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Abstract 

 

New stabilization schemes which correct the equation error estimator (EEE) in the 

inverse analysis using dynamic responses of linear elastic continua are presented.  

The goal of the inverse analysis run in these cases is the proper identification of 

material properties.  Stabilization schemes consist of the acceleration-energy filter 

and the bias compensation.  

    The acceleration-energy filter stabilizes the ill-posedness of the inverse 

analysis.  The acceleration-energy filter replaces the techniques known as 

truncated singular value decomposition (TSVD), L1-norm regularization and L2-

norm regularization (or Tikhonov regularization).  Existing regularization 

techniques do not work properly for cases involving hard inclusions, i.e., tumors of 

organ and suspensions of vehicles.  The Acceleration-energy filter, however, work 

properly for cases involving both hard and soft inclusions.  The acceleration-

energy filter is separated into the acceleration filter and the energy filter.  Dividing 

them in this manner simplifies a filtering process. 

    The acceleration filter imposes finiteness condition of accelerations, the 

second derivatives of the measured displacements.  Accelerations can be 

considered as finite functions when impact loads do not exist.  The acceleration 

filter requires two initial and two final values, but the overlapping moving time 

window technique is employed so that the initial and final values can be ignored.  
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The final form of the acceleration filter is a low-pass finite impulse response (FIR) 

filter.  However, the acceleration filter differs from typical low-pass FIR filters 

because it has physical meaning which guarantees consistency with the energy 

regularization.   

    The energy filter imposes finiteness of strain energy, which is internal energy 

of linear elastic continua.  The final form of the energy filter is very similar to 

low-pass spatial filters used with image processing, but the energy filter has three 

advantages.  The first of these are the boundary conditions.  The boundary 

conditions of the energy filter are identical to these of an equilibrium equation for 

the continuum, and are always satisfied by all continuum examples.  The second is 

the available meshes.  The energy filter involves the connectivity information of 

nodes and can handle complicatedly meshed FEM models, whereas typical low-

pass spatial filters can handle only rectangular meshes.  The third advantage is the 

physical meaning which guarantees consistency with the acceleration filter.   

    The acceleration filter and the energy filter must satisfy consistency of the 

elastic waves and the temporal wave.  The solution of the inverse analysis without 

the consistency is not trustable because the strain and the acceleration do not have 

equivalent information.  The physical meaning of two filters gives consistency 

between two filter. 

    The biases of the solutions are ignored in existing studies.  However, the 

inverse analysis using EEE for linear elastic continua must consider the biases.  If 

the noise variances are known, the biases of the solution could be perfectly 
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eliminated by means of bias compensation.   

    Aluminum plate and medical imaging examples are demonstrated to show the 

effectiveness of the schemes described above.  
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1. Introduction 

 

Currently, system identification (SI) is an important issue in many fields, including 

the civil engineering, mechanics, signal processing, shipbuilding, medical 

engineering and other fields.  SI reconstructs material properties and provides 

important information for the maintenance and safety of structures.  SI is also 

known as inverse analysis.   

    Inverse analysis is known to be able to identify unknown system parameters 

and to reconstruct inputs for producing desired outputs.  The inverse analysis for 

unknown system parameters detects damage in engineering structures and/or 

tumors in human bodies.  The identified stiffness, mass or damping can take the 

form of damage indexes.  The inverse analysis for the reconstruction of the input 

is used for control and signal processing, but these areas are outside the scope of 

this thesis.  

    Error minimization schemes are employed to define the inverse analysis.  

Two types of error estimators, output error estimation (OEE) and equation error 

estimation (EEE), are typically used.  EEE estimates errors in the governing 

equation or the weak form of it.  The inverse analysis using EEE is suitable for 

real-time processes because it is a quadratic optimization problem and a 

parallelizable algorithm when the governing equation of the structure is linear 

[Hjelmstad 1995].  Medical imaging, feedback control and structural safety 
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management require the real-time inverse analysis.  OEE estimates errors between 

responses from unknown models and measured responses.  The inverse analysis 

using OEE is an iterative scheme and not a parallelizable algorithm [Hjelmstad 

1995, Banan 1995, Huang 2001].  Since quadratic problems have a lot of 

advantages, EEE is utilized in this thesis.   

    The target structures are described by the linear elastic continua because the 

continuum explain mosts of engineering solid structures.  To solve the inverse 

analysis numerically, the target continuum must be discretized by a numerical 

model.  In this thesis, the finite element method (FEM) is used as a numerical 

model.  The FEM is the best model with regard to forward analysis for continua; 

however, the FEM amplifies noise in measurement when it is employed to solve the 

inverse analysis.  The relationship between strain and displacement amplifies the 

noise.  

    The inverse analysis using minimization schemes leads to ill-posedness when 

modeling errors and measurements noise exist [Bui 1994, Hansen 1998].  The 

regularization has been proposed to reduce ill-posedness [Vogel 1986, Park 2007, 

Lee 1999, Park 2001].  The regularization schemes work well for cases involving 

soft inclusions.  However, these efforts do not apply to cases involving hard 

inclusions.  Soft inclusion cases are the most common type of engineering damage, 

but there are a number of hard inclusion cases, such as impurities of concrete 

structures, tumors in human bodies and suspension stiffening of vehicles.  The 

acceleration-energy filter is proposed to stabilize the ill-posedness which arises in 
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cases involving both soft and hard inclusions.  It imposes the physical laws which 

the measurements must satisfy.  The measurements must satisfy two laws of the 

continuum, the finiteness of the strain energy and acceleration.  The acceleration-

energy filter is separated into the acceleration filter and the energy filter.  Dividing 

them in this manner simplifies a filtering process.  Both filters function as low-

pass filters to suppress noise amplification from differentiations.  The effects of 

the acceleration filter are similar to those of existing noise suppression filters.  

However, the physical meaning of the acceleration filter is related to the physical 

meaning of the energy filter, thus provides consistency between the two filters.  

The energy filter is similar to low-pass spatial filters, which is used for image 

processing.  However, the modeling information of the target continuum is 

included in the energy filter.  While image filters consider only nodes arranged in 

a rectangular, the modeling information allows for the energy filter to consider 

nodes in more complicated connection.  Moreover, the energy filter can consider 

nodes around boundaries properly, as the boundary condition used in the energy 

filter is identical to that of the continuum.  The acceleration filter and the energy 

filter must satisfy consistency of the elastic waves and the temporal wave.  The 

solution of the inverse analysis without the consistency is not trustable because the 

strain and the acceleration do not have equivalent information.  The physical 

meaning of two filters gives consistency between two filter. 

    Solutions of the inverse analysis using EEE have not only ill-posedness but 

also bias in the solution.  When the measurement is polluted by noise, the EEE 
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includes squared error terms, which are directly proportional to the variance of the 

noise.  In most inverse analyses using EEE, the bias is negligible or easy to 

remove [Nguyen 1993, Hjelmstad 1995, Haykin 2008, Ikenoue 2009, Zhang 2011].  

However, the bias inherent in the inverse analysis using EEE for the linear elastic 

continua cannot be ignored, as the noise is amplified twice during the inverse 

analysis process and is complexly involved in the FEM model.  The squared error 

terms lead to fixed direction errors of the solutions, i.e., the biases, and cannot be 

eliminated by an infinite measuring time.  The bias compensation can reconstruct 

the bias terms and remove the biases of the solutions when the variance of the noise 

is known.  A case of unknown variance is also introduced in this thesis. 

    A time-domain analysis using dynamic displacement is employed rather than a 

frequency-domain analysis.  A time-domain analysis is more sensitive to local 

inclusion than a frequency-domain analysis.  A frequency-domain analysis has 

advantages which simplify problems, but is not sensitive to local inclusion 

[Raghavendrachar 1992].  Laser displacement measures are commonly used [Park 

2013, Choi 2013].  This equipment is more expensive than accelerometers and 

requires reference points.  However, laser displacement measures are more 

accurate than accelerometers.  Moreover, LIDAR, a laser scanning technique, 

provides a high spatial resolution.  Recently, there have been numerous studies 

which have attempted to reduce cost of the displacement measure.  Several studies 

have focused on a vision-based displacement measurement technique [Kim 2012, 

Kim 2013a, Kim 2013b].  It requires only a small number of video cameras to 
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measure the displacement of large structures.  A light emitting diode (LED) can be 

applied to improve the vision-based displacement measurement technique [Wahbeh 

2003].  Kinect, an input device developed by Microsoft as part of their XBOX 360, 

is applied as displacement measure to reduce costs [Qi 2014].  Specifically, a 

ultrasonic elastography device provides displacement measurements [Bercoff 2003, 

Bercoff 2004, Park 2006, Park 2009].  Ultrasonic elastography devices incur low 

costs and provide high-quality information for diagnosis.   

    An example and an application are introduced to assess the acceleration-

energy filter and the bias compensation.  The first example is an aluminum plate 

which is under a plane stress condition.  It shows how the inverse analysis using 

EEE and stabilization schemes work.  The second example is a human skin tissue.  

It uses the Helmholtz equation, which is an equation for incompressible continuum.  

The inverse analysis and stabilization schemes are slightly different from those of 

the inverse analysis for the original continuum.  The example shows an algorithm 

for medical imaging using ultrasonic equipment.  
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2. Equation Error Estimator in Inverse Analysis 
Using Dynamic Displacement 

 

2.1  Definition of Inverse Problem Using Minimization  

    There are numerous engineering demands to identify unknown system 

parameters of continua, especially stiffness parameters.  These identifying 

schemes are known as system identification (SI) and/or inverse analysis.  Inverse 

analysis typically uses various types of measurements, including the displacement, 

velocity, acceleration, and strain.  With regard to the types of measurements, 

displacement includes the lowest frequency information.  It works well with 

massive structures such as civil structures, aircraft, and ships.  For wave problems 

such as those in ultrasonic medical imaging, only displacement is valid because it 

includes the information pertaining to frequencies around 0Hz.  Acceleration and 

velocity do not include this type of information. 

    Unknown stiffness parameters are estimated by inverse analysis for linear 

elastic continua.  The governing equation of the continuum is a function of the 

displacement, system parameters and external forces.   
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where ijklC , ix , iu , t , ib , ρ  and ∂  are the elasticity tensor, the Cartesian 
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tensor, the displacement tensor, the time dimension, the body force tensor, the mass 

density and the symbol of partial differentiation, respectively.  The displacement 

can be calculated via the system parameters and the external forces.   

    Error minimization schemes are employed for identifying the stiffness 

parameters, which are parts of the system parameters.  Output error estimation 

(OEE) and equation error estimation (EEE) are typical error estimators.  

    OEE estimates errors between responses from unknown models and measured 

responses.  The next equation represents inverse analysis using OEE which uses 

the L2-norm [Hjelmstad 1996, Ge 1998, Huang 2001, Kang 2005].   

 

∫ ∫ −=Π
T V ijkl dtdVuCu

t

2

2
)(min  (2.2) 

 

Here, T , tV , ijklC , u  and u  are the total measuring time, the whole domain 

of the continuum, the unknown stiffness parameter, the calculated displacement 

from the governing equation (or from a numerical model of the equation) and the 

measured displacement, respectively.  Fig. (2.1) shows the basic concept of 

inverse analysis using OEE.  Eq. (2.2) is a non-linear minimization problem 

because )( ijklCu  is calculated by solving forward problems, including a matrix 

inversion calculation.  Accordingly, inverse analysis using OEE requires a 

considerable amount of computational effort and is not suitable for real-time SI.   
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Figure 2.1  Concept of OEE 

 

 

However, responses of all degrees of freedom (DOF) do not have to be measured.  

This is one advantage for selecting measurement points.  Also, inverse analysis 

using OEE does not have biases in its solutions. 

    EEE estimates errors in the governing equation or the weak form of it.  The 

inverse analysis using EEE with the L2-norm is in the next.   
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In this equation, T , tV , ijklC , u  and ρ  are the total measurement time, the 

whole domain of the continuum, the unknown stiffness parameters, the measured 

displacements and the (known) mass densities, respectively.  Fig. (2.2) shows the 

basic concept of inverse analysis using EEE.  Minimization problems using EEE 

are quadratic problems when the equations are linear with respect to unknowns.  

The quadratic problem requires a short and predictable computational time.  
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governing 
equation

input
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Figure 2.2  Concept of EEE 

 

 

Inverse analysis of linear elastic continua using EEE is a parallelizable algorithm, 

because each time step and each of the terms are perfectly independent from each 

other.  The quadratic object function and the parallelizable algorithm make inverse 

analysis using EEE suitable for real-time or semi-real-time processes.  However, 

the solutions from the inverse analysis using EEE contain biases.  The biases must 

be handled by a bias compensation scheme, as introduced in section 2.4.  Another 

disadvantage is that all displacements, velocities and accelerations on the all DOF 

are required.  If only one of these responses is measured, the other responses must 

be derived by differentiation or integration.  The noise sources in the measurement 

are amplified during the differentiation and integration process.  The amplified 

noise amplifies the ill-posedness and the bias of the solutions.  This amplification 

must be handled by the acceleration-energy filter, which is introduced in chapter 3. 
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    As introduced in chapter 1, inverse analysis using EEE is feasible for real-time 

processes and thus the acceleration-energy filter in this paper focus on EEE.  The 

filter here can be applied to inverse analysis using OEE, but this is outside the 

scope of this thesis.   

    Several assumptions are necessary to simplify the problems.  The first is that 

the external forces and the body forces are ignored because forces from outside of 

the continua are difficult to measure.  Transient loads, which are released 

immediately before the measurement processes start, satisfy the first assumption.  

When this assumption is valid, the body force term ib  in Eq. (2.1) becomes zero.  

A second assumption is that damping can be ignored.  A short measurement time 

makes damping ignorable.  This assumption is satisfied when relatively few 

vibrations are included in the measurement time.  A third assumption is that the 

mass density and the Poisson ratio are known.  The final assumption here is the 

assumption of isotropy continuum. 

 

2.2  FEM for Discretizing EEE 

    Eq. (2.3) must be discretized, as measured displacements are usually 

discretized in both temporal and spatial dimensions.  The finite element method 

(FEM), the rectangle method and the central finite difference method (FDM) are 

utilized for discretizing the spatial domain, the temporal integration and the 

temporal differentiation, respectively.   
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    Originally, Eq. (2.3) is discretized but cannot be.  The weak form of the 

governing equation is employed for replacing the governing equation in the Eq. 

(2.3).  Spatial discretization starts with the variation of Eq. (2.1), without the body 

force ib . 

 

∫∫ ∂
∂

ρδ−
∂∂

∂
δ

V
i

iV
lj

k
ijkli dV

t
uudV

xx
uCu 2

22
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Here, iu  is the measured displacement.  The equation above is integrated by 

parts and discretized by FEM. 
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(2.5a) 
 
 

(2.5b) 

 

where N , B , D , U  and eE  are the shape function matrix, the first 

derivatives of the shape function matrix, the constitutive matrix with the unit 

Young’s modulus, the measured displacement vector and the Young’s modulus of 

each element, respectively.  The superscript e  refers to each element.  ∑
e

)(  

represents a structural compatibility summation.  The last term in Eq. (2.5a) is a 

boundary condition and is eliminated on the fixed and free boundaries.  The 

sufficient condition of Eq. (2.5b) is the next. 
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em  and eq  are defined below 

 

∫ρ=
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∫=
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    Since solutions of Eq. (2.6b) are the optimal solutions of the equilibrium 

equation (Eq. 2.1), Eq. (2.6b) replaces the equilibrium equation in Eq. (2.3).   
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    The rectangle method and the central FDM are employed for descretizing the 

temporal integration and the displacement-acceleration relationship, respectively. 
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The subscript t  indicates each time step.  The central FDM matrix for second 

order derivatives using second order accuracy 2L  is defined below.  
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    Since t∆  in Eq. (2.9b) does not effect to result of the minimization problem, 

the discretized object function of inverse analysis using EEE is given below. 
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    The solution of the quadratic minimization problem is given below.   
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    The number of these equations is identical to the number of elements.  A 

matrix form of the equation above is in the next. 
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M , Q  and E  are defined below. 
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    It is important to note that the measured displacement vector U  is squared.  

The squared terms cause bias in the solutions.  This is discussed in the next 

section. 
 

2.3  Effect of Noise in Displacement 

2.3.1 Noise Amplification by Differentiation 

    The measured displacement always includes noise.  The noise is amplified by 

displacement-acceleration and displacement-strain relationships, which are the 

second and the first order differentiations, respectively.  To understand the noise 

amplification of differentiations, a frequency-domain analysis is useful.  The 

Fourier transform and the transfer function provide information on the frequency 
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domain.  [Bracewell 2000] 

    The Fourier transform (Eq. 2.15) provides frequency domain information from 

a function or signal of the original domain.   

 

)(ˆ)(
2
1)]([ ω=
π

= ∫
∞

∞−

ω− fdxexfxf xiF  (2.15) 

 

Here, F , )(xf  and )(ˆ ωf  denote the Fourier transform, a function/signal of 

the original domain and a function/signal of the frequency domain, respectively.  

The original domain is a temporal or spatial domain in this paper, and the frequency 

domain is a temporal or spatial frequency domain as well.   

    A function of the frequency domain is a transfer function.  The definition if 

the transfer function is the linear mapping of the input and the output in the 

frequency domain. 

 
)()()( ωω=ω XHY  (2.16) 

 

Where ω , )(ωH , )(ωY  and )(ωX  are the frequency in radian, the transfer 

function, the Fourier transform of the output and the Fourier Transform of the input, 

respectively.  The Fourier transform of the differentiation is the next equation. 

 

)(ˆ)i()(
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xfd n

n

n

F  (2.17) 
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In this equation, i  and n  are the unit of a imaginary number and the order of the 

differentiation.  The transfer function nH )i()( ω=ω  is a monotonically 

increasing function and indicates that the high frequency signal is amplified by the 

differentiation.  The amplified high-frequency noise, especially near the Nyquist 

frequency, act as a series of Dirac delta functions.  Fig. (2.3) shows the 

amplification levels of second differentiation at a normalized sampling rate 

(original sampling rate = 105 Hz; for the Nyquist frequency = 5×104Hz; normalized 

by radian).  Amplification levels of the second FDM are also displayed in the 

same graph.  Even if the noise amplification of the FDM is lower than the  
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Figure 2.3  Transfer function of the second differentiation (absolute value) 
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amplification of exact differentiation, it remains critical.  Figs. (2.4a, b and c) 

show the noise-free and noisy differentiation of the harmonic function combination.  

Fig. (2.4a) is displacement u(t) = sin(300×2πt) + cos(250×2πt) and the noised 

displacement.  Fig. (2.4b and c) are the accelerations, the second derivatives of the 

exact/noisy displacements and the large scale of (b), respectively.  As shown in the 

Fig. (2.4b), the amplified high-frequency noise acts as a series of Dirac delta 

functions.  This breaks physical laws, the finiteness of the strain energy and 

acceleration, for the dynamic response of the continuum and causes error in the 

solutions of the inverse analyses.  
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Figure 2.4 Noise free and noised differentiation of harmonic function combination 

(a)original harmonic function  (b)second derivatives  (c)large scale of derivatives 
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2.3.2 Decomposition of Noise Effects 

    The amplified noise in the measured displacement effects to the solutions of 

EEE.  To analyze effects of noise in the measured displacements, tU in Eqs. 

(2.14a and b) is replaced by )( ne UU + .  eU  and nU  represent the exact 

displacement and the noise in the measured displacement, respectively.  
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(2.18b) 

 

Where exactQ , biasQ , COVQ , exactM , biasM  and COVM  are the exact term of 

Q , the bias term of Q , the covariance term of Q , the exact term of M , the bias 

term of M  and the covariance term of M , respectively.  Eq. (2.13a) is 

decomposed into the next form by Eq. (2.18a and b). 

 
0)( COVbiasexactCOVbiasexact =+++++ EQQQMMM  (2.19) 

 

    exactQ  and exactM  are exact terms which are determined by the noise-free 

displacements.  These terms include noise-free information and give exact 

solutions. 
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exact
1

exactexact MQE −=  (2.20) 
 

Here, exactE  is the vector of the exact solution for the unknown Young’s  

modulus vector E . 

    biasQ  and biasM  in Eq. (2.19) are bias terms which are created by the 

squared noise.  Bias terms have the characteristic of variance because the 

summations of the squared noise are directly proportional to variance of the noise.  

These terms create biases in solutions because the noise is squared before the 

summation in each case.  The terms do not disappear, even when the measurement 

times are infinite, and they converge to specific matrixes.  The matrixes are 

proportional to the variance of the noise.  Error seeds do not effect to the bias of 

the solutions.  If the bias terms are known, the bias of the solution can be 

eliminated by the next equation. 

 
EQQMM )(0 biasbias −+−=  (2.21) 

 

The terms in Eq. (2.21) are defined in Eqs. (2.14a,b) and (2.18a,b). 

    To demonstrate the bias of the solution, a human skin tissue example is 

employed (Fig. 2.5).  The example is modeled by 100×100 Q4 plane strain 

elements and Helmholtz equation for analyzing both forward and backward 

problems.  Exact shear modulus of normal and inclusion elements are kPa36  

and kPa72 , respectively.  Shear modulus of each elements are estimated by  
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Figure 2.5  Human skin tissue example 

 

 

Eq. (2.13b).  Figs. (2.6) ~ (2.8) show the results on the line (A-A’) of Fig. (2.5).  

Fig. (2.6) shows the biases from different error rates.  A greater error rate results 

in greater bias.  Fig. (2.7) shows that the bias is not affected by the noise sets.  

Even when the noise seeds are different, the same variance results in the same bias.  

Fig. (2.8) shows the solutions using Eq. (2.21).  The biases are removed, but ill-

posedness remains in the solutions.  This ill-posedness occurs from the covariance 

terms.  
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Figure 2.8  Ill-posedness of the solution (bias-compensation is applied) 

 

 

    COVQ  and COVM  are the covariance terms.  These terms come from the 

interaction between the noise and the noise-free displacement, meaning that the 

covariance terms are proportional to the covariances between the noise and the 

noise-free displacement.  These terms disappear when the measurement time is 

infinite, as the covariance between the white noise and the other signals is zero in 

each case.  However, the terms are never removed with a finite measurement time.  

Under such a condition, the terms are completely unknown and are not predictable.  

No schemes have been devised to reconstruct the covariance terms.  The ill-

posedness of inverse analysis is caused by the randomness of the covariance terms.  

SI schemes which are defined by a minimization problem contain ill-posedness in 
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their solutions [Bui 1994, Hansen 1998].  Fig. (2.8), which is a solution using the 

bias compensation, shows the randomness of solutions containing ill-posedness.  

The instability of the solution can be explained by the lack of information.  Noise 

in the measurement and modeling errors always exist with inverse analysis, and 

they cause information losses.  The non-uniqueness and discontinuity of the 

solution are caused by a lack of information and cause instability in the solution.  

Regularization schemes are existing for stabilizing the solutions.  The 

regularization schemes impose prior information to handle the lack of information.  

This issue is minutely discussed in section 2.5.  

 

2.4  Bias Compensation  

    The inverse analysis using EEE is disturbed not only by ill-posedness but also 

by biases [Hjelmstad 1995].  The biases of the solutions are caused by error terms 

in Eq. (2.19).  The biases are not eliminated even when the measurement time is 

long enough.  Biases in solutions exist in all types of inverse analysis using EEE, 

not only in the inverse analysis for linear elastic continuum using dynamic 

displacement.  However, the biases of the solutions are not seriously considered in 

many studies.  The adaptive filters employ the inverse analysis using EEE for real-

time processes [Haykin 2008].  Although the reference does not use ‘EEE’ as the 

name of the error estimator, the process for estimating error of the target system is 

identical to EEE.  The result of the process has bias, but it is very small and 

negligible when the noise is properly taken into account by noise suppression filters.  
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Additionally, it is easy to remove the bias from the solutions, since only the noise 

variances have relationship with the bias in each case.  The extraction of the flutter 

derivatives uses the inverse analysis using EEE [Hong 2012, Cha 2015].  This 

method includes the bias of the solutions as well, but it is ignorable for the same 

reason given with the adaptive filter [Cha 2015]. 

    However, the bias of EEE for the inverse analyses of linear elastic continuum 

is not ignorable because the noise is amplified twice in the spatial and temporal 

differentiation processes.  The bias of the solution is eliminated by Eq. (2.21).  If 

the noise values are known, the bias terms are also known by Eq. (2.12a and b).  

However, the noise values are always unknown and the bias terms are unknown as 

well.   

    Bias compensation is suggested to handle the bias with reconstructed bias 

terms.  The bias compensation reconstructs the bias terms by the variances instead 

of with the noise values themselves.  The bias compensation requires three 

assumptions.  The first is that the noise is white noise.  The second is that 

correlation between colored noise from different white noise is zero.  The final is 

that the measured data is long enough and the bias terms are converged enough.  

The bias terms in Eqs. (2.18a and b) consist of the colored noise vectors i
nu  or 

i
nuL2 , and the square matrixes eTi qq  or eTi mq .  The colored noise vectors are 

represented by c , and the square matrix is represented by A .   
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Here,   and ][⋅sum  denote the element multiplication of the matrixes and the 

summation of all elements in a matrix, respectively.  ),(2
, mnlkσ  is the covariance 

between the nth element of the colored noise vector kc  and the mth element of the 

colored noise vector lc .  nt  is the number of time steps. 

    When the noise is white noise, biasQ  and biasM  in Eqs. (2.18a and b) are 

reconstructed as biasQ  and biasM  by Eq. (2.22c). 
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In this equations, 2
mσ , ji

nmq ,
,  and ji

nmm ,
,  are the variance values of white noise in 

the mth measuring point, the ),( nm  element of the matrix jTi qq  and the ),( nm  

element of the matrix jTi mq , respectively.  22 −∆− t  of Eq. (2.23b) represents 

the middle coefficient of the central FDM for second order derivatives using second 

order accuracy.  biasQ  and biasM  are substituted into biasQ  and biasM  of Eq. 

(2.21), and then the biases in the solutions are eliminated.   

    Figs. (2.6) and (2.8) are solutions of the EEE without/with bias compensation, 

respectively.  In Fig. (2.8), the biases of the solutions are eliminated by the bias 

compensation, while ill-posedness is remained.   

 

Bias Compensation without Noise Variance Information 

    Bias compensation requires the noise variances, but it is difficult to determine 

the exact values in the most cases.  The bias terms are directly proportional to the 

noise variance and thus, the noise variances can be rebuilt from a minimization 

problem.  The object function is the difference between the measured and the 

analyzed displacement.   
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2

2

22 ))(()(min σσ btt Euu −=Π  (2.24) 

 

Where 2σ  and tu  are the unknown noise variance vector and the measured 

displacement, respectively.  ))(( 2σbt Eu  is the analyzed displacement which is 

calculated by the bias compensated elastic modulus using 2σ .  
2

2
⋅  indicates the 

L2-norm minimization.  Since the number of noise variance is identical to the 

number of nodes, Eq. (2.24) has too much unknowns.  Thus, additional 

information is required for reducing the number of the unknown.  A proportional 

noise assumption or an absolute noise assumption can be the additional information. 

 

2.5  Regularization 

    To remove the ill-posedness of the inverse analysis, missed information must 

be complemented.  Regularization schemes have been used for stabilizing the ill-

posedness of the inverse analyses.  Unstable information is replaced by prior 

information, which is imposed by regularity conditions.  Material property 

conditions are the most commonly used information in many studies.  

Regularizations impose the condition in which the material property functions of 

the continuum must be in the L2-function space.  

    Three types of regularization are typically used in many fields.  The first is 

known as truncated singular value decomposition (TSVD) [Vogel 1986].  TSVD is 

not a regularization scheme, but it has the basic concept of regularization.  Q  in 
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Eq. (2.13b) is divided by means of singular value decomposition (SVD). 
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Here, V , jv , T
jv , Λ , jλ  and n  are the singular vector matrix, the thj  left 

singular vector, the thj  right singular vector, the singular value matrix (diagonal 

matrix), the thj  singular value and the number of unknown system parameters, 

respectively.  The singular values and vectors are ordered in a descending order of 

singular values.  The left singular vector matrix is a transpose of the right singular 

vector matrix because Q  is a square matrix.  Small singular values and their 

vectors are minor factors in the input-output relationship, but they have major 

effects on the noise amplification process [Hansen 1998].  Zero singular values 

take on infinite values due to the inverse process of Q .  Truncating small 

singular values and vectors stabilizes the inverse analysis.   
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In this equation, t  is the truncation number.  The truncation number denotes the 

number of singular values which have useful information.  Too large truncation 

number makes TSVD meaningless, whereas too small truncation number leads to a 

loss of useful information.  A bilinear fitting method (BFM) is utilized to decide 
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the truncation number [Park 2007].  Truncated singulars contain part of the 

information, even if it is polluted.  The truncated information is another source of 

noise in the solution.  This noise is related to the uniqueness of the solution.  

Solutions from SI using TSVD may be not precise solutions but may instead be 

another set of solutions from the same input-output values.  This indicates that 

even if the solution itself is incorrect, the input-output relationships from the 

solution is exact.  Thus, TSVD is usually used with adaptive filters, signal 

processes and control fields.  These fields focus on the input-output relationships 

of target systems, not systems overall.   

    L1-norm regularization has been proposed to correct the non-uniqueness of 

TSVD [Park 2007].  Prior information replaces the truncated singular parts of 

TSVD.  
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Here, jv  and jγ , which satisfy the condition of tj > , are the rebuilt singular 

vectors and the undetermined constants of the rebuilt vectors, respectively.  tE , 

rE , lowerE  and upperE  denote the solution by TSVD, the linear combination of 

the truncated singular vectors, the lower bound of the solution and the upper bound 

of the solution, respectively.  rE  is determined by prior information which is that 
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the stiffness functions of the continua in the spatial domain must be in the L2-norm 

function space [Park 2007].  The prior condition is imposed by the L1-norm form 

of the L2-norm function space condition. 
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(2.28) 

 

    Since the optimization problem defined in Eq. (2.28) is a linear programming 

with respect to rE , L1-norm regularization is an iterative scheme which requires a 

considerable amount of computational time. 

    L2-norm regularization is suggested to build a quadratic problem.  The prior 

and measured information are mixed at the rate of the regularization factor and the 

singular values.  The prior information used with L1-norm regularization is also 

used in this case, but the prior information is imposed in a L2-norm form.  The 

prior information is imposed by means of Tikhonov regularization [Lee 1999, Park 

2001].   
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    Eq. (2.29) is a quadratic problem when the equilibrium equation is linear with 

respect to E .  It is not an iterative problem, and it requires low computational 

efficiency.  
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    The three regularization schemes above have been used in many fields.  Most 

cases are soft inclusion cases, for which the above regularization schemes work 

well.  However, regularization does not work properly in cases involving hard 

inclusion.  Tumors in human bodies, suspensions of vehicles and other such 

examples are hard inclusion cases.  Figs. (2.9) and (2.10) show the results of soft 

and hard inclusion cases when using L2-norm regularization, respectively.  These 

examples are the ultrasonic elastography examples discussed in section 2.3.2 (Fig. 

2.5).  In the soft inclusion case, L2-norm regularization gives a useful solution.  

On the other hand, the hard inclusion information is truncated by L2-norm 

regularization.  

    To understand the drawbacks of regularization, the mechanism of 

regularization must be understood.  Noise-free information of Q  in Eq. (2.13b) 

is decomposed into two parts, i.e., singular values and singular vectors, by SVD.  

The singular values contain the scale information of the elements in Q , and the 

singular vectors, which are unit vectors, have the position information of the scale 

information.  Smaller singular values are related to larger values of E (harder 

elements of the FEM), and larger singular values are related to smaller values of 

E (softer elements of the FEM), because Q  is going to be the inverse matrix 

1−Q  with which to calculate E .  When these properties of Q  and E  factor 

into the process of regularization, the hard inclusion information is truncated.  

Small singular values and their vectors are removed/replaced/weakened  
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Figure 2.9  L2-norm regularization result of the soft inclusion case 
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Figure 2.11  Mechanism of regularizations 

 

(TSVD/L1/L2, respectively) by regularization and amplified noise is 

removed/replaced/weakened.  During this process, information about hard 

elements, which is included in the small singular value parts, is also 

removed/replaced/weakened.  It indicate that regularization is not valid for cases 

involving hard inclusion.  The procedure above is concluded in Fig. (2.11). 

    The regularizations are valid in typical cases because most damage cases 

involve soft inclusion.  In some cases, however, involving hard inclusion, the 

regularizations are not valid.  In the next section, a new stabilization schemes are 

proposed to prevent the side effects associated with regularization. 
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3. Acceleration-Energy Filter 

 

Noise filters using regularity conditions uses physical laws on the measurements as 

a prior condition.  The physical laws of equilibrium equation (Eq. 2.4) must be 

satisfied, but noise in the measured displacement breaks the physical laws.  This 

situation is caused by differentiation sequences in the inverse analysis of the 

continua, which amplify high-frequency noise.  Amplified high-frequency noise 

acts like a series of Dirac delta functions and breaks the physical laws.  The 

measured displacements without the physical laws effect the ill-posedness of 

inverse analyses.  The physical laws of Eq. (2.4) must be guaranteed to avoid ill-

posedness. 

 

3.1  Noise Filter Using Regularity Conditions of Displacement 

    To prevent ill-posedness of the inverse analysis, the measured displacements 

must satisfy the physical laws of the equilibrium equation.  Eq. (2.4) in terms of 

measured displacement u  is given below. 
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    The measured displacement u  have to satisfy two physical laws, the 

finiteness of the strain energy and the acceleration, to satisfy the equilibrium 
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equation (Eq. 3.1). 

    The next equation represents the first law, the finiteness of the strain energy.   
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    The equation describes that total internal energy of continuum must be finite.  

The next equation represents the second law, the finiteness of the acceleration.  
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 (3.3) 

 

    The equation describes that the second derivative of the measured 

displacement must be finite.  In fact, acceleration functions are not finite functions, 

because the Dirac delta functions can be included in the acceleration functions.  

Except for the Dirac delta functions, however, acceleration functions exist in the 

finite function space.  While the impact loads are negligible, it is a valid 

assumption that acceleration functions exist in the finite function space.   

    The measured displacement with noise, however, cannot satisfy above two 

physical laws.  Because the amplified high-frequency noise sources, which are 

amplified by differentiations, act as a series of Dirac delta functions (section 2.3.1).  

A series of Dirac delta functions breaks the physical laws, and causes ill-posedness 

of the inverse analysis. 

    Noise filtering using regularity conditions can prevent the dissatisfaction of 
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the physical laws.  Filtered displacement u~  is defined by three conditions.  The 

first condition is that the filtered displacement must sticks around the measured 

displacement. 
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1min , (3.4) 

 

where u~  and u  denote the filtered displacement and the measured displacement, 

respectively.  The second and the third conditions are regularity conditions using 

the physical laws of the displacement.  
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    Eqs. (3.5) and (3.6) represent the regularity conditions using the finiteness of 

the strain energy and the accelerations, respectively.  The regularity conditions are 

enforced to Eq. (3.4) as penalty functions. 
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Here, aλ  and eλ  are regularization factors which define the ratio between the 
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regularity and measured information.  Since The object function is designed to 

suppress noise which break the physical laws, the minimization problem is 

considered as a noise filter.  A governing equation and boundary conditions help 

to figure out characteristics of the acceleration-energy filter.  The variational 

principle and the integration by parts are applied to Eq. (3.7) for deriving the 

governing equation and the boundary conditions. 
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Where δ , jn , it  and ft  are a variation, a nominal vector, an initial measuring 

time and a final measuring time, respectively.  Eqs. (3.8a and b) are the sequence 

of the variational principle and the integration by parts, respectively.  Eq. (3.8b) 
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gives the governing equation (Eq. 3.8c), the boundary condition of the spatial 

domain (Eq. 3.8d) and the initial/final value conditions of the temporal domain (Eq. 

3.8e).  The spatial boundary condition is eliminated at the free and fixed 

boundaries, because it is identical to the boundary condition of the continua.  The 

temporal boundary condition is not eliminated and must be considered. 

 

3.2  Characteristics of Acceleration-Energy Filter 

3.2.1  Characteristics in Frequency Domain 

    A transfer function is useful for identifying the characteristics of the filtering 

process [Hamming 1989].  The transfer function, which shows the input-output 

relationship in the frequency domain, is defined as the output divided by the input 

in the frequency domain (Eq. 2.16).  The transfer function for the acceleration-

energy filter is derived from the Fourier transformed governing equation of the 

filter (Eq. 3.8c).  However, the filter is a four-dimensional filter and hard to be 

analyzed.  To simplifying Eq. (3.8c) the equilibrium equation for the continuum 

(Eq. 2.1) is substituted into the last term of Eq. (3.8c).  The body force ib  is 

banished by the first assumption of Section 2.1.  The equation below is a 

simplified governing equation. 
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    The Fourier transform and the transfer function of the above equation is  

shown below.   
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Here, )(uF , )~(uF , )( tH ω , tω  and f  are the Fourier transform of the 

measured displacement, the Fourier transform of the filtered displacement, the 

transfer function, the temporal frequency in radians and the temporal frequency in 

Hz, respectively.  It is a monotonically decreasing function from 1)0( =H  to 

0)( =∞H .  The transfer function of the acceleration- energy filter consists of the 

pass band, the cut-off band and the transient which are a signal-conserving range, a 

signal-eliminating range and a transient between the above two ranges, respectively.  

The transfer function in the pass band has value of near one, while the transfer 

function in the cut-off band has value of near zero.  The acceleration-energy filter 

in this case is a low-pass filter, which is typically used to stabilize numerical 

differentiations.  This is feasible because amplified high-frequency noise is the 

greatest problem, and a low-pass transfer function suppresses high-frequency noise.  

However, this instance of the filter has strong physical meaning and is thus 

optimized for the inverse analysis of the continuum.  

    A normalized transfer function with respect to a target frequency tf  is 
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employed for simplifying characteristics of the acceleration-energy filter.  The 

target frequency tf  represents an upper bound of the pass band.  The target 

frequency, the upper bound of the pass band, is chosen as the largest valid 

frequency of the measured displacement. 
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Here, )~(~ fH , tf , tfff /~
= , 22

2, 4 tee fρπλ=λ  and atta f λπλ=λ 44
2, 16  are 

the normalized transfer function, the target frequency, the dimensionless 

normalized frequency, the strain energy regularization factor of normalized transfer 

function and the acceleration regularization factor of normalized transfer function, 

respectively.  The characteristics of the acceleration-energy filter are defined by 

the regularization factors 2,eλ  and 2,aλ . 

 

3.2.2  Separation of Regularity Conditions 

    The given filter, Eq. (3.7), has both temporal and spatial calculation, but it is 

difficult to handle both dimensions at once.  In this section, Eq. (3.7) will be 

approximately separated into temporal and spatial parts in the frequency domain.  

The transfer function of the filter (Eq. 3.12) is useful for simplifying the 

minimization.  The next equation is an approximation of Eq. (3.7).   
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    The term 6
2,2,
~fea λλ  is added to the denominator of the transfer function. 

The transfer function shows that the filter is a low-pass filter, which consists of a 

pass band, a cut-off band and a transient.  In the pass band, the added term is 

nearly zero.  In the transient and the cut-off band, the added term accelerates the 

convergence of the transfer function.  It means that the approximated transfer 

function can replace the original one.  Because the regularization factors 2,eλ  

and 2,aλ  are not defined yet, accuracy of approximated transfer function will be 

analytically discussed in Section 3.2.4.   

    The series of ensuing equations separates the approximated equation into two 

regularizations.   
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Where u , u  and u~  are the measured displacements, the filtered displacements 

by the strain energy regularity condition and the filtered displacement by both the 

strain energy/acceleration condition.  The commutative law of both conditions is 

valid since multiplication of the two transfer function in Eq. (3.14a) satisfies the 

commutative law.  The inverse processes of the integration by parts of Eqs. (3.14h 

and i) give the object function of the equations. 
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    The noise filter is separated into the temporal and the spatial filters, or the 

acceleration and the energy filters.  The integral dimensions are also separated into 

their temporal and spatial dimensions.  Doing this is easier than the original four-

dimension integration.   

 

3.2.3  Characteristics and Regularization Factors of Acceleration Filter 

    Since Eqs. (3.15a and b) satisfy the commutative law, the acceleration filter is 

independent from the energy filter.  The acceleration filter has own input and 

output displacement, and the object function (Eq. 3.15a) changes into the next 
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equation. 
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Here, iu~  and iu  are the output (filtered) displacement and the input (measured or 

output from the energy filter) displacement, respectively.  A transfer function of 

the acceleration filter is derived from a variation of Eq. (3.16) 
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Here, iu~ , iu , it  and ft  are the filtered displacement, the input displacement, an 

initial measuring time and a final measuring time, respectively.  The inner 

equation in the first term of Eq. (3.17b) is the governing equation of the 

acceleration filter and the other terms are the boundary conditions.   
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Eqs. (3.18a and b) are the governing equation and the boundary conditions, 

respectively.  The transfer function of the acceleration filter is derived from the 

transfer function of Eq. (3.18a). 
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Here, )( fHa , )~(~ fHa , tf , tfff /~
=  and 44

2, 16 taa fπλ=λ  are the original 

transfer function of the acceleration filter, the normalized transfer function of the 

acceleration filter, the target frequency, the dimensionless normalized frequency 

and the regularization factor of normalized transfer function, respectively.  It is a 

monotonically decreasing function from 1)0( =aH  to 0)( =∞aH .  The 

acceleration filter in this case is a low-pass filter, which is typically used to stabilize 

numerical differentiations.  This is feasible by same reason of the acceleration-

energy filter.  However, this instance of the filter has strong physical meaning and 

is thus linked to the energy filter (Eq. 3.15b).  The low-pass filter consists of the 

pass band, the cut-off band and the transient which are a signal-conserving range, a 

signal-eliminating range and a transient between the above two ranges, respectively.   

    Eq. (3.20b) is a normalized transfer function with respect to the target 

frequency tf .  The normalized transfer function is employed for simplifying 

characteristics of the acceleration filter.  As mentioned in Section 3.2.1, The target 
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frequency tf  represents upper bound frequency of the pass band and is chosen as 

the largest valid frequency of the measured displacement. 

    The regularization factor is defined by a target accuracy tHH =)1(~ , which is 

the desired accuracy for the target frequency 1~
=f .   
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t
t H

    10when << tH  (3.20) 

 

    Since the target frequency cannot be 0 nor an infinite value, the target 

accuracy must be in 10 << tH .  The target accuracy must be pre-defined by an 

engineering sense to determined the regularization factor.  Here, the values of 0.97, 

0.95 and 0.90 are recommended.  Fig.(3.1) shows the normalized transfer 

functions of the acceleration filter for various levels of the target accuracy.  The 

higher target accuracy gives the better pass band and the worse cut-off band, and 

vise versa.  

 

3.2.3  Characteristics and Regularization Factors of Energy Filter 

    Most noise sources are suppressed by the acceleration regularization, but the 

noise associated with the pass band remains.  The remaining noise is white noise 

in the spatial direction.  These sources are amplified by the strain-displacement 

relationship and render the signals such that they are not satisfying the physical 

laws of continuum.  The energy filter (Eq. 3.15b) is employed to guarantee the  
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Figure 3.1  Normalized transfer function of the acceleration filter 

 

 

physical laws of the strain energy.  The energy filter, which is separated from the 

acceleration-energy filter, is independent from the acceleration filter.  The energy 

filter has own input and output displacement, and thus, the object function (Eq. 

3.15b) changes into the next equation.   
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Here, iu~  and iu  are the output (filtered) displacement and the input (measured / 
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output from the acceleration filter) displacement, respectively.  A transfer function 

of the energy filter is derived from a variation of Eq. (3.21). 
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The inner equation in the first term of Eq. (3.22b) is the governing equation of the 

energy filter and the second term is the boundary condition. 
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Eqs. (3.23a and b) are the governing equation and the boundary condition, 

respectively.  The boundary condition is identical to the boundary condition of the 

continua; it is zero on fixed and traction-free boundaries.  The governing equation 

is similar to that during acceleration regularization, i.e., functioning as a low-pass 

and high-cut filter.  However, it is too complex to analyze the energy filter in the 

spatial frequency domain, since the elastic waves (the s-wave, the p-wave, etc.) 

have physical relationships.  Moreover, the elastic waves have relationship with 

the temporal frequency.  The next equations show relation between the spatial 

frequencies of the elastic waves and the temporal frequency. 
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µ
ρ

ω=ω tswave  (3.24a) 

µ+λ
ρ

ω=ω
2pwave t  (3.24b) 

 

Where swaveω , pwaveω , tω , ρ , λ  and µ  are the spatial frequency of the s-

wave, the spatial frequency of the p-wave, the temporal frequency, the mass density 

of the medium, the Lame’s first parameter of the medium and the Lame’s second 

parameter of the medium.  The Lame’s second parameter µ  represents the shear 

modulus when the medium is a continuum.   

    To simplify frequency characteristics of the energy filter, the equilibrium 

equation for the continuum (Eq. 2.1) is substituted into the last term of Eq. (3.23a).  

The equilibrium equation for the continuum includes information of the 

relationship between the elastic waves and the temporal wave, due to the fact that 

Eqs. (3.24a and b) are come from the equilibrium equation.  The body force ib  is 

banished by the first assumption of Section 2.1.  It is the same sequence to section 

3.2.1.  The equation below is a simplified governing equation.   
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    The Fourier transform and the transfer functions of above equation are below.  
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Here, )(uF , )~(uF , )(ωeH , tω  and f  are the Fourier transform of the 

measured displacement, the Fourier transform of the filtered displacement, the 

transfer function of the energy filter, the frequency in radians and the frequency in 

Hz, respectively.  It is also a monotonically decreasing function from 1)0( =H  

to 0)( =∞H .   

    Since the elastic waves and the temporal wave are closely related by the 

equilibrium equation (or Eqs. 3.24a and b), valid frequency ranges of the energy 

filter and the acceleration filter must be identical.  It means that two filters must 

have the consistent pass band.  The solution of the inverse analysis is not precise 

without consistency between the acceleration filter and the energy filter, because 

the temporal and spatial derivatives contain different information when the 

consistency requirement is not satisfied.  Since the pass band is defined by the 

target frequency and the target accuracy, the consistency between two filters is 

guaranteed by the same target frequency and accuracy.  A normalized transfer 

function of the energy filter with respect to the tf  is in the next 
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Here, 22
2, 4 tee fρπλ=λ  is a normalized regularization factor of the energy filter.  

The normalized regularization factor is defined by a target accuracy tHH =)1(~ , 

which is the desired accuracy for the target frequency 1~
=f , and is identical to the 

normalized regularization factor of the acceleration filter 2,aλ .       

 

11
2, −=λ

t
e H

    10when << tH  (3.29) 

 

    A normalized regularization factor 2λ  is employed for representing both 

regularization factors of the acceleration and energy filters. 

 

11
2,2,2 −=λ=λ=λ

t
ea H

    10when << tH  (3.30) 

 

    Fig.(3.2) shows the normalized transfer functions of the energy filter for 

various levels of the target accuracy.  The higher target accuracy gives the better 

pass band and the worse cut-off band, and vise versa. 

 

3.2.4  Characteristics of Acceleration-Energy Filter 

    The regularization factors 2,aλ  and 2,eλ  in the transfer function of the 

acceleration-energy filter (Eq. 3.13) are determined by Eq. (3.30).  The original 

transfer function of the acceleration-energy filter in terms of the target accuracy  
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Figure 3.2  Normalized transfer function of the energy filter 

 

 

tH  is below. 
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    The approximated transfer function in terms of the target frequency tH  is 

below. 

 

( ) ( ) 24 ~1~1
)~(~

fHH
H

fHH
HfH

tt

t

tt

t
approx −+−+

=  (3.32) 



 

 

55 

)~(~ fHapprox  is the approximation of the normalized transfer function for the 

acceleration-energy filter.  Figs. (3.3a and b) shows shapes of the original and 

approximated transfer functions for various target accuracies, 97.0=tH , 

95.0=tH  and 90.0=tH .  As target accuracy increases, accuracy of pass band 

also increases, while noise suppression effect decrease.  

    Figs. (3.4, 3.5 and 3.6) compare the original and approximated transfer 

functions for 97.0=tH , 95.0=tH  and 90.0=tH , respectively.  The figures 

show that difference between the both transfer functions is acceptable for the 

recommended target accuracies.  

    In Figs. (3.3~3.6), the target accuracies of the original and approximated 

acceleration-energy filters ( oritH ,  and approxtH , , respectively) are different from 

the target accuracy of the acceleration filter and the energy filter tH .  

Relationship between oritH ,  or approxtH , , and tH  is derived from Eqs. (3.31 and 

3.32) for 1~
=f .  

 

t

t
orit H

HH
−

=
2,  (3.33) 

2
, tapproxt HH =  (3.34) 

 
    Fig. (3.7) shows the relationship between the target accuracies of the separated 

filters, the original filter, and the approximated filter.  Difference between the 

target accuracies are acceptable when tH  is near to one.   
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Figure 3.3 Nnormalized transfer function of the acceleration-energy filter 

(a) original transfer function    (b) approximated transfer function 
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Figure 3.4 Normalized transfer function of acceleration-energy filter for Ht=9.7 

(a) small scale   (b) detail of target frequency 
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Figure 3.5 Normalized transfer function of acceleration-energy filter for Ht=9.5 

(a) small scale   (b) detail of target frequency 
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Figure 3.6 Normalized transfer function of acceleration-energy filter for Ht=9.0 

(a) small scale   (b) detail of target frequency 
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3.3  Discretization of Filters 

3.3.1  Discretization of Acceleration Filter 

    A Conventional finite impulse response (CFIR) filter is typically used to 

approximately discretize a transfer function on the frequency domain.  The CFIR 

filter is a linear filter, which is a combination of input and filter coefficients 

[Hamming 1989]. 
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Where k , pc , tu~  and tu  are the truncation number, the coefficients of CFIR 

filter, the output (filtered) displacement on the discretized time t  and the input 

(measured / output from the energy filter) displacement on the discretized time t , 

respectively.  The transfer function of the CFIR filter is derived by the Fourier 

transform of Eq. (3.35). 

 

∑
−=

∆π=≈
k

kp

tfp
pCFIRt cfHfH 2ie)()(  (3.36) 

 

Here, )( fHCFIR  is the transfer function of the CFIR filter.  Since the coefficients 

of the CFIR filter are symmetric, pp cc −= , )( fHCFIR  is an even and real 

function.  An even and real transfer function does not cause phase shifts in the 

input-output relationship.  pc  in Eq. (3.36) are the coefficients of the truncated 

Fourier series for )( fHt  and thus defined by the next equation. 
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Where 1−∆= tfs  and stt fff /~
=  are the sampling frequency and the normalized 
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target frequency to the sampling frequency.   

    The normalization of CFIR filter coefficients with respect to tf
~

 provides 

independent coefficients from the target and sampling frequencies.   

 

∫ π
λ+

=
)~2/(1

0 4
2

~)~~2cos(~1
12~ tf

p fdpf
f

c  (3.38) 

 

Here, tpp fcc ~/~ =  and pfp t
~~ =  are the normalized CFIR filter coefficients and 

the normalized p .  The coefficients pc~  have same values no matter which the 

sampling and target frequencies are.  Fig. (3.8a) shows the normalized coefficients 

of the CFIR acceleration filter.   

    To select the truncation number k  of Eq. (3.36), the Gibbs phenomenon 

must be considered.  The Gibbs phenomenon explains the rippling on the transfer 

function of the truncated Fourier series [Hamming 1989].  By the phenomenon, 

the very outside of the coefficients kk cc −=  should be near zero to stabilize 

rippling of the transfer function.  Fig. (3.8b) shows zero-crossing points 0p .  

Note that tfpk ~/0=  and the filter size of the CFIR acceleration filter is 12 +k .  

Figs. (3.9a, b and c) show the transfer functions of the acceleration filter using 

CFIR discretization for various filter sizes.  222.00 =p  does not have a exact 

pass band and thus 519.00 =p  is the minimum filter size.  The filter size 

519.00 =p , 815.00 =p  and 112.10 =p  are reasonable filter sizes with the  
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Figure 3.8  Normalized coefficients of the CFIR acceleration filter 

(a) small scale   (b) detail in a large scale 
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Figure 3.9  Transfer function of CFIR acceleration filter 97.0target =H  

(a) small scale   (b) detail of target frequency   (c) detail of cut-off band 
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acceptable pass bands and cut-off bands.  Since the error of the pass band and the 

rippling of the cut-off band are reduced as the filter size increases, 519.00 =p , 

815.00 =p  and 112.10 =p  are recommended as the short, standard and long 

filter sizes, respectively. 

    The filtered displacement on the discretized time is defined as the next 

equation. 
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∆+=
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)(~~~  (3.39) 

 

If the truncation number of the Fourier series tfpk ~
0=  is not a natural number, 

the nearest natural number is the truncation number.   

    The acceleration filter is also realized by the discretization of the governing 

equation (Eq. 3.18a) using FDM.  The scheme is named by the FDM-FIR filter 

because the final form of the discretization is an FIR filter.  The FDM-FIR filter is 

totally handled on the time domain, while the CFIR filter is designed on the 

frequency domain.  The CFIR filter design has the forward and inverse Fourier 

transform processes, which cause lots of numerical error.  The FDM-FIR filter, 

however, does not include any domain shift processes, and gives a more stable and 

accurate filter than the CFIR filter. 

    A fourth-order FDM matrix, 4L , is utilized during the discretization of the 

governing equation of the acceleration filter (Eq. 3.18a).   
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    Note that 4L  is not a square matrix; thus, the discretized governing equation 

requires two initial values and two final values.   
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In this equation, i
4L , f

4L , s
4L , u , u~ , iu~  and fu~  are the first two column of 

4L , the last two column of 4L , the square part of 4L , the measured 

displacements, the filtered displacements, the two initial values of the regularized 

displacement and two final values of the filtered displacement, respectively.  Two 

initial and two final values are required to solve Eq. (3.41).   

 
uuLuLuLI ~)~~()( 44
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    The above equation gives filtered displacements using the acceleration filter.  

The filtered displacements are not disturbed by the noise amplification of the 

relationship between the displacements and the accelerations.  

    Eq. (3.42) requires two initial and two final values, but the boundaries of the 
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time series data are usually unknown.  When the boundary information is not 

exact, effects of the boundary value errors are derived from Eq. (3.42).   

 

errorbounderyerror4error4
1

4
~)~~()( uuLuLLI =+λ+λ− − ffiis

tt  (3.43) 
 

    The center element of errorbounderyu  is nearly zero when the data length is long 

enough.  Because )~~( 44
f

error
fi

error
i uLuL +  is a zero vector except for the first and 

last two elements, and 1
4 )( −λ+ s

tLI  is a almost banded matrix.  The time 

window technique has been used to solve this type of boundary problem [Hong 

2010, Hong 2013].  With the time window technique, Eq. (3.42) is applied to 

pieces of data, and the center value is picked up in each piece (Fig. 3.10).  The 

window refers to an individual piece.  Boundary error effects are negligible when 

the time window size is long enough, as the center value of the errorboundery
~u  is 

nearly zero.  The time window technique serves as a finite impulse response (FIR) 

filter formed by the center row of 1
4 )( −λ+ s

tLI .  The FIR filter is applied in the 

next equation.   
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Here, nu~ , nu , nc  and k  are the nth step of the output (filtered) displacements, 

the nth step of the input (measured / output from the energy filter) displacements,  
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Figure 3.10  Concept of overwrapping time window technique 
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Figure 3.11  coefficients of FDM-FIR and CFIR filters 
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the FDM-FIR filter coefficients (the center row of 1
4 )( −λ+ s

tLI ) and the window 

size coefficient, respectively.  The window size wN  is defined by the window 

size coefficient k .  

 
12 += kNw  (3.45) 

 

    Since the very outside of the coefficients pc  is always near zero, the window 

size (or the size of the FDM-FIR filter) can be chosen by any values, while the size 

of the CFIR filter must have specific values.  However, it is figured out 

empirically that the FDM-FIR filter converges on the analytic transfer function 

faster when the window size is identical to the filter size of the CFIR filter.  

Accordingly, the truncation number of CFIR filter tfpk ~/0=  can be referred as 

the window size of FDM-FIR filter. 

 

1~212 +=+=
t

w f
pkN  (3.46) 

 

    112.1≥p , 815.0≥p  and 519.0≥p  are suggested for the recommended, 

standard and minimum window sizes.  The values 1.112, 0.815 and 0.519 are 

recommended 0p  of CFIR filter.  The coefficients of FDM-FIR and CFIR filters 

is mostly same to each other when 0pp =  (Fig. 3.11).  The transfer functions of 

the FDM-FIR filters, however, are more stable than the transfer functions of the 
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CFIR filters (Figs. 3.12a, b and c). 

    wN  of Eq. (3.46) is the window size in the number of steps, but the window 

size in the time dimension is easier to understand than wN  

 

t
t

ww Tp
f
pNtT 0

0 22)1( ==−∆=  (3.46) 

 

Where wT  and tt fT /1=  are the window size on the time dimension and the 

target period. tw TT 2.2> , tw TT 6.1>  and tw TT 2.1>  are suggested for the 

recommended, standard and minimum window sized wT . 

 

3.3.2  Discretization of Energy Filter 

    The variation of the object function for the energy filter (Eq. 3.21) is easily 

discretized by the FEM because it is similar to the variation of the equilibrium 

equation for the linear elastic continuum.   
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Here, N , B , U , U~ , eV  and ∑
e

)(  are the shape function matrix, the first 

derivation of the shape function, the global vector of the input (measured / output 

from the acceleration filter) displacements, the global vector of the output (filtered)  
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Figure 3.12  transfer function of FDM-FIR acceleration filter 97.0target =H  

(a) small scale   (b) detail of target frequency   (c) detail of cut-off band 
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displacements (unknown), the domain of each element and the structural 

compatibility summation, respectively.  The left term and the first term on the 

right are identical to the mass matrix of the FEM for the target continuum with the 

unit mass density.  The second term on the right is identical to the stiffness matrix 

of the target continuum. 

 
UKUMUM ~~

unitunit sλ+=  (3.48) 
 

In this equation, unitM  and K  are the mass matrix of the target continuum with 

unit mass density and the stiffness matrix of the target continuum, respectively.  

The matrixes are identical to the matrixes used in forward analyses, except for the 

mass density.  The filtered displacement is determined by solving Eq. (3.48). 

 
UUMKM ~)( unit

1
unit =λ+ −

s  (3.49) 
 

    The stiffness matrix K  includes the elastic modulus of each element, i.e., the 

unknown parameters of the EEE.  To solve Eq. (3.49), the unknown values must 

be sourced from prior information.  This prior information does not have to be 

highly accurate because it has low sensitivity with regard to the final solution of the 

inverse analysis (Eq. 2.13).  If the prior is wholly unknown, a preliminary trial 

solution of the inverse analysis can serve as the prior. 
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3.4  Acceleration-Energy Filter as Signal Processing 

3.4.1  Acceleration filter as a signal processing  

    The acceleration filter is designed by the regularity condition and is realized 

by a low-pass FIR filter.  This is feasible because the object function of the 

acceleration filter (Eq. 3.16) is designed for suppressing the noise amplification of 

the second differentiation since it is known that differentiation amplifies high-

frequency noises.  The acceleration filter is a type of the noise suppression filter to 

stabilize the second derivatives of noisy measured displacements.  Usual noise 

suppression filters may be available for solving the inverse analysis using EEE.  

However, the acceleration filter has two advantages: consistency with the energy 

filter and optimality of the inverse analysis for the continuum.  The acceleration 

filter and the energy filter are applied together for solving inverse analysis of the 

linear elastic continuum, and these process require consistency of the relationship 

between the elastic waves and the temporal wave.  Without the consistency, the 

temporal and spatial derivatives have different information.  These differences are 

present serious noise.  The acceleration filter contains the physical meaning of the 

equilibrium equation and its FIR form has the same physical meaning as well.  

The physical meaning is the media of the consistency between the acceleration and 

energy filters.   

 

 

 



 

 

74 

3.4.2  Energy filter as a Signal Processing 

    The final form of the energy filter is a spatial filter in three-dimensional space.  

For the rectangular-meshed FEM, the energy filter takes precisely the same form as 

a spatial low-pass FIR filter, which is usually used in image processes.  A low-

pass FIR filter may work for the inverse analysis for the continuum if it is designed 

properly.  However, the energy regularization has certain specialties which make it 

capable of solving the inverse analysis of the linear elastic continuum.   

    The first advantage is the boundary conditions.  The boundary conditions of 

the energy filter is identical to the boundary conditions of the equilibrium equation 

of the continuum.  This makes the solutions around the boundaries trustable while 

the other spatial filters do not give proper solutions around the boundaries.  For 

example, the spatial filter using a L2-norm spatial derivative regularity condition 

exists, as commonly used by other researchers [Park 2006, Park 2009].  The L2-

norm type spatial filter employs the spatial derivatives of the displacement with a 

L2-norm error function. 
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    The governing equation (Eq. 3.51a) and the boundary condition (Eq. 3.51b) 

are derived by the same procedure used for acceleration filter.   
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    The boundary condition of the L2-norm spatial derivative filter is not zero on 

the traction-free boundaries of the continuum.  A difference between the boundary 

condition of the continuum and the L2-norm spatial derivative filter has detrimental 

effects on solutions around the traction-free boundaries.  On the other hand, The 

boundary conditions of the energy filter is identical to the boundary conditions of 

the continuum, and the energy filter works properly on any type of boundary. 

    The second is information about connectivity between nodes.  The FIR form 

of the spatial filters can consider only well-arranged nodes, rectangular FEM 

elements.  However, FEM can employ complicated elements to discretize the 

continuum and cannot be handled by FIR spatial filters.  However, the energy 

filter contains information about the connectivity between nodes, as is the case with 

the discretized continuum.  For this reason, the energy filter can handle any type 

of meshes.   

    The final advantage is the physical meaning for consistency.  This was 

discussed in section 3.4.1.  
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3.5  Bias Compensation for EEE Using Filtered Displacement 

    The reconstruction of the bias terms, Eqs. (2.23a and b), are based on the 

white noise assumption.  Noise in the filtered displacement, however, is not white 

noise but colored noise, because filtered white noise changes into colored noise.  

Moreover, since the noise undergoes the energy filter, the colored noise is not 

independent from each other.  Thus, covariances between colored noise must be 

considered for the bias compensation.  

    The sequence below concerns the covariances of the filtered noise by four-

dimensional filters, which are the synthesized filters of the acceleration filter and 

the energy filters.  This step gives the covariances of Eq. (2.22c).  White noise 

),,,( tzyxw  has the position of ),,( zyx with variance ),,(2 zyxσ .  The white 

noise after undergoing four-dimensional filtering ),,,( tzyxhk  or ),,,( tzyxhl  

becomes the colored noise kc  or lc  , respectively.   

 

∑∑∑∑
ξ ψ ζ τ

τ−ζ−ψ−ξ−τζψξ= ),,,(),,,(),,,( tzyxwhtzyxc kk  (3.52a) 

∑∑∑∑
ξ ψ ζ τ

τ−ζ−ψ−ξ−τζψξ= ),,,(),,,(),,,( tzyxwhtzyxc ll  (3.52b) 
 

    The covariance of the two types of colored noise is then lk ,σ  and is derived 

by the equation below.  The colored noise ),,,( tzyxc iiik  is on the ith node and 

undergoes kh .  The colored noise ),,,( tzyxc jjjl   is on the jth node and 

undergoes lh .  Orthogonality between each instance of white noise is assumed. 
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    The orthogonality between each white noise instance is used for Eq. (3.53c).  

With the Eqs. (2.22c) and (3.53g), the bias terms of Eq. (2.21) are reconstructed 

with the variances of the noise, the four-dimensional acceleration-energy filters, 
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and the FEM models of the continuum. 
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Here, ),,(2 zyxσ , ji
nmq ,

, , ji
nmm ,

, , disph  and acch  are the covariance values of 

white noise for the measuring point on the ),,( zyx , the ),( nm  element of the 

matrix jTi qq , the ),( nm  element of the matrix jTi mq , the filter for the 

displacement of EEE and the filter for the acceleration of EEE, respectively.  In 

the other words, disph  is the synthesized filter of the acceleration and the energy 

filter.  acch  can be understood as the synthesized filter of the acceleration filter, 

the energy filter and the central FDM for second order derivatives using second 

order accuracy, as well. 

    biasQ  and biasM  are substituted into biasQ  and biasM  of Eq. (2.21), and 

the biases in the solutions are eliminated. 
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4. Example and Application 
 

An example and an application are introduced in this chapter.  The example is a 

linear elastic continuum problem using dynamic displacements under the plane 

stress condition.  The example uses the schemes in chapter 3.  The application is 

medical imaging with ultrasound equipment.  Human tissues are under an 

incompressible condition in this case and are governed by the Helmholtz equation.  

The Helmholtz equation is a continuum in the incompressible condition.  The 

inverse analysis for the Helmholtz equation is slightly different from the inverse 

analysis for the continuum.  This is introduced in this chapter. 

 

4.1  Example: Aluminum Plate 

    A thin aluminum plate model (Fig. 4.1) is employed to demonstrate the 

efficiency of the acceleration-energy filter and the bias compensation.  Aluminum 

plates are used in many fields, especially with regard to machines and vehicles.  In 

this case, the plate is modeled by a plane stress FEM model.  Newmark’s method 

is applied to a dynamic analysis.  The numerical calculations are done by 

MATLAB.   

    In the first, the efficiency of the schemes is assessed in the ideal condition, 

which is satisfies the assumptions in Section 2.1 with assumptions of a long enough 

measuring time and a perfect choice of the target frequency.  After that, some  
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Figure 4.1  The aluminum plate example 
 

 

unideal conditions are verified.  The unideal conditions are the small window sizes, 

the short measuring times, the damping of structures, the large noise levels, the not 

proper target frequencies, the bias compensation with unknown noise variances and 

the noise of specific frequencies. 
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4.1.1  Ideal Example  

    The specifications of the example are given in Tab. (4.1).  The variances of 

the white noises are assumed to be known values.  The target frequency, target 

accuracy and window size must be chosen to apply the acceleration filter.  To 

define the target frequency, measured displacement must be analyzed in the 

frequency domain.  The measured displacement on the point (A) of Fig. (4.1) is 

displayed in Fig. (4.2) (a piece of the time line).  The frequency spectrum of the 

displacements is given in Fig. (4.3).  The target frequency is chosen according to 

the highest dominant frequency, 5.15kHz.  The target accuracy is defined as 0.97 

by an engineering sense.  The window size is defined as 45 steps, which is a 

recommended window size.  

 

 

Table 4.1  Specification of the aluminum example 
Material Aluminum ( GPaE 70= , 3/7.2 mMg=ρ ) 

Size 1m X 1m X 0.1m 

Load Sudden release of unit distributed load & 
Load free during the measurement time 

Boundaries 1 fixed end, 3 traction free ends 

Inclusion Hard: GPa140  
Soft: GPa35  

Modeling 50X50 Q4 FEM, plane stress 
Measurement type Displacement 

Sampling rate kHz100  
Measurement time s14.0  (14000steps) 

Noise 5% proportional white noise 
(Signal to noise ratio: 30.8dB) 
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Figure 4.2  Measured displacement on the point ‘A’ 

(the aluminum example) 
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    Figs. (4.4a and b) show the results for hard and soft inclusion cases, 

respectively.  The hard and soft inclusions are detected.  Fig. (4.5a and b) show 

the results of the line (B-B’) in Fig. (4.1).  This figure shows the effectiveness of  

the energy filter and the bias compensation.  The acceleration filter is applied to 

all of results in the figures because results without the acceleration filter are nearly 

identical to meaningless white noise.  The figures show that the acceleration-

energy filter and the bias compensation make the results accurate.   

    To compare the energy filter and the regularization schemes, the results of the 

regularization are also displayed in Fig. (4.5a and b).  The acceleration filter is 

applied to the regularization because low-pass filters are generally used in the 

temporal dimensions.  The L2-norm Tikhonov regularization is applied with GMS 

[Lee 1999, Park 2001].  Prior information of the material properties is given by 

GPa70 , which is the Young’s modulus of aluminum.  As explained in chapter 2, 

the regularization scheme improves the results of soft inclusion cases.  A side 

effect, low accuracy of the inclusion, is well known in the references and is thus 

ignorable.  However, a side effect of the hard inclusion case is too severe to be 

ignored.  On the other hand, the energy filter works properly in both cases. 

    Figs. (4.4 a and b) and (4.5a and b) show that the stiffness discontinuous 

surfaces are smoothed.  It is caused by the energy filter.  The inverse analysis for 

the continuum uses not information of displacement but information of strain.  It 

is clear because the equilibrium equation (Eq. 2.1) is consist of a strain term.  In 

the stiffness discontinuous surfaces, the strain functions are step functions, and the  
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Figure 4.4  Result of the aluminum example 

(a) the hard inclusion case  (b) the soft inclusion case 
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Figure 4.5  Results of aluminum example on the line (B-B’) 

(a) the hard inclusion case  (b) the soft inclusion case 
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Figure 4.6  Effect of energy filter on the stiffness discontinuous surface 
 

 

step functions are fractional functions in the frequency domain.  When the energy 

filter, which is a low-pass filter, is applied to the measured displacement, most of 

the stiffness discontinuity information is passed through but the tails of the 

fractional functions are filtered out (Fig. 4.6).  This sequence cuts off the high 

frequency components of the step functions, and the step functions change into 

smoothed functions. 

 

4.1.2  Verification 1: Window Size  

    In the ideal example, the recommended window size is employed.  In some 

situations, however, the standard window size or the minimum window size might 

be chosen because the filter with the bigger window size losses more data than the 

filter with the smaller window size.  Fig. (4.7) shows results using the 

recommended, standard and minimum window sizes.  The results using various  

Filtered out
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Figure 4.7  Results with various window sizes (aluminum example) 

 

 

window sizes are almost same to each others.  Since the other conditions except 

the window size are ideal, any window sizes can be employed for the acceleration 

filter.  In some unideal condition, however, the recommended window size gives 

the more accurate result.   
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4.1.3  Verification 2: Measuring Time 

    The ideal case uses very long enough measuring time, which provides high 

quality information.  However, the long enough measuring time is not allowed in 

some applications, especially applications with damping.  The inverse analysis 

using EEE in this thesis uses an assumption that damping can be ignored.  The 

damping is ignorable since relatively few vibrations are included in the measuring 

time (Section 2.1).  To verify effects of the short measuring time, 2.2waves, 

0.9waves and 0.4waves of the longest wave length is applied for the measuring 

time.  The minimum window size is applied for reducing loss of data.  Fig. (4.8) 

shows the results.  Results of the inclusion is less accurate than the ideal case 

since lot s of information is truncated by the short measuring time.  however, the 

results are acceptable because the inclusion is well detected in the all cases.  
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Figure 4.8  Results with various measuring times (aluminum example) 
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4.1.4  Verification 3: Damping  

    The damping of structures is ignored by the assumption in Section 2.1, but 

most of real structures have damping.  To verify effects of the assumption, 1%, 5% 

and 9% damping using Rayleigh damping is applied for the forward analysis.  The 

inverse analysis is done with the 0% damping assumption.  Since only few 

vibrations must be included in the measurement time, only a wave of the longest 

wave length is chosen for the measuring time.  For the inverse analyses of the 

damping cases, a different target frequency is applied since the frequency 

characteristics of the damped system are different from it of the ideal case (Fig. 4.9).  

The target frequency for the damping cases is chosen by 2.3kHz.  Fig. (4.10) 

shows the results.  The stiffness discontinuous surfaces are more smoothed than 

the ideal case because the smaller target frequency gives a more strict spatial filter.  

The damping acts as a type of noise in the measured displacement but is not 

considered by the bias compensation.  For this reason, the bias compensation 

gives few error in the damping cases.  The inverse analysis using damping term 

[Park 2007] might help to improve the result.  It considers a Rayleigh damping 

term for identifying system parameters. 

 

 

 

 

 



 

 

90 

0.0 0.1 1.0 10.0

damping 5%

damping 0%

-0.

0

0.

0.

1

1

1

1
no

rm
al

iz
ed

 fr
eq

ue
nc

y 
sp

ec
tru

m

frequency (kHz, log scale)

target frequency

target frequency

 
Figure 4.9  Selection of target frequency in damping case (aluminum example) 
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Figure 4.10  Results with various damping (aluminum example) 
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4.1.5  Verification 4: Noise Level 

    Most of cases, proportional noise levels are lower than 5%.  However, an 

extremely high level of noise might exist in some cases.  For verifying effects of 

high level noises, 20%, 30% and 50% of proportional noises are applied to the 

measured displacement.  The relationships between the proportional error, the 

signal to noise ratio (SNR) and the signal to noise ratio in decibel (SNRdB) are 

presented in Tab. (4.2). 

 
22 /SNR ns σσ=  (4.1) 

)SNR(log10SNR 10dB =  (4.2) 
 

    Fig. (4.11) shows the results.  By the results, the acceleration-energy filter 

and the bias compensation are work properly for up to the 30% of proportional 

error.  

 

 

Table 4.2  Relationship between proportional error and signal to noise ratio 
Proportional error SNR SNRdB 

5% 1189.8 30.8 
20% 74.3 18.7 
30% 33.1 15.2 
50% 11.9 10.8 
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Figure 4.11  Results with various noise levels (aluminum example) 
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Figure 4.12  Results using various target frequencies (aluminum example) 
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4.1.6  Verification 5: Target Frequency 

    Since the target frequency of the acceleration-energy filter is pre-defined by an 

engineering sense, a not proper target frequency might be chosen by an incorrect 

engineering sense.  For verifying the effects of unideal target frequency, the target 

frequencies kHzft )5.115.5( ×= , Hzft )215.5( ×=  and Hzft )315.5( ×=  is 

applied to the acceleration-energy filter of the aluminum plate example.  The ideal 

example uses the target frequency kHzft 15.5= .  Fig. (4.12) shows results using 

the various target frequencies.  Even though the target frequency is not the best, 

the inclusion is identified by the inverse analysis using the acceleration-energy 

filter and the bias compensation.  The bias of the solution is not perfectly 

eliminated by bias compensation because the third assumption of the bias 

compensation is not satisfied.  The third assumption of the bias compensation is 

that the measured data is long enough and the bias terms are converged enough.  

The signal undergoing the filter using a bigger target frequency have more noise 

than the signal undergoing the filter using the ideal target frequency.  The bias 

terms of the signal with more noise is converged slower than it of the ideal one.  
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4.1.7  Verification 6:Bias Compensation without Noise Variance Information  

    The bias compensation using Eqs. (3.54 a and b) and Eq. (2.21) requires the 

variance of the noise in the measured displacement.  However, the variance of the 

noise is usually unknown.  To remove the bias of the solution without the noise 

variance, Eq. (2.24) must be employed.  As mentioned in Section 2.4, Eq. (2.24) 

has too much unknowns and additional information can reduce the number of the 

unknown.  A proportional noise assumption is employed for reducing the number 

of the unknown and then, Eq. (2.24) changes into the function of a noise level.  

 
2

2
))nl(()nl(min btt Euu −=Π  (4.3) 

 

Where nl  is the noise level in %.  Fig. (4.13a) shows the normalized means 

square errors of Eq. (4.3) which is normalized by the square of the maximum 

displacement.  ))nl(( bt Eu  using 3%nl <  or 7%nl >  cannot be analyzed 

because the solutions the inverse analyses )nl(bE  using 3%nl <  or 7%nl >  

are not reasonable (negative or too big values).  By Fig. (4.13a), 5.5% of noise 

level is the optimal solution of Eq. (4.3).  Note that the exact noise level is 5%.  

The solutions using the exact noise level (5%) and the estimated noise level (5.5%) 

are represented in Fig. (4.13b).  The solution using the estimated noise level is 

acceptable. 
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Figure 4.13  Results when noise variance is unknown (aluminum example) 

(a) Normalized mean square error    (b) results of inverse analyses 



 

 

96 

4.1.8  Verification 7: Noise of Specific Frequency 

    Specific frequency noise can be included in the measured displacement.  

Four types of the specific frequency noise is employed to verify the noise.  The 

first noise is a single wave noise.  The noise has 20kHz frequency, which is higher 

than the target frequency, and an amplitude of the maximum displacement.  The 

second noise is a single wave noise with a frequency which is lower than the target 

frequency.  The noise has 2kHz frequency and the same amplitude to the first one.  

The third noise is static noise which is constant for all nodes.  The constant value 

is the maximum of the displacement.  The final one is static noise which is 

different values for all nodes.  The static noise is generated by the random value 

which is uniformly distributed between the maximum displacement and the 

negative value of it.  Fig. (4.14a) shows the solution without additional denoising 

schemes.  The case of the 20kHz noise find out the inclusion since the 20kHz 

noise, which is higher than the target frequency, is filtered out by the acceleration 

filter.  The bias compensation, however, does not work properly because the white 

noise assumption is not satisfied.  The case of the constant static noise also find 

out the inclusion since the constant static noise does not effect to the strain, which 

is actually used by the inverse analysis. The bias compensation, however, does not 

work properly by the same reason of the 20kHz noise case.  The solutions of the 

other cases are meaningless. 

    For these cases, denoising schemes for the specific noise must be employed.  

The static noise is a kind of the single frequency noise with 0Hz.  In this example,  
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Figure 4.14  Results with specific frequency noise (aluminum example) 

(a) W/O proper denoising    (b) with proper denoising 
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the adaptive line enhancer (ALE) is employed because ALE is very effective to 

remove the single frequency noise [Haykin 2002].  The solutions using ALE are 

shown in Fig. (4.14b).  the results are almost identical to the solution of the ideal 

example. 

 

4.2  Application to Medical Imaging: Ultrasonic Elastography 

    The inverse analysis using EEE can be applied to medical imaging to find 

tumors and cancers in human bodies. The inverse analysis using EEE works well 

with medical imaging because the real-time processes make diagnoses exact and 

reduce the costs.  The acceleration-energy filter and the bias-compensation must 

also be applied with the inverse analysis.  Both civil structures and human bodies 

can be modeled by continua, showing the same behaviors apart from the material 

properties.  In this section, ultrasonic elastography is introduced.  The inverse 

analysis using the Helmholtz equation related to this process are also introduced. 

 

4.2.1  Introduction 

    Ultrasonic elastography is a type of medical imaging which reconstructs and 

visualizes the material properties of human organs.  The elasticity of 

tumors/cancers differs from that in normal tissue samples.  Ultrasonic 

elastography has fewer side effects than other tests used to find tumors, such as 

MRI, radiation tests and biopsies.  The inverse analysis using EEE is a real-time 

or near-real-time scheme.  The inverse analysis using EEE has higher accuracy  
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Figure 4.15  Ultrasonic measuring equipments  
(a) left: picture of the equipments  (b) right: concept of the equipments 

 

 

than x-rays and a lower cost compared to MRI.  Here, ‘cost’ refers to both the time 

and money.   

    Ultrasonic elastography uses one-directional displacement in a 2D space, as 

the ultrasonic measuring equipment (Fig. 4.15a) is a series of 1D probes.  This 

equipment measures the displacements in the z-direction on the x-z plane, as shown 

in Fig. (4.15b).   

    The Helmholtz equation is the best for analyzing responses of the human body.  

The Helmholtz equation is an incompressible case of the continuum equation.  A 

human body can be assumed as an incompressible continuum, as it is filled with 

water, which is almost incompressible.   

    A transient shear wave load is employed.  This is the latest scheme used to 

apply loads onto tissues.  A uniformly distributed load by ultrasonic is released at 

once.  This method has two advantages.  The first is that external forces do not 

1D Probe

z

x

y
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exist during the measurement.  The second advantage is that concentrated loads 

can be generated deep inside of bodies by the ultrasonic equipment, allowing 

tumors deep inside the body to be detected.   

    The boundaries are assumed to be infinite boundaries, as the boundary 

conditions of the bodies are unknown.  This assumption is realized by a short 

measuring time which is shorter than that for the wave to reach the boundary.   

 

4.2.2  Inverse Analysis for Helmholtz Equation  

    The Helmholtz equation is an equation to analyze the incompressible 

continuum.  It is derived from the Navier’s equation. 
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    according to the incompressible condition, u⋅∇  is eliminated.   
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    The displacement components are independent from each other and then, the 

equation can be treated as a one dimensional problem.   
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    The equation above is the Helmholtz equation.  The equation below is the 

variation of the Helmholtz equation.   

 
0)( 2 =ρ−+∇µδ∫

V
iiii dVubuu   (4.7) 

 

    Integration by parts of the above equation leads to the subsequent equation.   
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    The second term is a boundary condition and is satisfied on the fixed and 

traction-free boundaries.  The third term is the body force term; it is eliminated by 

the assumption outlined in chapter 2.  The equation above is discretized by FEM 

and applied to the inverse analysis using EEE.   
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Here, eu  is the local measured displacement vector.  The unknown parameters 

are not the Young’s modulus but the shear modulus µ  in the inverse analysis for 

the Helmholtz equation.  In addition, eq  and em  are defined by the equations 

below.   
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∫=
eV

Te dVBBq  (4.10a) 

∫ρ=
eV

Te dVNNm  (4.10b) 

 

Eqs. (4.10a and b) are identical to Eqs. (2.7a and b), which is the inverse analysis 

for the continuum, and the next sequences are identical to those of the inverse 

analysis for the continuum.  The solutions of Eq. (4.9) are shown next.   
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    The matrix form of the above equation is the equation below.   
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    The acceleration filter for the Helmholtz equation is identical to that of the 

acceleration filter for the continuum.   
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    The energy filter is identical to it of the continuum, except for D .  D  in Eq. 

(3.47) is replaced by an identity matrix for the Helmholtz equation.  The equations 

next are the energy filter and its matrix form.  
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    The reconstructed bias terms of the inverse analysis for the Helmholtz 

equation are the equation below.   
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    Above equations are identical to Eqs. (4.54a and b). 

 

4.2.3  Human Skin Tissue Example 

    The example of ultrasonic elastography here is a model of human skin tissue.  

This model is based on several references [Fink 2004, Park 2006, Park 2009].  The 

shape of the example is shown in Fig. (4.16), and the specifications are given in Tab. 
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(4.3).  The target is a plane stain model with an infinite thickness.  The 

measurement time is defined as 0.01 seconds to satisfy the infinite boundary 

assumption since the transient wave reaches the boundaries at 0.01 seconds.  The 

variance of the white noise is assumed to have a known value in each case.  

Newmark’s method is applied to dynamic analysis.  Numerical calculations are 

done by MATLAB. 

    The tree parameters must be defined to use the acceleration-energy filter.  Fig. 

(4.17) shows the measured displacement on the point (A) of Fig. (4.16).  The 

signal is a wave, not a vibration, due to the infinite boundary assumption.  

Information about the signal is concentrated at a frequency of zero, and the target 

frequency is defined as 1kHz (Fig. 4.18).  The target accuracy is defined as 0.95 

and the minimum window size is employed for reducing loss of data.   

 

Table 4.3  Specification of the human skin tissue example 
Material Human skin ( kPa36=µ , 3/1000 mkg=ρ ) 

Size 1m X 1m X ∞  

Load Sudden release of unit distributed load & 
Load free during the measurement time 

Boundaries 1 fixed end, 3 traction free ends 

Inclusion Hard: kPa72  
Soft: GkPa18  

Modeling 100X100 Q4 FEM, Helmholtz equation, plane strain 
Measurement type Displacement 

Sampling rate kHz100  
Measurement time s01.0  (1000steps) 

Noise 5% proportional white noise 
(Signal to noise ratio: 30.8dB) 
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    The above choices are not in fact the best ones.  500Hz and 0.97 are better 

choices for the target frequency and target accuracy, respectively.  However, the 

required window size with these values of 500Hz and 0.97 is larger than the 

number of total sampling points.  Note that the number of sampling points lost is 

identical to the size of the window.  To reduce the loss of sampling points, 

performance of the acceleration-energy filter must be sacrificed.  Values of 1kHz, 

and 0.95 are chosen as the target frequency and the target accuracy, respectively, 

according to the an engineering sense.    

    Figs. (4.19a and b) are the reconstructed shear modulus of the hard and soft 

inclusion cases, respectively.  These results of most areas are acceptable, but the 

results for the center and boundaries are poor, as the information of the center and 

the boundaries are included during the beginning and the end of the measuring time 

and are thus lost during the acceleration filtering process.  Figs. (4.20a, b, c and d) 

are the results of the line (B-B’) in Fig. (4.16).  The results without acceleration 

filter are not displayed for the same reason given with the aluminum example.  

These figures show that the energy filter and the bias compensation make the 

results accurate.  Note that the energy filter in this example is more important than 

in the aluminum example because the performance of the acceleration filter is 

lower than that in the aluminum example case.   
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Figure 4.16  The human skin tissue example 
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Figure 4.17  Measured displacement on the point (A)  

(the human skin tissue example) 
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Figure 4.19  Result of the human skin example 

(a) the hard inclusion case  (b) the soft inclusion case 
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Figure 4.20  Results of human skin example on the line (B-B’) 

(a) hard inclusion case: small scale   (b) hard inclusion case: large scale 
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(c) soft inclusion case: small scale   (d) soft inclusion case: large scale 
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5. Conclusion  

 

Solution stabilizers for the inverse analysis using EEE, the acceleration-energy 

filter and the bias compensation are introduced in this thesis.  EEE for the inverse 

analysis using measured displacement has two types of solution errors: ill-

posedness and bias.   

    Ill-posedness is a well-known problem of the inverse analysis, and the 

regularization schemes have been used to reduce the ill-posedness. The 

regularization schemes work well for cases involving soft inclusions.  However, 

efforts of the regularization schemes are not work properly in cases involving hard 

inclusions.  The acceleration-energy filter has been proposed as an alternative.  

The filter imposes physical conditions of the continuum to the measured 

displacement.  The physical conditions are the finiteness of the strain energy and 

acceleration.  If the measured displacement does not satisfy the physical laws, the 

solution of the inverse analysis cannot be trusted, as the noise which does not 

satisfy the physical laws is amplified by the displacement-acceleration relationship 

and the displacement-strain relationship.  The acceleration-energy filter ensures 

the physical laws of continuum and makes the inverse analysis trustable.  The 

acceleration-energy filter is a temporal-spatial filter with three spatial dimensions 

and one temporal dimension.  The temporal-spatial filter has complicated 

characteristics and requires much computational effort.  To solve this problem, the 
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acceleration-energy filter is separated into the acceleration filter and the energy 

filter. 

    The acceleration filter functions as a low-pass filter.  Low-pass filters are 

generally used to stabilize numerical differentiations.  However, acceleration filter 

has strong physical meaning which satisfies consistency between the acceleration 

filter and the energy filter.  The acceleration filter requires two initial values and 

two final values, which are difficult to determine.  The overwrapping time 

window technique is employed so that the boundary conditions can be ignored.  

The regularization factor is defined by the target frequency and the target accuracy.   

    The energy filter is a low-pass filter as well.  This is reasonable because the 

displacement-strain energy relationship amplifies high frequency noise, since the 

strain is the first derivative of the displacement.  The boundary condition is 

identical to that of the continuum and is always satisfied.  The regularization 

factor is defined by the target temporal frequency and the target accuracy, which 

define the regularization factor of the acceleration filter.  Consistency between the 

two filters is satisfied by the relationship between the regularization factors.  

    The bias compensation is served to remove the bias from the solutions.  The 

inverse analysis using EEE has been used with the adaptive filters and the flutter 

derivative extraction scheme.  The biases of the fields are ignorable and are easy 

to remove.  However, the bias of the inverse analysis using EEE for the continuum 

is not ignorable because the noise is amplified by the inverse analyzing process.  

The bias compensation is realized by reconstruction of the bias terms.  The 
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reconstructed bias terms are functions of the noise variances, the FEM model and 

the characteristics of the filters.  When the variances of the noise sources are 

precisely known, the bias of the solution is perfectly eliminated.  Even if the noise 

variance is unknown, the bias compensation can approximately reconstruct the bias 

terms. 

    The aluminum plate example demonstrates the acceleration-energy filter and 

the bias compensation.  This example shows that the two schemes improve the 

solution of the inverse analysis using EEE.  The window size, the measuring time, 

the damping of structures, the various noise levels, the target frequency and the 

noise of specific frequency are verified by the aluminum example.  

    The schemes are applied to a medical imaging application using ultrasonic 

equipment.  Ultrasonic elastography helps to find tumors and cancers.  The 

Helmholtz equation is used to analyze tissues of human bodies, which is the 

incompressible continuum.  The inverse analysis and the solution stabilizers for 

the Helmholtz equation are derived and are found to be nearly identical to these of 

the general continuum.  the acceleration-energy filter and the bias compensation 

were shown to work properly for the inverse analysis of the Helmholtz equation.   

 

  

 

 

 



 

 

114 

  



 

 

115 

Reference 
 
[Al-Alaoui 2007] 

Al-Alaoui M A, “Linear phase low-pass IIR digital differentiators”, Signal Processing, 
vol. 55, no. 2, 697-706, 2007 

 
[Banan 1995] 

Banan M R, Hjelmstad K D, “Time-domain parameter estimation algorithm for 
structures II: numerical simulation studies”, Journal of Engineering Mechanics, 121(3), 
pp. 435-447, 1995 

 
[Bercoff 2003] 

Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M, Gennison J L, 
Meunier M, “In vivo breast tumor detection using transient elastography”, Ultrasound 
in Med. & Biol., vol. 29, no. 10, pp. 1387-1396, 2003. 

 
[Bercoff 2004] 

Bercoff J, Tanter M, Fink M, “Supersonic shear imaging: a new technique for soft 
tissue elasticity mapping”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, 
pp. 396-409, 2004. 

 
[Bracewell 2000] 

Bracewell R N, “The Fourier transform and its application”, Third Edition, 
WBC/McGraw Hill, Boston, 2000 

 
[Bui 1994] 

Bui H D, “Inverse problems in the mechanics of materials: An introduction”, CRC 
Press: Boca Raton, 1994. 

 
[Choi 2013] 

Choi S W, Kim B R, Lee H M, Kim Y, Park H S, “A deformed shape monitoring 
model for building structures based on a 2D laser scanner”, Sensors, vol. 13, pp. 6746-
6758, 2013 

 
[Chopra 2007] 

Chopra A K, “Dynamics of Structures - Theory and Application to Earthquake 
Engineering”, Third Edition, Pearson Education Inc. Upper Saddle River, New Jersey, 
2007 

 
 



 

 

116 

[Ding 2011] 
Ding J, Ding F, “Bias compensation-based parameter estimation for output error 
moving average system”, International Journal of Adaptive Control and Signal 
Processing, vol. 25, pp. 1100-1111, 2011 

 
[Doebling 1996] 

Doebling S W, Farrar C R, “Damage identification and health monitoring of structural 
and mechanical systems from change in their vibration characteristics:  a literature 
review”, Los Alamos National Laboratory Report, LA-13070-MS, 1996 

 
[Doyley 2012] 

Doyley M M, “Model-based elastography: a survey of approaches to the inverse 
elasticity problem”, Physics in Medicine and Biology, vol. 57, R35, 2012. 

 
[Fung 1994] 

Fung Y C, “A First Course in Continuum Mechanics”, PRENTICE HALL, Englewood 
Cliffs, Yew Jersey, 1994 

 
[Ge 1998a] 

Ge L, Soong T T, “Damage identification through regularization method I: theory”, 
Journal of Engineering Mechanics, vol. 124, no. 1, pp. 103-108, 1998 

 
[Gear 2009] 

Gear J M, Goodno B J, “Mechanics of Materials”, Seventh Edition (SI Edition), 
Cengage Learning, Stanford, USA, 2009 

 
[Ge 1998b] 

Ge L, Soong T T, “Damage identification through regularization method II: 
applications”, Journal of Engineering Mechanics, vol. 124, no. 1, pp. 109-116, 1998 

 
[Goodwin 1984] 

Goodwin G C, Sin K S, “Adaptive filtering prediction and control”, Prentice Hall, Inc., 
NewSouth Wales, 1984 

 
[Graff 1991] 

Graff K F, “Wave Motion in Elastic Solids”, Dover Publications, 1991. 
 
[Groetsch 1984] 

Groetsch C W, “The theory of Tikhonov regularization for Fredholm equations of the 
first kind”, Pitman Advanced Publishing: Boston, 1984. 

 



 

 

117 

[Hamming 1989] 
Hamming R W, “Digital filters”, Third Edition, Prentice-Hall, Englewood Cliffs, NJ, 
1989 

 
[Hansen 1992a] 

Hansen P C, “Analysis of discrete ill-posed problems by means of the L-curve”, SIAM 
review, vol. 34, no. 4, pp. 561-580, 1992. 

 
[Hansen 1992b] 

Hansen P C, Sekii T, Shibahashi H, “The modified truncated SVD method for 
regularization in general form”, SIAM J. Sci. Stat. Comput., vol. 13, pp. 1142-1150, 
1992 

 
[Hansen 1997] 

Hjelmstad K D, Shin S, “Damage detection and assessment of structures from static 
response”, Journal of Engineering Mechanics, 123(6), pp. 568-576, 1997 

 
[Hansen 1998] 

Hansen P C, “Rank-deficient and discrete ill-posed problems: numerical aspects of 
linear inversion”, SIAM, Philadelphia, 1998 

 
[Haykin 2002] 

Haykin S, “Adaptive filter theory”, Forth Edition, Pearson Education, Inc., 2002 
 
[Hjelmstad 1995] 

Hjelmstad K D, Banan M R, and Banan M R, “Time-domain parameter estimation 
algorithm for structures. I: computational aspects“, Journal of Engineering Mechanics, 
vol. 121, no. 3, pp. 424-434, 1995. 

 
[Hjelmstad 1996] 

Hjelmstad K D, “On the uniqueness of modal parameter estimation”, Journal of Sound 
and Vibration, vol. 192, no 2, pp. 581-598, 1996. 

 
[Ho 1966] 

Ho B L, Kalman R E, “Effective construction of linear state-variable models from 
input/output functions”, Regelungstechnik, vol. 14, no. 12, pp. 545-548, 1966 

 
[Hong 2010] 

Hong Y H, Kim H K, Lee H S, "Reconstruction of dynamic displacement and velocity 
from measured accelerations using the variational statement of an inverse problem", 
Journal of Sound and Vibration, 329 (2010) pp. 4980-5003, 2010. 



 

 

118 

[Hong 2012] 
Hong Y H, “Reconstruction of Dynamic Displacement and Velocity based on the 
Variation Statement of an Inverse Problem from Measured Acceleration with Special 
Application to the Extraction of Flutter Derivatives”, Ph. D thesis, Seoul National 
University, Korea, 2012. 

 
[Hong 2013] 

Hong Y H, Lee S G, Lee H S, "Design of the FEM-FIR filter for displacement 
reconstruction using accelerations and displacements measured at different sampling 
rates", Mechanial Systems and Signal Processing, Vol. 38, No. 2, pp. 460-481, 2013.7. 

 
[Hughes 1987] 

Hughes T J R, “the finite element method: linear static and dynamic finite element 
analysis”, Prentice-Hall, Englewood Cliff, NJ, 1987 

 
[Ikenoue 2009] 

Ikenoue M, Kanae S, Yang Z J, Wada K, “Identification of errors-in-variables model 
via bias-compensated instrumental variables type method”, International Journal of 
Onnovative Computing, Information and Control, vol. 5, pp. 29-40, 2009 

 
[Johnson 1987]  

Johnson C, “Numerical solution of partial differential equations by the finite element 
methods”, Cambridge University Press: New York, 1987. 

 
[Kang 2005] 

Kang J S, Park S K, Shin S, Lee H S, “Structural System Identification in Time 
Domain using Measured Acceleration”, Journal of Sound and Vibration, vol. 288, pp. 
215-234, 2005.11. 

 
[Kim 2011] 

Kim J, “System identification of civil engineering structures though wireless 
structureal monitoring and subspace system identification methods”, Ph. D Thesis, 
University of Michigan, 2011 

 
[Kreyszig 2006] 

Kreyszig E, “Advanced Engineering Mathematics”, Ninth Edition, John Wiley & Sons, 
Inc., New Jersey, 2006 

 
 
 
 



 

 

119 

[Kumar 1996] 
Kumar B, Choudhury D R, Kumar A, “On the design of linear phase, FIR integrators 
for midband frequencoes”, IEEE, Transacation of signal processing, vol. 44(10), pp. 
2391-2395, 1996 

 
[Lawler 2006] 

Lawler G F, “Introduction to Stochastic Processes”, Second Edition, Chapman & 
Hall/CRC, New York, 2006 

 
[Lee 1999] 

Lee H S, Kim Y H, Park C J, Park H W, “A new spatial regularization scheme for the 
identification of geometric shapes of inclusions in finite bodies”, International Journal 
for Numerical Methods in Engineering, vol. 46, no. 7, pp. 973-992, 1999. 

 
[Lee 2000] 

Lee H S, Park C J, Park H W, “Identification of geometric shapes and material 
properties of inclusions in two-dimensional finite bodies by boundary 
parameterization”, Computer Methods in Applied Mechanics and Engineering, vol. 
181, no. 1-2, pp. 1-20, 2000.1. 

 
[Lee 2010] 

Lee H S, Hong Y H, Park H W, “Design of an FIR Filter for the Displacement 
Reconstruction Using Measured Acceleration in Low-frequency Dominant Structures”, 
International Journal for Numerical Methods in Engineering, vol. 82, pp. 403-434, 
2010. 

 
[Lubinski 1996] 

Lubinski M A, Emelianov S Y, Raghavan K R, Yagle A E, Skovoroda A R, 
O’Donnell M, “Lateral displacement estimation using tissue incompressibility”, IEEE 
Trans. Ultrason. Ferroelectr. Freq. Control, vol. 43, pp. 247-255, 1996. 

 
[Luengberger 1979] 

Luengberger D G, “Introduction to Dynamic Systems: Theory, Models & 
Applications”, John Wiley & Son, Inc., New York, 1979 

 
[Mashreghi 2014] 

Mashreghi A, Yazdi H S, “A recursive algorithm for optimizing differentiation”, 
Journal of Computational and Applied Mathematics, vol. 263, pp. 1-13, 2014 

 
 
 



 

 

120 

[McGuiare 2000] 
McGuire W, Gallagher R H, Ziemian R D, “Matrix Structural Analysis”, Second 
Edition, John Wiley & Sons, Inc., New York, 2000 

 
[Nguyen 1993] 

Nguyen H L, Sibille P, Garnier H, “A new bias compensating least-squares method for 
identification of stochastic linear system in presence of colored noise”, Proceedings of 
32nd conference of decision and control, San Antonio, Texas, 1993 

 
[Ophir 1991] 

Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X, “Elastography: a quantitative 
method for imaging the elasticity of biological tissues”, Ultrason. Imaging, vol. 13, pp. 
111-134, 1991. 

 
[Oppenheim 1999] 

Oppenheim A V, Schafer R W, Buck J R, “Discrete-time signal processing”, Second 
Edition, Prentice-Hall, upper Saddle River, NJ, 1999 

 
[Park 2001] 

Park H W, Shin S B, Lee H S, “Determination of an optimal regularization factor in 
system identification with Tikhonov function for linear elastic continua”, International 
Journal for Numerical Methods in Engineering, vol. 51, no. 10, pp. 1211-1230, 2001. 

 
[Park 2002] 

Park H W, “Regularization techniques in system identification for damage assessment 
of structures”, PhD Thesis, Seoul National University, Seoul Korea, 2002. 

 
[Park 2006a] 

Park Y C, “A stabilizaing sheme for the dynamic analysis of slack cables”, Master 
Thesis, Seoul National University, 2006 
 

[Park 2006b] 
Park E Y, Maniatty A M, “Shear modulus reconstruction in dynamic elastography: 
time harmonic case”, Phys. Med. Biol., vol. 51, pp. 3697-3721, 2006. 

 
[Park 2007] 

Park H W, Park M W, Ahn B K, Lee H S, “1-norm based regularization scheme for 
system identification of structures with discontinuous system parameters”, 
International Journal for Numerical Methods in Engineering, vol. 69, no. 3, pp. 504-
523, 2007. 

 



 

 

121 

[Park 2008] 
Park S K, Park H W, Shin S, Lee H S, “Detection of Abrupt Structural Damage 
Induced by an Earthquake Using a Moving Time-Window Technique”, Computers 
and Structures, vol. 86, no. 11-12, pp. 1253-1265, 2008. 

 
[Park 2009] 

Park E Y, Maniatty A M, “Finite element formulation for shear modulus 
reconstruction in transient elastography”, Inverse Problems in Science and 
Engineering, vol. 17, pp. 605-626, 2009. 

 
[Park 2012] 

Park S K, “Time domain SI scheme for time-invariant and time-variant structural 
system”, Ph. D thesis, Seoul National University, Korea, 2012. 

 
[Park 2013] 

Park H S, Kim J M, Choi S W, Kim Y, “A wireless laser displacement sensor node for 
structural health monitoring”, Sensores, vol. 13, pp. 13204-13216, 2013 

 
[Parker 1990] 

Parker K J, Huang S R, Musulin R A, Lerner R M, “Tissue-response tomechanical 
vibrations for sonoelasticity imaging”, Ultrasound Med. Biol., vol. 16, pp. 241-246, 
1990. 

 
[Ponnekanti 1994] 

Ponnekanti H, Ophir J, Cespedes I, “Ultrasonic-imaging of the stress-distribution in 
elastic media due to an external compressor”, Ultrasound Med. Biol., vol. 20, pp. 27-
33, 1994. 

 
[Qi 2014] 

Qi X, Lichti D, El-Badry M, Chow J, Ang K, “Vertical dynamic deflection 
measurement in concrete beams with Microsoft Kinect”, Sensors, vol. 14, pp. 3293-
3307, 2014 

 
[Rabiner 1975] 

Rabiner L R, Gold B, “Theory and application of digital signal processing”, Prentice-
Hall, Englewood Cliffs, NJ, 1975 

 
[Raghavan 1994] 

Raghavan K R, Yagle A E, “Forward and inverse problems in elasticity imaging of 
soft-tissues”, IEEE Trans. Nucl. Sci., vol. 41, pp. 1639-1648, 1994. 

 



 

 

122 

[Rao 1996] 
Rao S S, “Engineering Optimization: Theory and Practice”, Third Edition, John Wiley 
& Son, Inc., New York, 1996 

 
[Reddy 1990] 

Reddy M R R, Kumar B, Dutta Roy S C, “Design of efficient second and higher order 
FIR digital differentiators for low frequencies”, Signal Processing, vol. 20, pp. 219-
225, 1990 

 
[Richards 2009] 

Richards M S, Barbone P E, Oberai A A, “Quantitative three-dimensional elasticity 
imaging from quasi-static deformation: a phantom study”, Phys. Med. Biol., vol. 54, 
pp. 757-779, 2009. 

 
[Sarvazyan 1998] 

Sarvazyan A, Rudenko O, Swanson S, “Shear wave elasticity imaging: a new 
ultrasonic technology of medical diagnostics”, Ultrasound Med. Biol., vol. 24, pp. 
1419-1435, 1998. 

 
[Skovoroda 1995] 

Skovoroda A R,Aglyamov S R, “Reconstruction of elastic properties of soft biological 
tissues exposed to low-frequencies disruption”, Biofizika, vol. 40, pp. 1329-1334, 1995. 

 
[Sohn 2004] 

Sohn H, Farrar C R, Hemez F M, Shunk D D, Stinemates S W, Nadler B R, Czarnecki 
J J, “A review of structural health monitoring literature: 1996-2001”, Los Alamos 
National Laboratory report, LA-13976-MS, 2004Vertroni F, Capecchi D, “Damage 
detection in beam structures based on frequency measurements”, Journal of 
Engineering Mechanics, 126(7), pp. 761-768, 2000 

 
[Timoshenco 1959] 

Timoshenco S P, Woinowsky-Krieger S, “Theory of Plates and Shell”, Second Edition, 
McGraw-Hill, New York, 1959 

 
[Timoshenco 1970] 

Timoshenco S P, Goodier J N, “Theory of Elasticity”, Third Edition, McGraw-Hill, 
New York, 1970 

 
[Vertroni 2000] 

Vertroni F, Capecchi D, “Damage detection in beam structures based on frequency 
measurements”, Journal of Engineering Mechanics, 126(7), pp. 761-768, 2000 



 

 

123 

[Wahbeh 2003] 
Wahbeh A M, Carffrey J P Masri S F, “A vision-based approach for the direct 
measurement of displacements in vibrating system”, Smart Materials and Structures, 
vol. 12, pp. 758-794, 2003 

 
[Yeo 2000] 

Yeo I H, Shin S, Lee H S, Chang S P, “Statistical damage assessment of framed 
structures from static responses”, Journal of Engineering Mechanics, ASCE, vol. 126, 
no. 4, pp. 414-421, 2000. 

 
[Yoshitomi 2009] 

Yoshitomi S, Takewaki I, “Noise-bias compensation in physical-parameter system 
identification under microtremor input”, Engineering Structures, vol. 31, pp. 580-590, 
2009 

 
[Zhang 2011] 

Zhang Y, Cui G, “Bias compensation methods for stochastic system with colored 
noise”, Applied Mathematical Modeling, vol. 35, pp. 1709-1716, 2011 

 
 
 

 

  



 

 

124 

 

 

  



 

 

125 

초록 

 

동적 변위를 사용하는 역해석 문제에서  

Equation Error Estimator 안정화를 위한 

가속도-에너지 필터 및 편향성 보정 기법 

 
 

서울대학교 대학원 

건설환경공학부 

박  광  연 

 

본 학위 논문은 동적 변위를 이용해 선형탄성 연속체를 역해석하는 방법 

중 Equation Error Estimator (EEE)를 이용한 기법을 안정화 시키기 위한 이

론을 제시한다.  여기서 역해석은 미지의 강성을 추정하는 기법을 말한

다.  안정화 기법은 가속도-에너지 필터와 편향성보정으로 이루어져 있다.  

    가속도-에너지 필터는 측정 변위가 가져야 할 물리적 조건을 이용해 

역해석에서 발생하는 해의 부적합성(Ill-posedness)을 안정화 한다.  여기

서 사용한 물리적 조건은 가속도 유한 조건과 변형 에너지 유한 조건이

다.  이 기법들은 해의 부적합성을 안정화 시키기 위해 기존에 널리 쓰

이고 있는 특이치분해 절단법 (truncated singular value decomposition; TSVD), 



 

 

126 

L1-norm 정규화, L2-norm 정규화 (Tilhonov 정규화) 등의 단점을 보완하기 

위해 개발 되었다.  정규화 기법들은 연속체 내부에 강성이 작은 부분이 

포함 된 경우 이를 효과적으로 탐지할 수 있다.  하지만 연속체 내부에 

강성이 큰 부분이 포함 된 경우 정상적으로 작동하지 않는 것을 확인 하

였다.  인체 조직의 암이나 차량 서스펜션의 경화현상, 콘크리트 내부에 

이물일지 포함 된 경우 등과 같은 것들이 이에 해당한다.  이에 반해 가

속도-에너지 필터는 연속체 내부의 강성 분포에 상관없이 언제나 정상적

으로 작동한다.  가속도-에너지 필터는 가속도 필터와 에너지 필터로 분

리할 수 있다. 

    가속도 필터는 측정 변위의 2계 미분이 부분연속 함수공간 안에 있

다는 정보를 정규조건으로 만들어진 필터다.  2계 미분한 변위, 즉 가속

도는 실제로 부분연속 함수가 아니지만 충격하중이 없다고 가정하면 부

분연속 함수로 볼 수 있다.  FDM-FIR (Finite impulse response using finite 

difference method) 을 이용해 이산화된 가속도 필터는 가속도의 초기값과 

최종값을 알아야 풀 수 있는 문제이다.  하지만 대부분의 경우 가속도의 

초기값과 최종값은 알기 어려우며 이를 해결하기 위해 이동 시간창 기법

을 도입해 경계조건이 필요 없는 문제로 바꾼다.  FDM-FIR로 이산화된 

가속도 필터는 고주파 잡음을 걸러내는 일반적인 잡음제거 필터의 형태

를 갖는다.  하지만 가속도 필터는 에너지 필터와 일관성(consistency)을 
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유지할 수 있도록 하는 물리적 의미를 가지고 있다.  이는 다른 디지털 

필터가 갖지 못한 장점이다. 

    에너지 필터는 연속체의 내부변형 에너지가 유한해야 한다는 조건을 

정규조건으로 만들어진 필터다.  FEM을 이용해 이산화 된 에너지 필터

는 영상처리분야에서 많이 사용하는 공간 디지털 필터와 흡사한 형태를 

갖지만 몇 가지 차별성이 있다.  첫째는 필터의 경계조건이 연속체 방정

식의 경계조건과 같다는 점이다.  이로 인해 에너지 필터의 경계조건은 

연속체가 가질 수 있는 모든 종류의 경계조건에 대해 유효하다.  둘째는 

FEM 요소의 형태적 측면이 있다.  공간 디지털 필터는 측정점이 사각형 

형태로 분포하지 않으면 사용하기 어렵다.  하지만 에너지 필터는 FEM

모형이 가지고 있는 절점 연결 정보를 함께 포함하기 때문에 복잡한 측

정점 분포에도 적용 가능하다.  셋째는 에너지 필터가 가진 물리적 의미

를 통해 가속도 정규화와의 일관성을 유지할 수 있는 점이다. 

    가속도 필터와 에너지 필터는 연속체의 시-공간 주파수의 관계에 의

한 일관성을 유지하도록 설계 되어야 한다.  시-공간 주파수의 관계를 무

시하고 만들어진 필터는 역해석의 정확도를 감소 시킨다.  가속도 필터

와 에너지 필터가 가지고 있는 물리적 의미는 일관성을 유지 할 수 있는 

매개체 역할을 하며 이는 다른 잡음제거 필터가 갖지 못한 장점이다. 

    EEE를 이용한 역해석 기법은 해의 불안정성과 동시에 해의 편향성 
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(bias of solution) 문제를 가지고 있다.  기존 연구들은 대부분 편향성을 무

시하였는데 이는 무시할 수 있을 만큼 작은 경우가 많기 때문이다.  하

지만 선형 탄성 연속체의 역해석을 위한 EEE에 발생하는 해의 편향성은 

무시할 수 없을 정도로 크다.  편향성 보정 기법은 이러한 해의 편향성

을 제거 하는 기법으로 측정잡음의 분산을 알면 편향성을 완벽하게 제거 

할 수 있다.  잡음의 분산을 모르는 경우에는 잡음 분산을 추정하여 편

향성을 제거 할 수도 있다.  

    기법의 효과를 확인하기 위해 알루미늄 판 예제와 초음파 영상의학 

예제를 도입한다.  이 예제를 통해 가속도-에너지 필터와 편향성 보정 기

법을 실제 적용하는 방법을 제시하고 그 유효성을 증명한다. 

 

주요어:  Equation Error Estimation (EEE),  시스템 확인 기법,  역해석,   

물성치 추정,  가속도-에너지 필터,  시공간 필터,  편향성보정기법,   

선형탄성 연속체,  영상의학 
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