand, the hard inclusion information is truncated by L,-norm
regularization.

To understand the drawbacks of regularization, the mechanism of
regularization must be understood. Noise-free information of Q in Eq. (2.13b)
is decomposed into two parts, i.e., singular values and singular vectors, by SVD.
The singular values contain the scale information of the elements in Q, and the
singular vectors, which are unit vectors, have the position information of the scale
information. Smaller singular values are related to larger values of E (harder

elements of the FEM), and larger singular values are related to smaller values of

E (softer elements of the FEM), because Q is going to be the inverse matrix

Q™ with which to calculate E. When these properties of Q and E factor

into the process of regularization, the hard inclusion information is truncated.

Small singular values and their vectors are removed/replaced/weakened
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(TSVD/L4/L,, respectively) by regularization and amplified noise is
removed/replaced/weakened.  During this process, information about hard
elements, which is included in the small singular value parts, is also
removed/replaced/weakened. It indicate that regularization is not valid for cases
involving hard inclusion. The procedure above is concluded in Fig. (2.11).

The regularizations are valid in typical cases because most damage cases
involve soft inclusion. In some cases, however, involving hard inclusion, the
regularizations are not valid. In the next section, a new stabilization schemes are

proposed to prevent the side effects associated with regularization.
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3. Acceleration-Energy Filter

Noise filters using regularity conditions uses physical laws on the measurements as
a prior condition. The physical laws of equilibrium equation (Eq. 2.4) must be
satisfied, but noise in the measured displacement breaks the physical laws. This
situation is caused by differentiation sequences in the inverse analysis of the
continua, which amplify high-frequency noise. Amplified high-frequency noise
acts like a series of Dirac delta functions and breaks the physical laws. The
measured displacements without the physical laws effect the ill-posedness of
inverse analyses. The physical laws of Eq. (2.4) must be guaranteed to avoid ill-

posedness.

3.1 Noise Filter Using Regularity Conditions of Displacement

To prevent ill-posedness of the inverse analysis, the measured displacements
must satisfy the physical laws of the equilibrium equation. Eq. (2.4) in terms of

measured displacement U is given below.

-p u =0 (3.1)

The measured displacement U have to satisfy two physical laws, the

finiteness of the strain energy and the acceleration, to satisfy the equilibrium
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equation (Eq. 3.1).
The next equation represents the first law, the finiteness of the strain energy.
du, du,
—C.y —%dV <
L dX- ijkl dX| (32)

]

The equation describes that total internal energy of continuum must be finite.

The next equation represents the second law, the finiteness of the acceleration.

2
d’a,

dt?

dt < oo (3.3)

J

2

The equation describes that the second derivative of the measured
displacement must be finite. In fact, acceleration functions are not finite functions,
because the Dirac delta functions can be included in the acceleration functions.
Except for the Dirac delta functions, however, acceleration functions exist in the
finite function space. While the impact loads are negligible, it is a valid
assumption that acceleration functions exist in the finite function space.

The measured displacement with noise, however, cannot satisfy above two
physical laws. Because the amplified high-frequency noise sources, which are
amplified by differentiations, act as a series of Dirac delta functions (section 2.3.1).
A series of Dirac delta functions breaks the physical laws, and causes ill-posedness
of the inverse analysis.

Noise filtering using regularity conditions can prevent the dissatisfaction of
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the physical laws. Filtered displacement U is defined by three conditions. The
first condition is that the filtered displacement must sticks around the measured

where U and U denote the filtered displacement and the measured displacement,
respectively. The second and the third conditions are regularity conditions using

the physical laws of the displacement.

di . dd
Hezth__Ciik'd_dedt“o’ (3.5)

dth <o (3.6)

Egs. (3.5) and (3.6) represent the regularity conditions using the finiteness of
the strain energy and the accelerations, respectively. The regularity conditions are

enforced to Eqg. (3.4) as penalty functions.

minI1 :%L jv @ —LTi)dedt

LG

(3.7)
du du,
dt2 dth 5 jT [~ & "k'd dvdt

Here, A, and A, are regularization factors which define the ratio between the
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regularity and measured information. Since The object function is designed to
suppress noise which break the physical laws, the minimization problem is
considered as a noise filter. A governing equation and boundary conditions help
to figure out characteristics of the acceleration-energy filter. The variational
principle and the integration by parts are applied to Eq. (3.7) for deriving the

governing equation and the boundary conditions.

~ i~ d >80, d°d; ddu; du
oIl = J.T J.v {aui(ui —0)+2, dt2 I dtzl + A dx ~Ci ka :ldth (3.8a)

j |

4~ 2~
SH:I ,[ o | U — G +7‘ad_g_}‘eci'kl —d u dvdt
T dt " dx;dx,
~ . du,

# [ 30C dx, nydsdt (3.8b)

~ 2~ t 3~ ty
g [ OR[N gy | | [ s| S92 gy
vat | dt R R SIS

R 4%,

0, =0+ A~ —ACipg =5 =0 (3.80)
't " dx; dx,
53,y i | —0 (3.8d)
i~ijkl dX| JS .
3T 2~
ddt‘jiz%, ddtliizai at t=t,t, (3.8¢)

Where &, n;, t; and t; are a variation, a nominal vector, an initial measuring

time and a final measuring time, respectively. Egs. (3.8a and b) are the sequence

of the variational principle and the integration by parts, respectively. Eq. (3.8b)
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gives the governing equation (Eg. 3.8c), the boundary condition of the spatial
domain (Eq. 3.8d) and the initial/final value conditions of the temporal domain (Eqg.
3.8e). The spatial boundary condition is eliminated at the free and fixed
boundaries, because it is identical to the boundary condition of the continua. The

temporal boundary condition is not eliminated and must be considered.

3.2 Characteristics of Acceleration-Energy Filter

3.2.1 Characteristics in Frequency Domain

A transfer function is useful for identifying the characteristics of the filtering
process [Hamming 1989]. The transfer function, which shows the input-output
relationship in the frequency domain, is defined as the output divided by the input
in the frequency domain (Eq. 2.16). The transfer function for the acceleration-
energy filter is derived from the Fourier transformed governing equation of the
filter (Eq. 3.8c). However, the filter is a four-dimensional filter and hard to be

analyzed. To simplifying Eq. (3.8¢) the equilibrium equation for the continuum
(Eg. 2.1) is substituted into the last term of Eq. (3.8c). The body force b. is

banished by the first assumption of Section 2.1. The equation below is a

simplified governing equation.

~ d'd d’d, d‘d dd
u-u+A, ——-AC., —& =u ) - _ - =
i i a dt4 e ijkl dedX| i i a dt4 ep dt2
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The Fourier transform and the transfer function of the above equation is

shown below.

F(0) = L+ 21,0, +Apol)E (D) (3.10)
CF@) 1 B 1
F(@) 1+1,0f +Ape’  1+16%, 7 f* +4) n’pf?

H(w,) (3.12)

Here, ¥(U), ¥(@U), H(®»,), o and f are the Fourier transform of the

measured displacement, the Fourier transform of the filtered displacement, the
transfer function, the temporal frequency in radians and the temporal frequency in

Hz, respectively. It is a monotonically decreasing function from H(0)=1 to
H () =0. The transfer function of the acceleration- energy filter consists of the

pass band, the cut-off band and the transient which are a signal-conserving range, a
signal-eliminating range and a transient between the above two ranges, respectively.
The transfer function in the pass band has value of near one, while the transfer
function in the cut-off band has value of near zero. The acceleration-energy filter
in this case is a low-pass filter, which is typically used to stabilize numerical
differentiations. This is feasible because amplified high-frequency noise is the
greatest problem, and a low-pass transfer function suppresses high-frequency noise.
However, this instance of the filter has strong physical meaning and is thus

optimized for the inverse analysis of the continuum.

A normalized transfer function with respect to a target frequency f, is
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employed for simplifying characteristics of the acceleration-energy filter. The
target frequency f, represents an upper bound of the pass band. The target

frequency, the upper bound of the pass band, is chosen as the largest valid

frequency of the measured displacement.

- 1 1
H(f)=H(f)= . S ———
R Y Ty W) I TWTRoN CTo e Yy Cray I e

Here, H(f), f,, T=1f/f, & ,=4rn%f> and A,,=160n"fh, are

t?
the normalized transfer function, the target frequency, the dimensionless
normalized frequency, the strain energy regularization factor of normalized transfer
function and the acceleration regularization factor of normalized transfer function,

respectively. The characteristics of the acceleration-energy filter are defined by

the regularization factors A, and A,,.

3.2.2  Separation of Regularity Conditions

The given filter, Eq. (3.7), has both temporal and spatial calculation, but it is
difficult to handle both dimensions at once. In this section, Eq. (3.7) will be
approximately separated into temporal and spatial parts in the frequency domain.
The transfer function of the filter (Eq. 3.12) is useful for simplifying the

minimization. The next equation is an approximation of Eqg. (3.7).
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P H( =

() T+, f +A,,f?
- 1
Tl F A F A A,
1 1
LA, f 1A, f

(3.13)

The term xayzxelzfﬁ is added to the denominator of the transfer function.

The transfer function shows that the filter is a low-pass filter, which consists of a
pass band, a cut-off band and a transient. In the pass band, the added term is
nearly zero. In the transient and the cut-off band, the added term accelerates the

convergence of the transfer function. It means that the approximated transfer

function can replace the original one. Because the regularization factors 2,

and A,, are not defined yet, accuracy of approximated transfer function will be

analytically discussed in Section 3.2.4.
The series of ensuing equations separates the approximated equation into two

regularizations.

L+2,,f A+, , FO)F@) = F(@) (3.14a)

Q+2,, fHFO) =F@U) & (@L+A,,fH)FQ)=F@) (3.14b,c)

L+1,0)F@) =FU) & (@L+ped)F{)=7F(T) (3.14d,¢)
_d4 o d2u

O:ui—ui+xaF & O:ui—ui—kepF (3.14f,9)
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(3.14h,i)

Where U, U and U are the measured displacements, the filtered displacements
by the strain energy regularity condition and the filtered displacement by both the
strain energy/acceleration condition. The commutative law of both conditions is
valid since multiplication of the two transfer function in Eq. (3.14a) satisfies the
commutative law. The inverse processes of the integration by parts of Egs. (3.14h

and i) give the object function of the equations.

2

. Y P A, ¢ |ld?T
mmH(u)_EL(ui—ui) dt+?'[l_ e dt (3.15a)
. ¢, A, ¢ du. du
minll==| (0, -T)*dV +=2| —-C,,—~dV
2-[V( i |) 2 .[V dXJ— ijki dX| (315b)

The noise filter is separated into the temporal and the spatial filters, or the
acceleration and the energy filters. The integral dimensions are also separated into
their temporal and spatial dimensions. Doing this is easier than the original four-

dimension integration.

3.2.3 Characteristics and Regularization Factors of Acceleration Filter
Since Egs. (3.15a and b) satisfy the commutative law, the acceleration filter is
independent from the energy filter. The acceleration filter has own input and

output displacement, and the object function (Eq. 3.15a) changes into the next
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equation.

~ 112
dZ

dt?

minTI(u) :%L (@ —Ui)zdt+£L (3.16)

2

2

Here, U. and U, are the output (filtered) displacement and the input (measured or

output from the energy filter) displacement, respectively. A transfer function of

the acceleration filter is derived from a variation of Eq. (3.16)

. d%a
SI1 =J'TJ.V {SUi(ui —ui)+kaW i

=HV517{@—E +xa%}/dt

~ o~ t 3~ t
S I T IV IR
Vgt | dt I e TS |

}dth (3.17a)

(3.17h)

Here, U, U, t and t; are the filtered displacement, the input displacement, an

1
initial measuring time and a final measuring time, respectively. The inner
equation in the first term of Eqg. (3.17b) is the governing equation of the

acceleration filter and the other terms are the boundary conditions.

0=U-U+A, — (3.182)

L=—L, —l=a at t=t,t, (3.18b)

46



Egs. (3.18a and b) are the governing equation and the boundary conditions,
respectively. The transfer function of the acceleration filter is derived from the

transfer function of Eqg. (3.18a).

1
H(f)=———
a(f) 11160 (3.19a)
~ = 1
H.(f)=——
(F) PTWRE (3.19h)

Here, H,(f), H (f), f, f=f/f and A ,=161,7"f" are the original

transfer function of the acceleration filter, the normalized transfer function of the
acceleration filter, the target frequency, the dimensionless normalized frequency

and the regularization factor of normalized transfer function, respectively. Itis a

monotonically decreasing function from H_(0)=1 to H_(:0)=0. The

acceleration filter in this case is a low-pass filter, which is typically used to stabilize
numerical differentiations. This is feasible by same reason of the acceleration-
energy filter. However, this instance of the filter has strong physical meaning and
is thus linked to the energy filter (Eqg. 3.15b). The low-pass filter consists of the
pass band, the cut-off band and the transient which are a signal-conserving range, a
signal-eliminating range and a transient between the above two ranges, respectively.

Eqg. (3.20b) is a normalized transfer function with respect to the target

frequency f,. The normalized transfer function is employed for simplifying

characteristics of the acceleration filter. As mentioned in Section 3.2.1, The target
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frequency f, represents upper bound frequency of the pass band and is chosen as
the largest valid frequency of the measured displacement.

The regularization factor is defined by a target accuracy I—~I(1) = H,, which is

the desired accuracy for the target frequency f= 1.

" :Hi_ when 0 <H, <1 (3.20)

t

Since the target frequency cannot be 0 nor an infinite value, the target

accuracy must be in 0 <H, <1. The target accuracy must be pre-defined by an

engineering sense to determined the regularization factor. Here, the values of 0.97,
0.95 and 0.90 are recommended. Fig.(3.1) shows the normalized transfer
functions of the acceleration filter for various levels of the target accuracy. The
higher target accuracy gives the better pass band and the worse cut-off band, and

vise versa.

3.2.3 Characteristics and Regularization Factors of Energy Filter

Most noise sources are suppressed by the acceleration regularization, but the
noise associated with the pass band remains. The remaining noise is white noise
in the spatial direction. These sources are amplified by the strain-displacement
relationship and render the signals such that they are not satisfying the physical

laws of continuum. The energy filter (Eqg. 3.15b) is employed to guarantee the
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Figure 3.1 Normalized transfer function of the acceleration filter

physical laws of the strain energy. The energy filter, which is separated from the
acceleration-energy filter, is independent from the acceleration filter. The energy
filter has own input and output displacement, and thus, the object function (Eqg.
3.15b) changes into the next equation.

T d,
minII _EJ-V (Ui —Ui) dv +7-|-Vd_xjcijkl d—XIdV (321)

Here, U, and U, are the output (filtered) displacement and the input (measured /
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output from the acceleration filter) displacement, respectively. A transfer function

of the energy filter is derived from a variation of Eq. (3.21).

o dsi . dad
oIl = -[V |:6Ui (Ui - Ui) + 7\,6 d—XjCijkl d_x:<:|dv (3223)
- _
= [ 81| T, -0, - 1.y AU gy 4, [.8T,Cy, Mepds  (a.220)
v dx;dx; s dx

The inner equation in the first term of Eq. (3.22b) is the governing equation of the

energy filter and the second term is the boundary condition.

'~ —ACpy—=0 (3.23a)

enl =0 (3.23b)

Egs. (3.23a and b) are the governing equation and the boundary condition,
respectively. The boundary condition is identical to the boundary condition of the
continua; it is zero on fixed and traction-free boundaries. The governing equation
is similar to that during acceleration regularization, i.e., functioning as a low-pass
and high-cut filter. However, it is too complex to analyze the energy filter in the
spatial frequency domain, since the elastic waves (the s-wave, the p-wave, etc.)
have physical relationships. Moreover, the elastic waves have relationship with
the temporal frequency. The next equations show relation between the spatial

frequencies of the elastic waves and the temporal frequency.
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Ogpave = Op 4| (3.24a)
u
(’Opwave =0 P (324b)
A+2u
Where ®gpaer Oppaves @, P, A and p are the spatial frequency of the s-

wave, the spatial frequency of the p-wave, the temporal frequency, the mass density
of the medium, the Lame’s first parameter of the medium and the Lame’s second
parameter of the medium. The Lame’s second parameter . represents the shear
modulus when the medium is a continuum.

To simplify frequency characteristics of the energy filter, the equilibrium
equation for the continuum (Eq. 2.1) is substituted into the last term of Eq. (3.23a).
The equilibrium equation for the continuum includes information of the
relationship between the elastic waves and the temporal wave, due to the fact that
Egs. (3.24a and b) are come from the equilibrium equation. The body force b, is

banished by the first assumption of Section 2.1. It is the same sequence to section

3.2.1. The equation below is a simplified governing equation.

d2d
u -0 -Ap—0r=0 (3.25)
P dt?

The Fourier transform and the transfer functions of above equation are below.
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F(U) =1+ rp0))FU) (3.26)
_ F(u) _ 1 _ 1
F@@) 1+Apo’ 1+4) n°pf?

H. (o) (3.27)

Here, ¥(U), ¥(@U), H,(®), o and f are the Fourier transform of the

measured displacement, the Fourier transform of the filtered displacement, the
transfer function of the energy filter, the frequency in radians and the frequency in
Hz, respectively. It is also a monotonically decreasing function from H(0) =1
to H(x)=0.

Since the elastic waves and the temporal wave are closely related by the
equilibrium equation (or Egs. 3.24a and b), valid frequency ranges of the energy
filter and the acceleration filter must be identical. It means that two filters must
have the consistent pass band. The solution of the inverse analysis is not precise
without consistency between the acceleration filter and the energy filter, because
the temporal and spatial derivatives contain different information when the
consistency requirement is not satisfied. Since the pass band is defined by the
target frequency and the target accuracy, the consistency between two filters is

guaranteed by the same target frequency and accuracy. A normalized transfer

function of the energy filter with respect to the f, is in the next

1

H(f)=———
(1) 1+A,,f?

(3.28)
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Here, A,, =4\, n’pf? is a normalized regularization factor of the energy filter.
The normalized regularization factor is defined by a target accuracy I:|(1) =H,,

which is the desired accuracy for the target frequency F =1, and is identical to the

normalized regularization factor of the acceleration filter A, ,.

Ao :Hi— when 0<H, <1 (3.29)

t

A normalized regularization factor A, is employed for representing both

regularization factors of the acceleration and energy filters.

Ay=X =X, =Hi_1 when 0<H, <1 (3.30)

t

Fig.(3.2) shows the normalized transfer functions of the energy filter for
various levels of the target accuracy. The higher target accuracy gives the better

pass band and the worse cut-off band, and vise versa.

3.2.4 Characteristics of Acceleration-Energy Filter

The regularization factors A,, and A,, in the transfer function of the

acceleration-energy filter (Eq. 3.13) are determined by Eq. (3.30). The original

transfer function of the acceleration-energy filter in terms of the target accuracy

53



1.0 e

0.8
S
= 0.6
=
= — H_target = 0.97
% 0.4+ — = H_target =0.95
g | e H_target = 0.90

0.2

0.0

T T
0.01 0.1 1 10! 10°
frequency (normalized by target frequency, log scale)
Figure 3.2 Normalized transfer function of the energy filter
H, is below.

T

; (3.31)

—h

H,+@-H)f*+(1-H,)

The approximated transfer function in terms of the target frequency H, is

below.

- H A
Haporox (F) = IRY] T
approx( ) Ht+(1_Ht)f4 Ht+(l_Ht)f2

(3.32)



I:Iappmx(f) is the approximation of the normalized transfer function for the

acceleration-energy filter. Figs. (3.3a and b) shows shapes of the original and

approximated transfer functions for various target accuracies, H, =0.97 ,

H,=0.95 and H,=0.90. As target accuracy increases, accuracy of pass band

also increases, while noise suppression effect decrease.

Figs. (3.4, 3.5 and 3.6) compare the original and approximated transfer

functions for H,=0.97, H,=0.95 and H,=0.90, respectively. The figures

show that difference between the both transfer functions is acceptable for the
recommended target accuracies.

In Figs. (3.3~3.6), the target accuracies of the original and approximated

acceleration-energy filters (H and H respectively) are different from

t,ori t,approx

the target accuracy of the acceleration filter and the energy filter H, .

Relationship between H, ., or H, ..., and H, is derived from Egs. (3.31 and
3.32)for f =1.
H
H =—1t
t,ori 2 _ Ht (333)
— (3:34)

Fig. (3.7) shows the relationship between the target accuracies of the separated

filters, the original filter, and the approximated filter. Difference between the

target accuracies are acceptable when H, is near to one.
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3.3 Discretization of Filters

3.3.1 Discretization of Acceleration Filter

A Conventional finite impulse response (CFIR) filter is typically used to
approximately discretize a transfer function on the frequency domain. The CFIR
filter is a linear filter, which is a combination of input and filter coefficients

[Hamming 1989].

k
0 =0(t)= >.c,0,,= D cu(t+ pAt) (3.35)



Where k, C,, U, and T, are the truncation number, the coefficients of CFIR

filter, the output (filtered) displacement on the discretized time t and the input
(measured / output from the energy filter) displacement on the discretized time t,
respectively. The transfer function of the CFIR filter is derived by the Fourier

transform of Eq. (3.35).

k .
H ()~ Hep(F) = D c e (3.36)

p=-k

Here, H.pr(T) isthe transfer function of the CFIR filter. ~Since the coefficients

of the CFIR filter are symmetric, C,=C ,, Hcge(f) is an even and real

function. An even and real transfer function does not cause phase shifts in the

input-output relationship. €, in Eq. (3.36) are the coefficients of the truncated

Fourier series for H,(f) and thus defined by the next equation.

c, = At j H, (f)e'2™df (3.372)
l/(2f ) ~ ~
=Atf [ o H () cos(2nff, pAt)df (3.37D)
_f et 1
_TS-[“W T cos(2nf —S p)df (3.37¢)
1/(2f,) 1 -~ =
=2f, jo mcos(znf f p)df (3.37d)

Where f, = At™ and ﬁ = f,/ f, are the sampling frequency and the normalized
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target frequency to the sampling frequency.

The normalization of CFIR filter coefficients with respect to f, provides

independent coefficients from the target and sampling frequencies.

p

12f) 1 ~ =
j —— _—_cos(2nf p)df (3.38)

O 14h,f°

Here, Ep = cp/Ft and p= f:p are the normalized CFIR filter coefficients and

the normalized p. The coefficients Ep have same values no matter which the

sampling and target frequencies are.  Fig. (3.8a) shows the normalized coefficients
of the CFIR acceleration filter.

To select the truncation number k of Eq. (3.36), the Gibbs phenomenon
must be considered. The Gibbs phenomenon explains the rippling on the transfer

function of the truncated Fourier series [Hamming 1989]. By the phenomenon,

the very outside of the coefficients ¢, =c_, should be near zero to stabilize
rippling of the transfer function. Fig. (3.8b) shows zero-crossing points p, .
Note that k =p,/ f; and the filter size of the CFIR acceleration filter is 2k +1.

Figs. (3.9a, b and c) show the transfer functions of the acceleration filter using

CFIR discretization for various filter sizes. p, =0.222 does not have a exact
pass band and thus p,=0.519 is the minimum filter size. The filter size

P, =0.519, p,=0.815 and p,=1.112 are reasonable filter sizes with the

62



6.0
5.0
4.0

normalized cefficients
- 3.0

1.0

0.0

‘10 ! ! I I I | I
0.0 020 040 060 0.80 1.0 1.2 1.4 1.6

p=pf

2.010°

1.510™

—

1010
= 0.222341 0.518585

;fsold* \\I \\\
lo

0.0 10 === =qm T

0.815342
1.1115440

-5.010™ normalized coefficients

10104y 0% o040 060 080 10 12 14

Figure 3.8 Normalized coefficients of the CFIR acceleration filter
(a) small scale  (b) detail in a large scale

63



-0.2 T Tq 2

0.1 1
frequency (normalized by target frequency, log scale)

b
5
'§1.00-
20,95 ——0.222 N
5 ——0,519
0,90 0.815
[

s -—1.112
*0.854
0.80
0.2 0.3 04 05 06 0708091
frequency (normalized by target frequency, log scale)
0.005
-0.004
g
20.003
=
£0.002
[%2]
c

frequency (normalized by target frequency, log scale)

=0.97
(a) small scale  (b) detail of target frequency  (c) detail of cut-off band

Figure 3.9  Transfer function of CFIR acceleration filter H,,

64



acceptable pass bands and cut-off bands. Since the error of the pass band and the

rippling of the cut-off band are reduced as the filter size increases, p,=0.519,

P, =0.815 and p,=1.112 are recommended as the short, standard and long

filter sizes, respectively.
The filtered displacement on the discretized time is defined as the next

equation.

0 = f, C,U(t+ pAt) (3.39)
f

If the truncation number of the Fourier series k = p,f, is not a natural number,

the nearest natural number is the truncation number.

The acceleration filter is also realized by the discretization of the governing
equation (Eq. 3.18a) using FDM. The scheme is named by the FDM-FIR filter
because the final form of the discretization is an FIR filter. The FDM-FIR filter is
totally handled on the time domain, while the CFIR filter is designed on the
frequency domain. The CFIR filter design has the forward and inverse Fourier
transform processes, which cause lots of numerical error. The FDM-FIR filter,
however, does not include any domain shift processes, and gives a more stable and

accurate filter than the CFIR filter.
A fourth-order FDM matrix, L,, is utilized during the discretization of the

governing equation of the acceleration filter (Eq. 3.18a).
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Note that L, is not a square matrix; thus, the discretized governing equation

requires two initial values and two final values.

o Sl

=0+, L, L] (3.41)

cl

In this equation, L',, L}, L%, U, U, G and T' are the first two column of

L,. the last two column of L,, the square part of L,, the measured

displacements, the filtered displacements, the two initial values of the regularized
displacement and two final values of the filtered displacement, respectively. Two

initial and two final values are required to solve Eq. (3.41).
(I+AL5) " @-r L0 - LG =0 (3.42)

The above equation gives filtered displacements using the acceleration filter.
The filtered displacements are not disturbed by the noise amplification of the
relationship between the displacements and the accelerations.

Eq. (3.42) requires two initial and two final values, but the boundaries of the
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time series data are usually unknown. When the boundary information is not

exact, effects of the boundary value errors are derived from Eq. (3.42).
=1y Si f~f ~
- 7\’t (I + 7\‘th4) (Ll4u:arror + L4uerr0r) = uboundew error (343)

The center element of Uy, ey e 1S €AY Zero when the data length is long

f
error

i
error

enough. Because (LT, +L5U. ) is a zero vector except for the first and

last two elements, and (I+A,L5)™ is a almost banded matrix. The time

window technique has been used to solve this type of boundary problem [Hong
2010, Hong 2013]. With the time window technique, Eq. (3.42) is applied to
pieces of data, and the center value is picked up in each piece (Fig. 3.10). The

window refers to an individual piece. Boundary error effects are negligible when
the time window size is long enough, as the center value of the Gbounderyermr is
nearly zero. The time window technique serves as a finite impulse response (FIR)
filter formed by the center row of (1+A,L5)™". The FIR filter is applied in the
next equation.

k k
0 =0(t)= >.c,0,, =D cu(t+ pAt) (3.44)
p=-k

p=-k

Here, Jn, u,, ¢, and k are the n" step of the output (filtered) displacements,

the n" step of the input (measured / output from the energy filter) displacements,

67
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the FDM-FIR filter coefficients (the center row of (I +A.L3,)™) and the window

size coefficient, respectively. The window size N, is defined by the window

size coefficient k.
N, =2k +1 (3.45)

Since the very outside of the coefficients C, is always near zero, the window

size (or the size of the FDM-FIR filter) can be chosen by any values, while the size
of the CFIR filter must have specific values. However, it is figured out
empirically that the FDM-FIR filter converges on the analytic transfer function

faster when the window size is identical to the filter size of the CFIR filter.
Accordingly, the truncation number of CFIR filter k = p,/ f; can be referred as
the window size of FDM-FIR filter.

N, =2k +1=22 41 (3.46)

t

p>1.112, p>0.815 and p=>0.519 are suggested for the recommended,
standard and minimum window sizes. The values 1.112, 0.815 and 0.519 are
recommended p, of CFIR filter. The coefficients of FDM-FIR and CFIR filters
is mostly same to each other when p = p, (Fig. 3.11). The transfer functions of

the FDM-FIR filters, however, are more stable than the transfer functions of the
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CFIR filters (Figs. 3.12a, b and c).

N, of Eg. (3.46) is the window size in the number of steps, but the window

w

size in the time dimension is easier to understand than N,

T, =At(NW—1)=2%=2poTt (3.46)

t

Where T, and T,=1/f, are the window size on the time dimension and the
target period. T, >2.2T,, T,>16T, and T,>1.2T, are suggested for the

recommended, standard and minimum window sized T, .

3.3.2 Discretization of Energy Filter
The variation of the object function for the energy filter (Eq. 3.21) is easily
discretized by the FEM because it is similar to the variation of the equilibrium

equation for the linear elastic continuum.
T ey T el T er |
Ze:jveN NdV uzze:jveN NdV U”@LB DBdV °U (3.47)

Here, N, B, U, U, V¢ and Z() are the shape function matrix, the first
e

derivation of the shape function, the global vector of the input (measured / output

from the acceleration filter) displacements, the global vector of the output (filtered)
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displacements (unknown), the domain of each element and the structural
compatibility summation, respectively. The left term and the first term on the
right are identical to the mass matrix of the FEM for the target continuum with the
unit mass density. The second term on the right is identical to the stiffness matrix

of the target continuum.

M, U=M,,U+1rKU (3.48)

unit unit

In this equation, M, and K are the mass matrix of the target continuum with

unit mass density and the stiffness matrix of the target continuum, respectively.
The matrixes are identical to the matrixes used in forward analyses, except for the

mass density. The filtered displacement is determined by solving Eq. (3.48).

+1,K)*™M,, U=U (3.49)

unit

(M

unit

The stiffness matrix K includes the elastic modulus of each element, i.e., the
unknown parameters of the EEE. To solve Eqg. (3.49), the unknown values must
be sourced from prior information. This prior information does not have to be
highly accurate because it has low sensitivity with regard to the final solution of the
inverse analysis (Eq. 2.13). If the prior is wholly unknown, a preliminary trial

solution of the inverse analysis can serve as the prior.
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3.4 Acceleration-Energy Filter as Signal Processing

3.4.1 Acceleration filter as a signal processing

The acceleration filter is designed by the regularity condition and is realized
by a low-pass FIR filter. This is feasible because the object function of the
acceleration filter (Eq. 3.16) is designed for suppressing the noise amplification of
the second differentiation since it is known that differentiation amplifies high-
frequency noises. The acceleration filter is a type of the noise suppression filter to
stabilize the second derivatives of noisy measured displacements. Usual noise
suppression filters may be available for solving the inverse analysis using EEE.
However, the acceleration filter has two advantages: consistency with the energy
filter and optimality of the inverse analysis for the continuum. The acceleration
filter and the energy filter are applied together for solving inverse analysis of the
linear elastic continuum, and these process require consistency of the relationship
between the elastic waves and the temporal wave. Without the consistency, the
temporal and spatial derivatives have different information. These differences are
present serious noise. The acceleration filter contains the physical meaning of the
equilibrium equation and its FIR form has the same physical meaning as well.
The physical meaning is the media of the consistency between the acceleration and

energy filters.
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3.4.2 Energy filter as a Signal Processing

The final form of the energy filter is a spatial filter in three-dimensional space.
For the rectangular-meshed FEM, the energy filter takes precisely the same form as
a spatial low-pass FIR filter, which is usually used in image processes. A low-
pass FIR filter may work for the inverse analysis for the continuum if it is designed
properly. However, the energy regularization has certain specialties which make it
capable of solving the inverse analysis of the linear elastic continuum.

The first advantage is the boundary conditions. The boundary conditions of
the energy filter is identical to the boundary conditions of the equilibrium equation
of the continuum. This makes the solutions around the boundaries trustable while
the other spatial filters do not give proper solutions around the boundaries. For
example, the spatial filter using a L,-norm spatial derivative regularity condition
exists, as commonly used by other researchers [Park 2006, Park 2009]. The L,-
norm type spatial filter employs the spatial derivatives of the displacement with a

L,-norm error function.
minn—lj @ -0)%dV +—7“sj [Vl dv 3.50
T 2 2 W 2 (3.50)

The governing equation (Eqg. 3.51a) and the boundary condition (Eg. 3.51b)

are derived by the same procedure used for acceleration filter.

vVa (3.51a)
0 (3.51h)



The boundary condition of the L,-norm spatial derivative filter is not zero on
the traction-free boundaries of the continuum. A difference between the boundary
condition of the continuum and the L,-norm spatial derivative filter has detrimental
effects on solutions around the traction-free boundaries. On the other hand, The
boundary conditions of the energy filter is identical to the boundary conditions of
the continuum, and the energy filter works properly on any type of boundary.

The second is information about connectivity between nodes. The FIR form
of the spatial filters can consider only well-arranged nodes, rectangular FEM
elements. However, FEM can employ complicated elements to discretize the
continuum and cannot be handled by FIR spatial filters. However, the energy
filter contains information about the connectivity between nodes, as is the case with
the discretized continuum. For this reason, the energy filter can handle any type
of meshes.

The final advantage is the physical meaning for consistency. This was

discussed in section 3.4.1.
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3.5 Bias Compensation for EEE Using Filtered Displacement

The reconstruction of the bias terms, Eqgs. (2.23a and b), are based on the
white noise assumption. Noise in the filtered displacement, however, is not white
noise but colored noise, because filtered white noise changes into colored noise.
Moreover, since the noise undergoes the energy filter, the colored noise is not
independent from each other. Thus, covariances between colored noise must be
considered for the bias compensation.

The sequence below concerns the covariances of the filtered noise by four-
dimensional filters, which are the synthesized filters of the acceleration filter and

the energy filters. This step gives the covariances of Eq. (2.22c). White noise
w(x,y,z,t) has the position of (x,y,z)with variance o*(X,Y,2). The white
noise after undergoing four-dimensional filtering h, (x,y,z,t) or h(x,v,z,t)

becomes the colored noise C, or C, ,respectively.

C(x Y, 20=2> > > hEwLOWX-EY-y,2-Ct=1) (35

E v ¢ 1

G Y.20)=22 > Y hEWLOWX-E Y-y, 2-(t=1) (35
E v ¢ =

The covariance of the two types of colored noise is then o, , and is derived
by the equation below. The colored noise C,(X,Y:,Z,t) is on the i node and
undergoes h, . The colored noise C,(X;,Y;,Z;,t) is on the j node and
undergoes h,. Orthogonality between each instance of white noise is assumed.
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1 E oy ¢ ot
=n—z (3.53b)
Y X[ ZZZM(&,W,CJ)W(X,-—i,yj—w,zj—g,t—r)}
v ¢ ot
{zzzzm—a,yi—w,zi—c,r>w<a,w,c,t—r>}
1 E oy ¢ ot
:n—z _ (3.53c)
C X|: ZZZh(X évyj_W!Zj_C’T)W(&,’W’C’t_T)
1 h(% =&Y -,z - COWE v, (it -1) ]
Z{;;Z{h(x a,y,—w,z,-—f;,r)w(a,w,c,t—r)_} (4559

h (X =&Y —v,z _Cit)hl(xj -&, Yi —Vy.Z; 1)

;Z;Z Zw(awct IME vt (3:53¢)

T | X h (X a! yJ _Wa Zj —Q,T)GZ(E},\V,C)_ .
_ 2 E.> y| C.> T)

The orthogonality between each white noise instance is used for Eq. (3.53c).
With the Egs. (2.22¢) and (3.53Q), the bias terms of Eq. (2.21) are reconstructed

with the variances of the noise, the four-dimensional acceleration-energy filters,
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and the FEM models of the continuum.

ébias(iv J) =
dlsp & Yi W, _C’T) (354&)
{qu ZZZG (A C)Z{ hdlsp(x T —g,r)}

mbias(i) =
b (5 — & Yi —v,2,—C,1) || (3.54b)
nt{zj:znlzm:m ZZZG &, C)Z[ h (x by vz —C,T)}}

Here, o®(X,y,z), qut, myl, h

mn+ Ngs, and h,are the covariance values of

white noise for the measuring point on the (x,y,z), the (m,n) element of the

matrix g' ', the (m,n) element of the matrix ' m!, the filter for the

displacement of EEE and the filter for the acceleration of EEE, respectively. In

the other words, h,_ is the synthesized filter of the acceleration and the energy

disp

filter. h__. can be understood as the synthesized filter of the acceleration filter,

acc
the energy filter and the central FDM for second order derivatives using second
order accuracy, as well.

Qs and M

are substituted into Q,,,, and M, of Eq. (2.21), and

bias bias

the biases in the solutions are eliminated.
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4. Example and Application

An example and an application are introduced in this chapter. The example is a
linear elastic continuum problem using dynamic displacements under the plane
stress condition. The example uses the schemes in chapter 3. The application is
medical imaging with ultrasound equipment. Human tissues are under an
incompressible condition in this case and are governed by the Helmholtz equation.
The Helmholtz equation is a continuum in the incompressible condition. The
inverse analysis for the Helmholtz equation is slightly different from the inverse

analysis for the continuum.  This is introduced in this chapter.

4.1 Example: Aluminum Plate

A thin aluminum plate model (Fig. 4.1) is employed to demonstrate the
efficiency of the acceleration-energy filter and the bias compensation.  Aluminum
plates are used in many fields, especially with regard to machines and vehicles. In
this case, the plate is modeled by a plane stress FEM model. Newmark’s method
is applied to a dynamic analysis. The numerical calculations are done by
MATLAB.

In the first, the efficiency of the schemes is assessed in the ideal condition,
which is satisfies the assumptions in Section 2.1 with assumptions of a long enough

measuring time and a perfect choice of the target frequency. After that, some
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Figure 4.1 The aluminum plate example

unideal conditions are verified. The unideal conditions are the small window sizes,
the short measuring times, the damping of structures, the large noise levels, the not
proper target frequencies, the bias compensation with unknown noise variances and

the noise of specific frequencies.
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4.1.1 Ideal Example

The specifications of the example are given in Tab. (4.1). The variances of
the white noises are assumed to be known values. The target frequency, target
accuracy and window size must be chosen to apply the acceleration filter. To
define the target frequency, measured displacement must be analyzed in the
frequency domain. The measured displacement on the point (A) of Fig. (4.1) is
displayed in Fig. (4.2) (a piece of the time line). The frequency spectrum of the
displacements is given in Fig. (4.3). The target frequency is chosen according to
the highest dominant frequency, 5.15kHz. The target accuracy is defined as 0.97
by an engineering sense. The window size is defined as 45 steps, which is a

recommended window size.

Table 4.1 Specification of the aluminum example

Material Aluminum (E =70GPa, p=2.7Mg/m?)
Size Im X 1Im X 0.1m
Load Sudden releasg of unit distributed Ioa_ld &
Load free during the measurement time
Boundaries 1 fixed end, 3 traction free ends
Inclusion Hard: 140GPa
Soft: 35GPa
Modeling 50X50 Q4 FEM, plane stress
Measurement type Displacement
Sampling rate 100kHz
Measurement time 0.14s (14000steps)

5% proportional white noise

Noise (Signal to noise ratio: 30.8dB)
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Figure 4.3 Frequency spectrum and the transfer function of acceleration filter
(the aluminum example)
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Figs. (4.4a and b) show the results for hard and soft inclusion cases,
respectively. The hard and soft inclusions are detected. Fig. (4.5a and b) show
the results of the line (B-B’) in Fig. (4.1). This figure shows the effectiveness of
the energy filter and the bias compensation. The acceleration filter is applied to
all of results in the figures because results without the acceleration filter are nearly
identical to meaningless white noise. The figures show that the acceleration-
energy filter and the bias compensation make the results accurate.

To compare the energy filter and the regularization schemes, the results of the
regularization are also displayed in Fig. (4.5a and b). The acceleration filter is
applied to the regularization because low-pass filters are generally used in the
temporal dimensions. The L,-norm Tikhonov regularization is applied with GMS

[Lee 1999, Park 2001]. Prior information of the material properties is given by

70GPa, which is the Young’s modulus of aluminum. As explained in chapter 2,
the regularization scheme improves the results of soft inclusion cases. A side
effect, low accuracy of the inclusion, is well known in the references and is thus
ignorable. However, a side effect of the hard inclusion case is too severe to be
ignored.  On the other hand, the energy filter works properly in both cases.

Figs. (4.4 a and b) and (4.5a and b) show that the stiffness discontinuous
surfaces are smoothed. It is caused by the energy filter. The inverse analysis for
the continuum uses not information of displacement but information of strain. It
is clear because the equilibrium equation (Eq. 2.1) is consist of a strain term. In

the stiffness discontinuous surfaces, the strain functions are step functions, and the
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Filtered out

Figure 4.6  Effect of energy filter on the stiffness discontinuous surface

step functions are fractional functions in the frequency domain. When the energy
filter, which is a low-pass filter, is applied to the measured displacement, most of
the stiffness discontinuity information is passed through but the tails of the
fractional functions are filtered out (Fig. 4.6). This sequence cuts off the high
frequency components of the step functions, and the step functions change into

smoothed functions.

4.1.2 \erification 1: Window Size

In the ideal example, the recommended window size is employed. In some
situations, however, the standard window size or the minimum window size might
be chosen because the filter with the bigger window size losses more data than the
filter with the smaller window size. Fig. (4.7) shows results using the

recommended, standard and minimum window sizes. The results using various
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Figure 4.7 Results with various window sizes (aluminum example)

window sizes are almost same to each others. Since the other conditions except
the window size are ideal, any window sizes can be employed for the acceleration
filter. In some unideal condition, however, the recommended window size gives

the more accurate result.
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4.1.3 \Verification 2: Measuring Time

The ideal case uses very long enough measuring time, which provides high
quality information. However, the long enough measuring time is not allowed in
some applications, especially applications with damping. The inverse analysis
using EEE in this thesis uses an assumption that damping can be ignored. The
damping is ignorable since relatively few vibrations are included in the measuring
time (Section 2.1). To verify effects of the short measuring time, 2.2waves,
0.9waves and 0.4waves of the longest wave length is applied for the measuring
time. The minimum window size is applied for reducing loss of data. Fig. (4.8)
shows the results. Results of the inclusion is less accurate than the ideal case
since lot s of information is truncated by the short measuring time. however, the

results are acceptable because the inclusion is well detected in the all cases.

140+ EEEEEEEENEE
§ 7 — — 1000 steps (ideal) 7 N\
Qo 120- 200 steps (2.2waves)
2 100 steps (0.9waves)
2 T 75 steps (0.4waves)
g 1004 = exact
w
(o))
[ ]
=
(=}
> 80-
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-40 -20 0. 20 40
distance from transient source (cm)

Figure 4.8 Results with various measuring times (aluminum example)
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4.1.4 \erification 3: Damping

The damping of structures is ignored by the assumption in Section 2.1, but
most of real structures have damping. To verify effects of the assumption, 1%, 5%
and 9% damping using Rayleigh damping is applied for the forward analysis. The
inverse analysis is done with the 0% damping assumption. Since only few
vibrations must be included in the measurement time, only a wave of the longest
wave length is chosen for the measuring time. For the inverse analyses of the
damping cases, a different target frequency is applied since the frequency
characteristics of the damped system are different from it of the ideal case (Fig. 4.9).
The target frequency for the damping cases is chosen by 2.3kHz. Fig. (4.10)
shows the results. The stiffness discontinuous surfaces are more smoothed than
the ideal case because the smaller target frequency gives a more strict spatial filter.
The damping acts as a type of noise in the measured displacement but is not
considered by the bias compensation. For this reason, the bias compensation
gives few error in the damping cases. The inverse analysis using damping term
[Park 2007] might help to improve the result. It considers a Rayleigh damping

term for identifying system parameters.
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Figure 4.10 Results with various damping (aluminum example)
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4.1.5 \Verification 4: Noise Level

Most of cases, proportional noise levels are lower than 5%. However, an
extremely high level of noise might exist in some cases. For verifying effects of
high level noises, 20%, 30% and 50% of proportional noises are applied to the
measured displacement. The relationships between the proportional error, the
signal to noise ratio (SNR) and the signal to noise ratio in decibel (SNRgyg) are

presented in Tab. (4.2).

SNR=c?/6 4.1)
SNR  =10log,,(SNR) (4.2)

Fig. (4.11) shows the results. By the results, the acceleration-energy filter
and the bias compensation are work properly for up to the 30% of proportional

error.

Table 4.2 Relationship between proportional error and signal to noise ratio

Proportional error SNR SNR s
5% 1189.8 30.8
20% 74.3 18.7
30% 33.1 15.2
50% 11.9 10.8
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Figure 4.11 Results with various noise levels (aluminum example)
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Figure 4.12 Results using various target frequencies (aluminum example)
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4.1.6 \erification 5: Target Frequency
Since the target frequency of the acceleration-energy filter is pre-defined by an
engineering sense, a not proper target frequency might be chosen by an incorrect

engineering sense.  For verifying the effects of unideal target frequency, the target
frequencies f, =(5.15x1.5)kHz, f,=(5.15x2)Hz and f, =(5.15x3)Hz is
applied to the acceleration-energy filter of the aluminum plate example. The ideal
example uses the target frequency f, =5.15kHz. Fig. (4.12) shows results using

the various target frequencies. Even though the target frequency is not the best,
the inclusion is identified by the inverse analysis using the acceleration-energy
filter and the bias compensation. The bias of the solution is not perfectly
eliminated by bias compensation because the third assumption of the bias
compensation is not satisfied. The third assumption of the bias compensation is
that the measured data is long enough and the bias terms are converged enough.
The signal undergoing the filter using a bigger target frequency have more noise
than the signal undergoing the filter using the ideal target frequency. The bias

terms of the signal with more noise is converged slower than it of the ideal one.
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4.1.7 \Verification 6:Bias Compensation without Noise Variance Information

The bias compensation using Egs. (3.54 a and b) and Eqg. (2.21) requires the
variance of the noise in the measured displacement. However, the variance of the
noise is usually unknown. To remove the bias of the solution without the noise
variance, Eq. (2.24) must be employed. As mentioned in Section 2.4, Eq. (2.24)
has too much unknowns and additional information can reduce the number of the
unknown. A proportional noise assumption is employed for reducing the number

of the unknown and then, Eq. (2.24) changes into the function of a noise level.
. _ 2
minTI(nl) =T, —u, (E, (nD)|; (4.3)

Where nl is the noise level in %. Fig. (4.13a) shows the normalized means

square errors of Eq. (4.3) which is normalized by the square of the maximum

displacement.  u,(E,(nl)) using nl<3% or nl>7% cannot be analyzed

because the solutions the inverse analyses E,(nl) using nl<3% or nl>7%

are not reasonable (negative or too big values). By Fig. (4.13a), 5.5% of noise
level is the optimal solution of Eq. (4.3). Note that the exact noise level is 5%.
The solutions using the exact noise level (5%) and the estimated noise level (5.5%)
are represented in Fig. (4.13b). The solution using the estimated noise level is

acceptable.
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Figure 4.13 Results when noise variance is unknown (aluminum example)
(a) Normalized mean square error (b) results of inverse analyses
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4.1.8 \erification 7: Noise of Specific Frequency

Specific frequency noise can be included in the measured displacement.
Four types of the specific frequency noise is employed to verify the noise. The
first noise is a single wave noise. The noise has 20kHz frequency, which is higher
than the target frequency, and an amplitude of the maximum displacement. The
second noise is a single wave noise with a frequency which is lower than the target
frequency. The noise has 2kHz frequency and the same amplitude to the first one.
The third noise is static noise which is constant for all nodes. The constant value
is the maximum of the displacement. The final one is static noise which is
different values for all nodes. The static noise is generated by the random value
which is uniformly distributed between the maximum displacement and the
negative value of it. Fig. (4.14a) shows the solution without additional denoising
schemes. The case of the 20kHz noise find out the inclusion since the 20kHz
noise, which is higher than the target frequency, is filtered out by the acceleration
filter. The bias compensation, however, does not work properly because the white
noise assumption is not satisfied. The case of the constant static noise also find
out the inclusion since the constant static noise does not effect to the strain, which
is actually used by the inverse analysis. The bias compensation, however, does not
work properly by the same reason of the 20kHz noise case. The solutions of the
other cases are meaningless.

For these cases, denoising schemes for the specific noise must be employed.

The static noise is a kind of the single frequency noise with OHz. In this example,
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the adaptive line enhancer (ALE) is employed because ALE is very effective to
remove the single frequency noise [Haykin 2002]. The solutions using ALE are
shown in Fig. (4.14b). the results are almost identical to the solution of the ideal

example.

4.2 Application to Medical Imaging: Ultrasonic Elastography

The inverse analysis using EEE can be applied to medical imaging to find
tumors and cancers in human bodies. The inverse analysis using EEE works well
with medical imaging because the real-time processes make diagnoses exact and
reduce the costs. The acceleration-energy filter and the bias-compensation must
also be applied with the inverse analysis. Both civil structures and human bodies
can be modeled by continua, showing the same behaviors apart from the material
properties. In this section, ultrasonic elastography is introduced. The inverse

analysis using the Helmholtz equation related to this process are also introduced.

4.2.1 Introduction

Ultrasonic elastography is a type of medical imaging which reconstructs and
visualizes the material properties of human organs. The elasticity of
tumors/cancers differs from that in normal tissue samples. Ultrasonic
elastography has fewer side effects than other tests used to find tumors, such as
MRI, radiation tests and biopsies. The inverse analysis using EEE is a real-time

or near-real-time scheme. The inverse analysis using EEE has higher accuracy
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Figure 4.15 Ultrasonic measuring equipments
(@) left: picture of the equipments  (b) right: concept of the equipments

than x-rays and a lower cost compared to MRI.  Here, ‘cost’ refers to both the time
and money.

Ultrasonic elastography uses one-directional displacement in a 2D space, as
the ultrasonic measuring equipment (Fig. 4.15a) is a series of 1D probes. This
equipment measures the displacements in the z-direction on the x-z plane, as shown
in Fig. (4.15b).

The Helmholtz equation is the best for analyzing responses of the human body.
The Helmholtz equation is an incompressible case of the continuum equation. A
human body can be assumed as an incompressible continuum, as it is filled with
water, which is almost incompressible.

A transient shear wave load is employed. This is the latest scheme used to
apply loads onto tissues. A uniformly distributed load by ultrasonic is released at

once. This method has two advantages. The first is that external forces do not
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exist during the measurement. The second advantage is that concentrated loads
can be generated deep inside of bodies by the ultrasonic equipment, allowing
tumors deep inside the body to be detected.

The boundaries are assumed to be infinite boundaries, as the boundary
conditions of the bodies are unknown. This assumption is realized by a short

measuring time which is shorter than that for the wave to reach the boundary.

4.2.2 Inverse Analysis for Helmholtz Equation
The Helmholtz equation is an equation to analyze the incompressible

continuum. It is derived from the Navier’s equation.

2

(7b+|VL)V(V~u)+|VLV2u+b:plezJ (4.4)

according to the incompressible condition, V-U is eliminated.

o%u

Viu+b=p— 4.5
n P (4.5)

The displacement components are independent from each other and then, the

equation can be treated as a one dimensional problem.

o°u

atZ

uveu, +b =p— (4.6)
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The equation above is the Helmholtz equation. The equation below is the

variation of the Helmholtz equation.

[ 8u,(uv?u, +b, —pti)dv =0 4.7)
\

Integration by parts of the above equation leads to the subsequent equation.

—ISVuiuVuidV +ISuiuVui -ndS +J'8uibidv —J'Suip(jidv =0 (4.8)
\ S \Y \Y

The second term is a boundary condition and is satisfied on the fixed and
traction-free boundaries. The third term is the body force term; it is eliminated by
the assumption outlined in chapter 2. The equation above is discretized by FEM

and applied to the inverse analysis using EEE.

Zueque + zmeLZUe

e e

2
(4.9)
2

n-y

Here, U° is the local measured displacement vector. The unknown parameters

are not the Young’s modulus but the shear modulus p in the inverse analysis for

the Helmholtz equation. In addition, q° and m® are defined by the equations

below.
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q° = [B'BdV (4.10a)
Ve
m" = [ pN"NaV (4.100)
Ve
Egs. (4.10a and b) are identical to Egs. (2.7a and b), which is the inverse analysis
for the continuum, and the next sequences are identical to those of the inverse

analysis for the continuum. The solutions of Eq. (4.9) are shown next.

%: Dot @ue) g T+ > (q'ut) ' mL U* =0 (4.11)
o8 t=1 e t=1 e

The matrix form of the above equation is the equation below.

M+Qu=0 (4.12a)
UquT(mi+mf+---+mf)U
n Ty T e
M=Y U'g’ (m§+n?f+~--+mt)U

(4.12b)
t=1 :
_UquT(mf+mf+---+mf)U_
M— T — — T o T T e__
Ugqu U U'gi U -+ U'gy giU
D TTTA2TAT T2 ~2TT T2  ~eT]
sz U qt. th U qt. th . U qt. th (4.12(:)
t=1 : : . :
[V el g U’ el g [V el ‘U
|V q; ¢, d: 4 g: 9,V |

The acceleration filter for the Helmholtz equation is identical to that of the

acceleration filter for the continuum.

I+ @-ALu -2 Lu)=u (4.13)
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The energy filter is identical to it of the continuum, except for D. D in Eq.
(3.47) is replaced by an identity matrix for the Helmholtz equation. The equations

next are the energy filter and its matrix form.

> [ NTNtdA'U = Z [ NNtdA"U + xz [ uBTBdAU (4.14a)

M, U=M,, U+xrKU (4.14b)

unit unit

The reconstructed bias terms of the inverse analysis for the Helmholtz

equation are the equation below.

Gbias (I’ J) =

nt{;?‘ IPHRY moz{ " (ng, vz -6 } (6.123)

i!yj _W’Zi _Cir)

mbias(i) =
dlsp é Yi W4 —Q,T) (612b)
EEDUD DI I

Above equations are identical to Egs. (4.54a and b).

4.2.3 Human Skin Tissue Example
The example of ultrasonic elastography here is a model of human skin tissue.
This model is based on several references [Fink 2004, Park 2006, Park 2009]. The

shape of the example is shown in Fig. (4.16), and the specifications are given in Tab.
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(4.3). The target is a plane stain model with an infinite thickness. The
measurement time is defined as 0.01 seconds to satisfy the infinite boundary
assumption since the transient wave reaches the boundaries at 0.01 seconds. The
variance of the white noise is assumed to have a known value in each case.
Newmark’s method is applied to dynamic analysis. Numerical calculations are
done by MATLAB.

The tree parameters must be defined to use the acceleration-energy filter. Fig.
(4.17) shows the measured displacement on the point (A) of Fig. (4.16). The
signal is a wave, not a vibration, due to the infinite boundary assumption.
Information about the signal is concentrated at a frequency of zero, and the target
frequency is defined as 1kHz (Fig. 4.18). The target accuracy is defined as 0.95

and the minimum window size is employed for reducing loss of data.

Table 4.3  Specification of the human skin tissue example

Material Human skin (u = 36kPa, p =1000kg / m®)
Size ImX1mX oo
Load Sudden releasg of unit distributed Ioa_ld &
Load free during the measurement time
Boundaries 1 fixed end, 3 traction free ends
Inclusion Hard: 72kPa
Soft: 18GkPa
Modeling 100X100 Q4 FEM, Helmholtz equation, plane strain
Measurement type Displacement
Sampling rate 100kHz
Measurement time 0.01s (1000steps)
Noise 5% proportipnal V\_/hite noise
(Signal to noise ratio: 30.8dB)
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The above choices are not in fact the best ones. 500Hz and 0.97 are better
choices for the target frequency and target accuracy, respectively. However, the
required window size with these values of 500Hz and 0.97 is larger than the
number of total sampling points. Note that the number of sampling points lost is
identical to the size of the window. To reduce the loss of sampling points,
performance of the acceleration-energy filter must be sacrificed. Values of 1kHz,
and 0.95 are chosen as the target frequency and the target accuracy, respectively,
according to the an engineering sense.

Figs. (4.19a and b) are the reconstructed shear modulus of the hard and soft
inclusion cases, respectively. These results of most areas are acceptable, but the
results for the center and boundaries are poor, as the information of the center and
the boundaries are included during the beginning and the end of the measuring time
and are thus lost during the acceleration filtering process. Figs. (4.20a, b, ¢ and d)
are the results of the line (B-B’) in Fig. (4.16). The results without acceleration
filter are not displayed for the same reason given with the aluminum example.
These figures show that the energy filter and the bias compensation make the
results accurate. Note that the energy filter in this example is more important than
in the aluminum example because the performance of the acceleration filter is

lower than that in the aluminum example case.
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5. Conclusion

Solution stabilizers for the inverse analysis using EEE, the acceleration-energy
filter and the bias compensation are introduced in this thesis. EEE for the inverse
analysis using measured displacement has two types of solution errors: ill-
posedness and bias.

Ill-posedness is a well-known problem of the inverse analysis, and the
regularization schemes have been used to reduce the ill-posedness. The
regularization schemes work well for cases involving soft inclusions. However,
efforts of the regularization schemes are not work properly in cases involving hard
inclusions. The acceleration-energy filter has been proposed as an alternative.
The filter imposes physical conditions of the continuum to the measured
displacement. The physical conditions are the finiteness of the strain energy and
acceleration. If the measured displacement does not satisfy the physical laws, the
solution of the inverse analysis cannot be trusted, as the noise which does not
satisfy the physical laws is amplified by the displacement-acceleration relationship
and the displacement-strain relationship. The acceleration-energy filter ensures
the physical laws of continuum and makes the inverse analysis trustable. The
acceleration-energy filter is a temporal-spatial filter with three spatial dimensions
and one temporal dimension. The temporal-spatial filter has complicated

characteristics and requires much computational effort.  To solve this problem, the
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acceleration-energy filter is separated into the acceleration filter and the energy
filter.

The acceleration filter functions as a low-pass filter. Low-pass filters are
generally used to stabilize numerical differentiations. However, acceleration filter
has strong physical meaning which satisfies consistency between the acceleration
filter and the energy filter. The acceleration filter requires two initial values and
two final values, which are difficult to determine. The overwrapping time
window technique is employed so that the boundary conditions can be ignored.
The regularization factor is defined by the target frequency and the target accuracy.

The energy filter is a low-pass filter as well. This is reasonable because the
displacement-strain energy relationship amplifies high frequency noise, since the
strain is the first derivative of the displacement. The boundary condition is
identical to that of the continuum and is always satisfied. The regularization
factor is defined by the target temporal frequency and the target accuracy, which
define the regularization factor of the acceleration filter. Consistency between the
two filters is satisfied by the relationship between the regularization factors.

The bias compensation is served to remove the bias from the solutions. The
inverse analysis using EEE has been used with the adaptive filters and the flutter
derivative extraction scheme. The biases of the fields are ignorable and are easy
to remove. However, the bias of the inverse analysis using EEE for the continuum
is not ignorable because the noise is amplified by the inverse analyzing process.

The bias compensation is realized by reconstruction of the bias terms. The
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reconstructed bias terms are functions of the noise variances, the FEM model and
the characteristics of the filters. When the variances of the noise sources are
precisely known, the bias of the solution is perfectly eliminated. Even if the noise
variance is unknown, the bias compensation can approximately reconstruct the bias
terms.

The aluminum plate example demonstrates the acceleration-energy filter and
the bias compensation. This example shows that the two schemes improve the
solution of the inverse analysis using EEE. The window size, the measuring time,
the damping of structures, the various noise levels, the target frequency and the
noise of specific frequency are verified by the aluminum example.

The schemes are applied to a medical imaging application using ultrasonic
equipment.  Ultrasonic elastography helps to find tumors and cancers. The
Helmholtz equation is used to analyze tissues of human bodies, which is the
incompressible continuum. The inverse analysis and the solution stabilizers for
the Helmholtz equation are derived and are found to be nearly identical to these of
the general continuum. the acceleration-energy filter and the bias compensation

were shown to work properly for the inverse analysis of the Helmholtz equation.
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	2.3.1 Noise Amplification by Differentiation
	The acceleration filter is also realized by the discretization of the governing equation (Eq. 3.18a) using FDM.  The scheme is named by the FDM-FIR filter because the final form of the discretization is an FIR filter.  The FDM-FIR filter is totall...
	A fourth-order FDM matrix,  , is utilized during the discretization of the governing equation of the acceleration filter (Eq. 3.18a).

