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ABSTRACT

This study presents a new excitation technique for the identification of flutter
derivatives. When motion of a bridge perturbs the flow field, perturbed flow field
induces a dynamic forces on a bridge. And the dynamic forces changes the motion of
a bridge which perturbs the flow field again. This recursive nonlinear-interaction be-
tween movement of the section model and the flow field can be fully considered when
prescribed excitation force is applied to the bridge section model without restraining
the motion. Force controlled forced vibration test is conducted to check the effect of
nonlinear interaction by comparing its flutter derivatives to those of displacement con-
trolled forced vibration test. Sinusoidal force is enforced with four fan-shaped mass
rotating on each corner of the model which is freely suspended on elastic springs.

An Equation Error Estimation method (EEE) is employed to evaluate flutter de-
rivatives, which is the minimization problem of the equation error of the equation of
motion. However, when L,-Norm EEE is adopted, squared error lasts through mini-
mization and leads to biased result. To examine the adequacy of L,-Norm EEE to this
problem, L;-Norm EEE is composed utilizing a simplex algorithm. Since the amount
of bias is not noticeable, L,-Norm EEE is used throughout this paper for its fast com-
puting speed.

The validity of the force controlled forced vibration test is demonstrated for two



examples, one is B/D=>5 rectangular section and the other is Jido bridge section model.
It can be said that the effect of nonlinear interaction can be ignored for bridge section
for its small amount of influence on the flutter derivatives and time-domain aeroelastic

analysis result.
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1. Introduction

Long span bridge has been increased considerably in recent decades for its pragmatic
and artistic feature. But as its span length expanded, several collapses were witnessed
and importance of wind-resistant engineering has arisen. Low damping ratio and high
flexibility make long span bridge sensitive to wind load and thus examinations, such
as flutter analysis and buffeting analysis have been necessarily performed. It is highly
challenging to develop analytic model for implementing CFD (Computational Fluid
Dynamics), since bridge section model is bluff body and thus the interaction between
bridge motion and wind load is extremely complex. Therefore experimental method
is yet the most reliable tool.

Aerodynamic force induced by wind acts on the bridge and the motion of a bridge
changes. The motion of a bridge perturbs the flow field and changed flow field recur-
sively affect on the motion of a bridge as the form of aerodynamic force. This load
effect related to the displacement and the velocity of a bridge is called aerodynamic
stiffness and aerodynamic damping respectively. The interaction is intricate and
proper experiment need to be carried out to consider its nonlinear effect. Generally,
the assumption that the aerodynamic force to be linear combination of displacement
and velocity of the bridge section made by Scanlan and Tomko (1971) is used. 2-DOF
model with vertical and torsional movement is widely adopted and coefficients which

act as aerodynamic damping and stiffness for displacement and velocity are called the



flutter derivatives.

The flutter derivatives can be evaluated through various experimental method
which includes free vibration test and forced vibration test. Scanlan and Tomko (1971)
proposed the flutter derivatives to model self-excited force with two basic assump-
tions that the motion of a section model is sinusoidal with small amplitude and in
steady-state motion. Various experimental techniques were developed to evaluate flut-
ter derivatives. Free vibration test which is simple and easy to execute, is widely
adopted technique. With section model supported by springs without constraining its
movement, the interaction can be fully considered and natural frequency and ampli-
tude of motion can be controlled by moving springs and changing its stiffness. Initial
condition is given for each DOF and motion history with decaying amplitude is ob-
served to extract flutter derivatives. However, despite its simplicity of execution, ex-
tracting procedure is relatively hard. Since the flutter derivatives indicates system
property such as damping and stiffness, it becomes an inverse analysis problem. For
past years, different evaluation methods were made for free vibration test [Bartoli
2009, Chen 2004, Chowdhury 2003, Gu 2000, Iwamoto 1995, Li 2003, Matsumoto
1993, Sarkar 1992 and Sarkar 1994]. But free vibration test cannot maintain steady-
state motion at high wind speed due to strong system damping.

The forced vibration test [Diana 2004, Falco 1992, Kim 2007 and Matsumoto
1993] is reliable method and in general use. The section model is rigidly connected to
the driving equipment and prescribed displacement is imposed. Since it demands com-

plex instruments, small number of laboratories are capable of this method. Enforced



movement keeps the section model in steady-state motion which satisfies the assump-
tion and single frequency motion can be achieved at high wind speed, which was un-
able to attain through free vibration test. However, because it restraint the motion of
section model, the interaction cannot be considered.

A new technique to extract flutter derivatives can obtain steady-state motion
while the interaction is fully considered and requires relatively simple and movable
driving equipment. Suspending a section model on elastic springs, rotating pendulums
create heaving and pitching moment. Different from the displacement controlled
forced vibration test, information of velocity and acceleration is needed as well. The
FDM-FIR filter is thus utilized to generate such information from measured displace-
ment. An equation error estimation (EEE) method which is proposed by Hong (2012)
is employed for identification algorithm. Minimization of EEE can be done using dif-
ferent norms, however, measured error might remain as a form of bias when L,-Norm
is used. Using mechanical properties of a rectangular section on research of Park et al.
(2014), time history data is constructed to verify norms for EEE.

The effect of nonlinear interaction is identified through two examples: a rectan-
gular section with a width to depth (B/D) ratio of 5, Jido bridge section model. A new
extraction technique yields similar flutter derivatives compared to that of the displace-
ment controlled forced vibration method. And time-domain aeroelastic analysis and
frequency-domain aeroelastic analysis also yields very similar result. The nonlinear

effect of interaction can be neglected for general bridge section.



2. New Identification Method for Flutter Derivatives

2.1. Brief Overview for Existing Method

Among conventional methods, the displacement controlled forced vibration
method is general method for extraction of flutter derivatives owing to its steady-state
motion which complies with the assumption well. However its lack of interaction be-
tween the motion of a bridge and aerodynamic force might reduce the accuracy of

flutter derivatives.

Flow field
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 —
Motion of Aeroelastic

a bridge V forces

Fig. 2.1. Aeroelastic problem

Fig. 2.1. shows the interaction of aeroelastic problem of the bridge deck with the



wind flow. Restraining the motion of a bridge limits lower arrow, which stands for the
effect of aerolastic forces on the motion of a bridge.

The equation of motion for forced vibration test includes external forcing term.

Mii(t) + Cu(t) + Kut) =F__ (t) + F,,(t) 2.1)

where M, C, K, F4e and Fexrepresent the mass, damping, stiffness matrix of a structure
and an aeroelastic force and an external force, respectively, while u=(h a)T denote

the displacement of the structure.
The aeroelastic force induced by the motion of a bridge is assumed as a linear
function to the displacement and velocity of the bridge section [Iwamoto 1995 and

Scanlan 1971]

M., (1)
:{Hl(m) Hz(m)}£h<t>J+{H4<m) Ha(m)}(h(t)j
A AW©Ja®) [Aw@) Al [

where Lae and Mg are the aeroelastic lift force and momet, respectively, while ® is

( Lee (t)] .
F,(t)= ~ C,e(@)i(t) + K, (0)u(t)
(2.2)

the circular frequency of the oscillation, and Hj and A;i (i = 1, 2, 3, 4) are the flutter
derivatives of oscillating section. Since the steady-state response of section model is

in single frequency, the flutter derivatives are defined in certain frequency.



Substitution of Eq. (2.2) to Eq. (2.1) yields following equation.

Mll(t) + Cef‘f ll(t) + Kef‘fu(t) = Fex (t) (23)

where Cerr and Kesr are effective damping and stiffness matrices of system as:

Ceff =C-C Keff =K—Kae (2-4)

ae

The prescribed sinusoidal displacement is imposed on the section model. One
electrical motor rotates and rigid arm conveys its movement to the model into vertical

and torsional motion. Imposing displacement is as follows

u(t) = (20 Jsin(mext) (2.5)

where ,, is the exciting frequency of the prescribed displacement.

The reaction force in Eq. (2.3) is measured, and the steady-state response after

the transient part damped out is:

<| .

s jsin(coext) +(E jcos((oext) (2.6)

F, (1) :( N

where ES, EC, I\WS and I\WC are the measured amplitudes of sinusoidal re-

sponse, the reaction force of Eq. (2.3)



Substitution of Eq. (2.6) and Eq. (2.5) into Eq. (2.3) yields following equations

ES —[—m2M+K , EC =w,C , 2.7
I\Ws_ ex eff ao’mc_exeffao ()

Above equations are linear to unknown variables, Ceif and Kef . Two different
displacement controlled test ought to be carried out since one test yields 4 equations
and unknown variables are 8 total. Once amplitudes for the reaction force and dis-

placement, the flutter derivatives are easily derived through analytic process.



2.2 Force Controlled Forced Vibration Test

The force controlled forced vibration test is similar to the displacement con-
trolled forced vibration test. In analytic aspect, the input and output is switched as
the force is imposed and the displacement is measured. This might leads to the simi-
lar result but the biggest difference between two test methods is the consideration of
interaction. In the force controlled test, the motion of a section model is not con-
strained and suspended by elastic springs the same as in the free vibration test, with-
out restriction. As Fig. 2.1. describes, when the motion of a section model perturbs
the flow field and the aerodynamic forces change, the motion of a section model
should be changed due to the change in the aerodynamic forces. This nonlinearity
can be fully considered in the force controlled test yet how critical this effect be is
not known. The nonlinear effect of interaction is need to be checked as the displace-
ment controlled test has its limit that testing process is linearly constrained and aero-
dynamic force also is also assumed to be linear. Thus testing mechanism should re-

flect real bridge motion which is nonlinear.

Fig. 2.2. Exciting mechanism of the force controlled forced vibration test



Shown in Fig. 2.2. above, total 4 motors attached to the metal guide rotates pen-
dulum to generate centrifugal force. Each coupled forces combined and remaining
force is applied to shake the section model in 2-DOF motion. In this way, two assump-
tions made by Scanlan (1971) are both satisfied: sinusoidal and steady-state motion.

The displacement of the section model is steady-state response of Eq. (2.3) in-

duced by exciting force as follows

F, (1) = ( (D j = ( S jsin(mext) (2.8)
M., (1) M,

After the transient response damped out, the displacement is:

u(t) = {(:S jsin( o, t)+ (20 jcos( ®,t) (2.9)

S c

Substitution of Eq. (2.8) and Eq. (2.9) to Eq. (2. 3) yields following equations

(hc ] = _[(_ (DgxM + Keff X(D;C;flf X_ (DgxM + Keff )+ ((Dexceff )]4( LO J

o, M,

h 1 (2.10)
( ) J = [(_ (DZXM + Keff )+ (Dexceff (_ (DgxM + Keff )71 (DexCeff } ( LO j

o M,

The same as the displacement controlled test, two separated tests must be con-



ducted due to the lack of information. However, even sufficient information is gath-
ered, above equation is nonlinear to the unknown parameters, Cetr and Kerr . Output
error estimator (OEE) is difficult to be implemented since the sensitivity analysis for
the equation is severely complex, thus analytic solution is hard to be derived, either.
Equation error estimator (EEE) proposed by Hong (2012) offers efficient way to

evaluate the flutter derivatives from the force controlled test.

10



3. Filter and System Identification Method

3.1. FDM-FIR filter

As displacement is measured discretely by a time interval of At, generating ac-
celeration should be employed in discretized fashion. The finite impulse response
(FIR) filter is a digital filter that defines the relationship between the input values and
the output values. In this section, a new approach to generate acceleration and velocity
is presented as a boundary value problem. For given time interval, displacement at a
fixed material point is fully measured by displacement meter. By definition, the min-

imization problem for generating acceleration is:
Minr = L [ [ - [{ [aydt+v0) Jt+ a0y | o 31
w1 =2 | o0~ [{ Jadt+90) et 6

where U(t), a(t) and V(0) are measured displacement, acceleration and

measured initial velocity, respectively. This minimization problem is ill-posed and
impossible to yield a unique acceleration as proper boundary condition is not known.
The regularization technique that applies additional information, a priori, can estimate
solution. The generated acceleration should stay around 0, the static value. Applying

this regularization, Eq. (3.11) becomes:

11



MinlT = % [ [U(t) -[ ( L‘a(t)dt + V(O)jdt + LT(O)T dt +% [amdt (2

where A is a regularization factor. By definition that acceleration is a second

derivative of displacement about time, this equation becomes:

I P s A (du®Y
MmH:EL(u(t)—u(t)) dt+EL( 0 J dt (3.3)

In variational statement, above equation yields following governing equations.

0. YO _ o (3.4)

d*u(t) _ _
at?

u®)—o)+a pre

The transfer function of the governing equation Eq. (3.14) is derived by employ-

ing the Fourier transform.

2
()

F(u)= 7 F@U), F(a) :—cozF(u) — F(a)=- 7 F@@) (3.5)
1+ Aw 1+ Am
_ ®* _ (2ch)2
e () = e~ T3 anf) 3.6
He(w) = -0 =-2nxf)’ (3.7)

where Hrr , He and f denotes the transfer function , the exact transfer function and the

frequency, respectively.

12



The accuracy of the generated acceleration is specified with the accuracy function,
which is the ratio of the transfer function Hre to the exact transfer function He. The

accuracy function of the transfer function used in the acceleration generation,
H{" () is defined as follows.

1 1

Hacc ®) = —
e (©) 1+r0*  1+AQ2nf)*

(3.8)

It is convenient to normalize the transfer function and the accuracy function by
the target frequency to make the frequency dimensionless. Normalized transfer func-

tion and accuracy functions are as follows

3 (7 __HTF(OJ): sz

Hie (1) = 2nf)?  1+AaQ2nf)? (39

Y7 He(w) _ —(Qnrf)* =

H (f)y=——8" = = f

() Qnt.y  —(ant ) (3.10)
acc / F\ _ HNTF(?)_ 1

Hre (1) = H.(f) 1+r@2nf)? (1)

where Hip, |-~|E , I—T;”‘,S“, f; and f=f/ f. are the normalized transfer func-

tion, the normalized exact transfer function, the normalized accuracy function, the
target frequency and the dimensionless frequency normalized to the target frequency,

respectively.

The accuracy at the target frequency is attained by setting f=1in Eq. (3.11).

13



1

e, ) (3.12)

where ol; is the target accuracy. The target accuracy may be chosen arbitrarily,

ininterval of 0 <o; <1 according to an engineering sense. The components related
to the target frequency will be generated about the target accuracy, thus it means the
desired accuracy. Once the target accuracy is selected, the regularization factor is de-

termined as following.

1 1
=—— | — 1| for 0< <1 3.13
(2nf;)’ (aT ] o o

Substitution of Eq. (3.13) into Eq. (3.9) and Eq. (3.11) leads to the following
expressions, respectively.
o =

Hoe (F) = - .
() 1+(1/ 0, —1)F* G419

1

A () = _
i (D) 1+1/oa; —1)*

(3.15)

The transfer functions and the accuracy functions for different target accuracy are
drawn in Fig. 3.1. and Fig 3.2., respectively. Compared with the exact function, the

transfer function decreases fast as the exact function increases rapidly. For frequency

14
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Fig. 3.1. Transfer functions for different target accuracy:

(a) Log-log scale. (b) Detail in a linear scale
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Fig. 3.2. Accuracy functions for different target accuracy

domain below the target frequency, both functions are almost identical. It shows this
filter suppresses any noise which is in higher frequency range than the target frequency.
Lower target accuracy yields stronger noise-suppression of the transfer function. In
case high level noise is expected in measured displacement, lower target accuracy will
be desirable for generating acceleration to apply strong noise suppression. The target
accuracy of 0.97 is selected for filters in this paper.

The FDM-FIR filter uses finite difference method to generate acceleration from
the measured displacement and is formulated only in the time domain. Fig 3.3. demon-
strates the arrangement for the FDM-FIR filter. A moving time window which con-

tains 2k+1 points of displacements in it, expresses the acceleration at the center of the

16
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Fig. 3.3. A time window and measured displacements for FDM-FIR filter

time window, a,,,, as a linear combination of measured displacements in a time win-

dow. Once the time window size, which is referred to as the filter size, is determined
it moves toward by At and generate the acceleration at time t+ At.

Eq. (3.4) and the velocity are expressed in discretized form as follows

u=u+AiL,u, a=L,u, v=Lu (3.16)

where L;, u, u, v, a are the linear algebraic i difference operator matrix, the

measured displacement, generated displacement, velocity, acceleration, respectively.
L,is order of (2k+1)x(2k+5), L, and L, are order of (2k +1)x(2k +3).

Each operator matrix is expressed as Eq. (3.17-19). As finite differential operator is

17



used, one or two fictitious nodes are needed. The value of fictitious nodes is deter-

mined by engineering sense, but barely affects the result.

L,= a0 (3.17)

1 -2 1 ]
1 -2 1 0
L,= (A1t)2 (3.18)
0 1 -2 1
i 1 -2 1]
o _
1 0 1 0
1:(2%)2 (3.19)
0 1 0 1
L 0 1_

Eq. (3.16) can be expressed as follows, including fictitious nodes.
u
a=u+AL,| u | and L4=[L‘4 L’ LL] (3.20)

f
u

f

where u', u', L,, L, and L! are initial fictitious node, end fictitious

node, operator matrix for each nodes, respectively. Since the fictitious nodes can have

18



zero values, Eq. (3.20) converts into:

u=I+AL)u+ALu +ALu" - a=L,I+AL)'a=C u (3.21)

where CP is the coefficient matrix for the acceleration generation of order

(2k +1)x (2k + 3) . Superscript ‘D’ denotes the FDM method.
The acceleration at the center of a time window is the (k+2)-th component of a

vector, @,.,.Itis considered as the generated acceleration at time t.

1 1 2k +1
at)=a_,=cPu——=——->C°. T
( ) k+1 (At)Z (At)2 ; k+L,p™'p
3.20
1 (3.20)
(At) Cp+k+1u (t + pAt)
p=—k

where ¢® denotes the center row of the C° matrix. The Fourier transform of Eq.

(3.20) yields the transfer function of the FDM-FIR filter, H(f).

k

w chr?+k+1 R S 1(9)
&

1 o
HD(f) (At)z Zcp+k+1 2t

Fa) =
(3.21)

where i is the imaginary unit. The transfer function of FDM-FIR filter approximates

the original transfer function in discretized form given in Eq. (3.6)

19



1 < i2m
Hee ()= 5o D o€ ™ (3:22)
p=—k

Eq. (3.22) illustrates the truncated Fourier series of the transfer function and the

coefficients of the FDM-FIR filter are determined by following process.

p+k+1

1 ¢t .

. =(At) - jw H,. (f)e 2 df
s 3.23

_ (At)J.fS/zH (f )efiZTEprtd.I: ( )

- o TF

where f, =1/At stands for the sampling frequency of measurement. The transfer

function H,-(f) is an even function. Thus the imaginary part of integrand dimin-

ishes by Euler’s fornula.

CD :(At)J.fZS//;HTF(f)ei2ﬂprtdf

p+k+1
2o f? :
- At 3 2 2 f —i2nfpAt
(A" (2m)" | P12t ) (3.24)
3 ¥ 2
=-2(2n)° (&1) J-l/(ZH f ~, cos(2npf, f)df
foo o 1+1/a, -Df

where fNT = f; / f, denotes the target frequency to the sampling frequency (TSF)

ratio. As the transfer function decreases very quickly for higher f , the integral in Eq.

20
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(a) Small scale. (b) Detail in a large scale.

21

1.3




(3.26) is almost independent of small TSF ratio and thus becomes a function of

~
~

p = pf; as shown in Fig 3.4(a). To avoid the rippling amplitude, the filter size

should be chosen carefully. The zero-crossing points of the coefficients, as shown in

Fig 3.4(b), must be selected to be the last term. The time window, i.e. in one filter size
interval, has 2k+1 measuring points inside which means it has 2, / fNT +1 points.

The normalized transfer function and accuracy function of the FDM-FIR filter

are derived as following equations.

~ o~ 1 k ~
()= e (Cou +2D_Couen cos(2mpf; ) (3.25)
T p=l
Jacc F 1 : T
()= A (Coy +2D €0y cos2mpf; £)) (3.26)
T p=l1

where H, and HJ* are the normalized transfer function and accuracy function

of the FDM-FIR filter, respectively. The FDM-FIR filter is capable of generating the

velocity as well. Only the linear operator matrix is changed in this process. The nor-

malized functions H,, and HJ7 for the velocity generation:

3 I H V( f ) 1 K c . =~
Hee (F) = Tti;)T = o ZkaH sin(2mpf; ) (3.25)
T p=l
acc |:| v(:F) | K c . ~ ~
Hi (F)= HTF’ ) "2 T e sinnpf; f) (3.26)
Ev T! pal
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The coefficients, accuracy functions and transfer functions of the FDM-FIR filter
for TSF ratio of 1/500 are presented in Fig. 3.5. through Fig. 3.7.. Regardless of the
filter size, transfer functions approximates the analytic transfer function very well ex-
cept for very low frequency section.

As shown in Fig. 3.6(a), long filter size guarantees accurate approximation of the
transfer function. There is a trade-off that long filter size causes loss of information
and increase of calculation time. Since the given problem does not need real-time
generation of acceleration and velocity, measuring time can extended as needed and
calculation time is not major problem. Once the information is generated and the flut-

ter derivatives are evaluated, no further analysis on generating information is not

needed. Thus long filter size of P, =1.26 is used for the analysis in this paper.
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3.2. Equation Error Estimator (EEE)

Once the full history of displacement is acquired, velocity and acceleration can
be calculated by FDM-FIR filter, which will be dealt with in the next section. With
full information the unknown system parameters can be extracted by EEE through the
minimization process. The EEE gives convenient tool to the force controlled test
which is hard to process with sensitivity analysis or eigenvalue analysis.

The EEE method minimizes the equation error of the dynamic system involving
the unknown system parameters, which is the flutter derivatives for this research. To
make this process clear, separate the known portion and the unknown portion of Eq.

(2.13).

F,,(t)=F,(t) - Miit,) (3.27)

F, (X,t)=Cu(t) + K u(t)=s(t)X (3.28)

where subscripts ‘kn’ and ‘un’ indicates known and unknown portion, s is a sensitivity
matrix consists of displacement and velocity for each time step ti and X is the matrix

which is composed of unknown parameters. s and X are defined as follows:

() ) ht) o) 0 0 0 0 |
0 0 0 0 h(t) &) ht) )
h(t) &) ht) ot 0 0 0 0

0 0 0 0 h(t) &) ht) o]

s(t,) = (3.29)
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T
X:(Cll ClZ k11 k12 C21 C22 k21 k22) (3.30)

where subscript 1 and 2 denotes each test and components of X represents elements
of effective damping and stiffness matrices.

Minimizing the equation errors for entire time history using L,-norm makes given
problem quadratic since the equation is linear with respect to the unknown system

parameter.

) 1 nt
MinTI(X) =3 JJF0 (X, 1) = Fo 6 (3:31)
i=l

Substitution of Eq. (3.28) into Eq. (3.31) results in following equation.

MInTICX) = 3 (i (X.8) = Fu6) - (F, (X) = Fi (6)

nt
= %XTSX—XTG +%ZF|(TH (t)F,, (t)

i=1

(3.32)

where S and G are global sensitivity matrix and gradient vector and represented

as follows

S=3 s SL). G= Y8 MR, () (3:33)
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The solution of Eq. (3.32) can be simply attained by solving linear algebraic equa-

tion owing to its linearity about the unknown parameters.

I1(X)

=SX-G=0->X=8"G (3.34)
oX

A unique solution is always determined without iterations or complex analysis.
The solution converges as long as the information measured in sufficient length of
time is provided. Also EEE does not affected by initial conditions which usually bring

errors to OEE.
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3.3 Bias Check of L>-Norm EEE

Measuring the motion of the section model inevitably involves noise. Elimination
of noise is impossible, only suppression is probable method. Since the EEE used in
extraction of flutter derivatives in formed with L,-norm, equation must be squared for
making quadratic problem. Usually, as observation time increases the noise included
in measured information. Noises which has mean value of zero diminishes as long
length data is summed. However, in this problem, measured displacement is squared
in the process of EEE and the included error is squared as well. Squared error has
positive value and long range of time only cumulates error only to be bias. Eq. (3.31)

is in extended form as follows

2
) (3.35)

. 1 .t ..t t t t
Minl 1= Ezu(uexact + uerror)m + (Sexact + serror))( - FeX
t

t ..t t

t
exact > uerror’ sexact and S

orror are the mass vector, exact acceleration,

where m, U

error in measured acceleration, exact sensitivity matrix and error in sensitivity matrix,
respectively. Partial differentiation of Eq. (3.35) with respect to X yields following

equation
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oIl t T[, .t
_X Z[ Sexact serror) [(uexact+ error)m+(sexact error)X ]]

t

[t ..t
Z (sexact + Serror) (uexact + uerror )m
t + (Sexact + Serror ) (sexact + serror )X (sexact EI'I'OI’ ) F
T T T T
t ..t t . ..t t ..t
(sexact uexact + Sexact uerror + SETTOF uexact + SEI‘I'OI’ uerror )m (336)
Exactterm CrossTerm Error Term
_ t Tt t T gt T ¢ t Tt
- Z + (SGXaCt sexact + sexact error + serror Sexact + SETI’OT serror )X
t ExactTerm CrossTerm Error Term
t t T ot
_( Sexact T Serror ) Fex
— —
ExactTerm ErrorTerm B
In matrix form, Eq. (3.28) becomes:
81_1
a MExact + MCross + MError
X (3.37)
2
+ (SExact + SCross + GsSError)X ( ex, Exact +F, ex, Error) 0
where o, is standard deviation of the error included in the sensitivity matrix

and subscript ‘Cross’ stands for the multiplication of exact term and error term. Cross
terms diminishes as time cumulates but ‘Error’ terms does not disappear. Thus ex-
tracted flutter derivatives might be ‘shifted’ from the exact flutter derivatives. Bias
effect can be eliminated only if the characteristic values of error should be known,
which is impossible to achieve.

To avoid this effect of bias, Li-norm EEE is tested. Optimization equation for L;-

norm EEE is as follows

31



error error

Minll = ZH(I'J';XMt F Ao )M+ (S + Serror ) X — F (3.38)
t

Simplex is generally used for linear programming algorithm and it targets
nonnegative variables. Therefore the algorithm need to be modified and an improved
algorithm for L;-norm optimization by Barrodale et al. (1973) is implemented for bias
check test.

The EEE methods is applied to numerically simulated time-domain data of the
section model. To acquire data, the flutter derivatives of the rectangular section which
has width to depth ratio of 5 presented by Park et al. (2014) is used. The flutter deriv-
atives are modified to satisfy causality condition and the analytic motion response is
generated by the virtue of the Fourier series approximation (FSA) proposed by Park
et al. (2014). The information obtained through force controlled test carried out in the
wind tunnel necessarily contains error but acquired analytic solution is noise free and
both EEE methods yields same result out of it, which is referred as the exact flutter

derivatives.
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To verify the effect of bias, relative random noise is applied to simulated time-
domain displacement with amplitude of 5%. The velocity and acceleration is gener-
ated by FDM-FIR filter, which compresses the error. The displacement, velocity, ac-
celeration, exciting force is implemented to L;-norm EEE and L,-norm EEE to com-
pare the results. Li-norm EEE takes longer computing time than Lo-norm EEE and
from the characteristic feature of the simplex algorithm, the result can be blunder
when the error is large.

As shown in Fig. 3.8. and Fig. 3.9., both EEE method yields nearly identical flut-
ter derivatives. FDM-FIR filter has regularization scheme inside, as shown in Eq. (3.2).
This regularization prevents the error from amplification when velocity and accelera-
tion is generated. The effect of bias is negligible when error amplification is small,
especially the given problem is about sinusoidal motion in single oscillating frequency.
Since L,-norm EEE has advantage of computing time and smoothing feature over L;-
norm EEE, this paper utilize L,-norm EEE throughout the verification of the force

controlled forced vibration test.
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4. Applications and Verification

6.0cm

(@

43.5cm >l

A

(b)

Fig. 4.1. Dimension of cross-section used in the test:

(a) a rectangular section. (b) Jido-bridge section
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The Force controlled forced vibration test is applied to extract flutter derivatives of
two bluff sections shown in Fig. 4.1. and to perform aeroelastic time domain analysis
and frequency domain analysis with extracted flutter derivatives. The first section
model, a rectangular section with a B/D ratio of 5, is typical case of bluff section
which is often implemented in wind tunnel test for its complex behavior. The second
section is the section model of Jido bridge, which is not more bluff than the first sec-
tion. However, cross-DOF force analysis using the flutter derivatives extracted
through the displacement controlled test indicates that Jido bridge section has severely
complex wind-motion interaction.

All tests including the displacement controlled test, the force controlled test and
free vibration test conducted using the wind tunnel, Le Cachalot at Seoul National
University, Korea. Each section model is suspended on elastic springs to record its
motion. Measured information can be compared to the time domain aeroelastic anal-
ysis. Four noncontact displacement meters measures motion of every corner of the
section model and simple analytic process turns measurements into 2-DOF motion of
the section models. Velocity and acceleration is generated by FDM-FIR filter and di-
vided by its target accuracy to restore precision. Exciting force is applied by four mo-
tors, and force imposed on the section model is not measured during the test but curing
prior test that assures exact imposition of force with detached metal guide. The me-

chanical properties of the rectangular section and Jido bridge section are presented in

Table. 4.1. The first-order derivatives of the lift coefficient, C, , and moment coeffi-

cient, C,,, with respect to the attack angle are given in Table 4.2. These parameters
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are used for FSA and complex eigenvalue analysis to evaluate flutter velocity. The

sign convention for torsional displacement and moment force is assumed to be posi-

tive for the nose-up direction.

Table 4.1. Mechanical properties concerning the systems used in the examples

Rectangular section

Jido bridge section

M, (kg/m ) 5.902 3.640
Masses
M, (kg-m>m) 0.229 0.102
Damping C, (kg/s/m) 1.626 1.003
ratio
f, (Hy 3.05 3.05
Frequencies
f, (Hy 6.68 5.13
Table 4.2. First-order derivatives of the lift and moment coefficients
Type of secti ast oS
ype of section
09 |-y 09 |og
Rectangular section 7.65 -0.77
H-type section 4.31 0.93
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4.1 Rectangular Section of B/D=5

The flutter derivatives extracted from the EEE does not satisfy the causality con-
dition, thus need to be modified by FSA. Fig. 4.2. and Fig. 4.3. show the flutter deriv-
atives representing aeroelastic damping ratio and stiffness, respectively. The flutter
derivatives obtained by the displacement controlled test and the force controlled test
are drawn together with unmodified flutter derivatives. Exciting force of the force
controlled test and oscillating frequency of the displacement controlled test are 2.5Hz.
It is selected based on the vertical and torsional natural frequency, since medium value
of both frequency yields equal level of response. The results from two different test
methods are almost identical in low non-dimensional wind velocity but slightly dif-
ferent in high dimensionless wind velocity section, However, the difference is small.
The causality condition of flutter derivatives are properly satisfied when extracted,
since only modest difference are observed with or without causality.

Modified flutter derivatives are utilized in aeroelastic analysis. From frequency
domain aeroelastic analysis using SMA (Jung et al. 2014), flutter velocity is estimated
to be 5.88m/s for the displacement controlled test and 5.19m/s for the force controlled
test. Both results and change of system torsional system damping is depicted in Table.
4.3. and Fig. 4.4. In actual wind tunnel test, the flutter velocity for the rectangular
section is observed to be in the range from 5.00m/s to 5.20m/s. From the result, it can
be said that the force controlled test estimates the flutter velocity closely to the actual
value. Time domain aeroelastic analysis is performed implementing FSA (Park et al.

2014). Measured wind tunnel data at the wind velocity of 5.13m/s is used, which is
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obtained during the force controlled test. Time domain data at high wind velocity is
impossible to attain since the system damping increases as wind speed goes up, how-
ever, exciting force makes the motion stays at steady-state so that reliable long time
data can be recorded. The dimensionless wind velocity of this analysis is 6.84, which
indicates the difference of two flutter derivatives at x-axis value of 6.84 in Fig. 4.2.
and Fig. 4.3. makes difference in time domain analysis. The results are presented in

Fig. 4.5-6 and both test method estimates the motion of section model well.
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Table 4.3. Frequency domain aeroelastic analysis: a rectangular section

Observation Calculation
Wind tunnel Displ. control Force control
Flutter velocity, 5.00 ~5.20 5.88 5.19
m/s
1.0
e 05 0 ]
s | /S .
S 00
%0 5.19m/s
£ 05-
[a~]
e
S .10
.9
g
= -1.5- )
""" Disp. Control
20 —F(I)rce C(I)ntrol | | .
0 1 2 3 4 5

Wind velocity, m/s

Fig. 4.4. Torsional system damping ratio for different test method of a rectangular

section
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4.2 Jido Bridge Section

Same tests are conducted to Jido bridge section with the same experimental setup.
This section model has flaps on both side which alleviates the vortex induced vibration
(VIV). Natural frequencies of the section model are set to be close, ratio of 1.6. As
excitation frequency got close to the natural frequency, response level will be maxim-
ize and the interaction between the motion and wind can be observed clearly.

The flutter derivatives are shown in Fig. 4.7. and Fig. 4.8. Components show
similar result for both test methods except for H, and H, . Modified H, shows

quite different tendency from the unmodified one in Fig. 4.7.. The difference of the

force controlled test is larger than that of the displacement controlled test. It can be

interpreted as the linear assumption of H; violates causality condition considerably

in the force controlled test. Same result can be seen in H: in Fig. 4.8., but this time

both test methods violates causality condition by similar amount.

Frequency domain aeroelastic analysis shows both methods estimate the flutter
velocity well. Change of torsional damping ratio of the system is very similar and
turns into negative value at very similar wind velocity. However, time domain aeroe-
lastic analysis result is very different from that of the first section. Time domain data
at wind velocity of 10.97m/s is utilized and the dimensionless velocity is 11.46. Esti-
mation of displacement by both methods show similar results in Fig. 4.10. and Fig.
4.11., but different from the measured displacement. Especially cross-displacements

such as torsional displacement of vertical excitation case and vertical displacement of
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torsional excitation case. This large difference is may caused by assumption of the
aeroelastic forces. Since the interaction between the motion and the force is complex
for bluff sections with cables and rails, linear assumption is not sufficient to model

aeroelastic forces.
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Fig. 4.7. Flutter derivatives of Jido bridge section for the aerodynamic damping;:
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Table 4.4. Frequency domain aeroelastic analysis: Jido bridge section

Observation Calculation
Wind tunnel Displ. control Force control
Flutter velocity, 11.0~ 12.0 11.56 11.39
m/s

1.0
051 P
=} [ o0 = =
g 00 -
%0 11.39m/s
£ -05-
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5
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Fig. 4.9. Torsional system damping ratio for different test method of Jido bridge sec-

tion
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5. Summary and Conclusions

A new technique to extract flutter derivatives is performed to consider complex inter-
action between the flow filed and the motion of a bridge. Freely suspended section
model changes its motion as aeroelastic force is changed vice versa. This nonlinearity,
which is ignored in conventional test method, is expected to bring difference to the
flutter derivatives. The force controlled forced vibration test is simply designed to
change input and output of the displacement controlled forced vibration test, however,
extracting technique is very complex.

Equation error estimation (EEE) technique is introduced by Hong (2012) and
EEE requires full history of information, which is hard to achieve by experimental
instruments. FDM-FIR filter is introduced to generate velocity and acceleration from
measured displacement and moving window technique is adopted for generation. Op-
timal window size and regularization factor is decided based on the work of Hong
(2012). Lo-norm EEE has possibility for leaving bias to flutter derivatives when meas-
ured error is amplified as it goes through FDM-FIR filter, thus L;-norm EEE is de-
signed to check bias effect. The example implementing the mechanical properties
from the work of Park et al. (2014) is examined and assured that the bias is negligible
amount for given problem. And extracted flutter derivatives are modified by the Fou-
rier series approximation (FSA) (Park et al., 2014) to satisfy its causality condition.

The force controlled test is conducted for two types of bridge section models, one
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is typical bluff section, a rectangular section with B/D ratio of 5 and the other is real
bridge section, Jido bridge section model. Frequency domain aeroelastic analysis over
flutter derivatives estimated flutter onset velocity. Both methods evaluated similar ve-
locity which is very close to the flutter velocity observed in wind tunnel test. Time
domain information collected during the force controlled test is utilized for compari-
son with the time domain aeroelastic anlaysis result. For the rectangular section, both
methods showed similar result and coincide with observed data. However, Jido bridge
section resulted differently, both methods yield similar displacement data but different
from observed one. Linear assumption for aeroelastic force violated the causality con-
dition of the flutter derivatives severely in this section model. As long as the linear
assumption for the aeroelastic forces is hold, the nonlinear effect of the interaction can

be neglected for general bridge section model test.
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