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ABSTRACT 

 

 

This study presents a new excitation technique for the identification of flutter 

derivatives. When motion of a bridge perturbs the flow field, perturbed flow field 

induces a dynamic forces on a bridge. And the dynamic forces changes the motion of 

a bridge which perturbs the flow field again. This recursive nonlinear-interaction be-

tween movement of the section model and the flow field can be fully considered when 

prescribed excitation force is applied to the bridge section model without restraining 

the motion. Force controlled forced vibration test is conducted to check the effect of 

nonlinear interaction by comparing its flutter derivatives to those of displacement con-

trolled forced vibration test. Sinusoidal force is enforced with four fan-shaped mass 

rotating on each corner of the model which is freely suspended on elastic springs. 

An Equation Error Estimation method (EEE) is employed to evaluate flutter de-

rivatives, which is the minimization problem of the equation error of the equation of 

motion. However, when L2-Norm EEE is adopted, squared error lasts through mini-

mization and leads to biased result. To examine the adequacy of L2-Norm EEE to this 

problem, L1-Norm EEE is composed utilizing a simplex algorithm. Since the amount 

of bias is not noticeable, L2-Norm EEE is used throughout this paper for its fast com-

puting speed. 

The validity of the force controlled forced vibration test is demonstrated for two 
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examples, one is B/D=5 rectangular section and the other is Jido bridge section model. 

It can be said that the effect of nonlinear interaction can be ignored for bridge section 

for its small amount of influence on the flutter derivatives and time-domain aeroelastic 

analysis result.  
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1. Introduction 
 

 

Long span bridge has been increased considerably in recent decades for its pragmatic 

and artistic feature. But as its span length expanded, several collapses were witnessed 

and importance of wind-resistant engineering has arisen. Low damping ratio and high 

flexibility make long span bridge sensitive to wind load and thus examinations, such 

as flutter analysis and buffeting analysis have been necessarily performed. It is highly 

challenging to develop analytic model for implementing CFD (Computational Fluid 

Dynamics), since bridge section model is bluff body and thus the interaction between 

bridge motion and wind load is extremely complex. Therefore experimental method 

is yet the most reliable tool. 

Aerodynamic force induced by wind acts on the bridge and the motion of a bridge 

changes. The motion of a bridge perturbs the flow field and changed flow field recur-

sively affect on the motion of a bridge as the form of aerodynamic force. This load 

effect related to the displacement and the velocity of a bridge is called aerodynamic 

stiffness and aerodynamic damping respectively. The interaction is intricate and 

proper experiment need to be carried out to consider its nonlinear effect. Generally, 

the assumption that the aerodynamic force to be linear combination of displacement 

and velocity of the bridge section made by Scanlan and Tomko (1971) is used. 2-DOF 

model with vertical and torsional movement is widely adopted and coefficients which 

act as aerodynamic damping and stiffness for displacement and velocity are called the 
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flutter derivatives.  

The flutter derivatives can be evaluated through various experimental method 

which includes free vibration test and forced vibration test. Scanlan and Tomko (1971) 

proposed the flutter derivatives to model self-excited force with two basic assump-

tions that the motion of a section model is sinusoidal with small amplitude and in 

steady-state motion. Various experimental techniques were developed to evaluate flut-

ter derivatives. Free vibration test which is simple and easy to execute, is widely 

adopted technique. With section model supported by springs without constraining its 

movement, the interaction can be fully considered and natural frequency and ampli-

tude of motion can be controlled by moving springs and changing its stiffness. Initial 

condition is given for each DOF and motion history with decaying amplitude is ob-

served to extract flutter derivatives. However, despite its simplicity of execution, ex-

tracting procedure is relatively hard. Since the flutter derivatives indicates system 

property such as damping and stiffness, it becomes an inverse analysis problem. For 

past years, different evaluation methods were made for free vibration test [Bartoli 

2009, Chen 2004, Chowdhury 2003, Gu 2000, Iwamoto 1995, Li 2003, Matsumoto 

1993, Sarkar 1992 and Sarkar 1994]. But free vibration test cannot maintain steady-

state motion at high wind speed due to strong system damping.  

The forced vibration test [Diana 2004, Falco 1992, Kim 2007 and Matsumoto 

1993] is reliable method and in general use. The section model is rigidly connected to 

the driving equipment and prescribed displacement is imposed. Since it demands com-

plex instruments, small number of laboratories are capable of this method. Enforced 
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movement keeps the section model in steady-state motion which satisfies the assump-

tion and single frequency motion can be achieved at high wind speed, which was un-

able to attain through free vibration test. However, because it restraint the motion of 

section model, the interaction cannot be considered. 

A new technique to extract flutter derivatives can obtain steady-state motion 

while the interaction is fully considered and requires relatively simple and movable 

driving equipment. Suspending a section model on elastic springs, rotating pendulums 

create heaving and pitching moment. Different from the displacement controlled 

forced vibration test, information of velocity and acceleration is needed as well. The 

FDM-FIR filter is thus utilized to generate such information from measured displace-

ment. An equation error estimation (EEE) method which is proposed by Hong (2012) 

is employed for identification algorithm. Minimization of EEE can be done using dif-

ferent norms, however, measured error might remain as a form of bias when L2-Norm 

is used. Using mechanical properties of a rectangular section on research of Park et al. 

(2014), time history data is constructed to verify norms for EEE. 

The effect of nonlinear interaction is identified through two examples: a rectan-

gular section with a width to depth (B/D) ratio of 5, Jido bridge section model. A new 

extraction technique yields similar flutter derivatives compared to that of the displace-

ment controlled forced vibration method. And time-domain aeroelastic analysis and 

frequency-domain aeroelastic analysis also yields very similar result. The nonlinear 

effect of interaction can be neglected for general bridge section.  
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2. New Identification Method for Flutter Derivatives 
 

2.1. Brief Overview for Existing Method 

Among conventional methods, the displacement controlled forced vibration 

method is general method for extraction of flutter derivatives owing to its steady-state 

motion which complies with the assumption well. However its lack of interaction be-

tween the motion of a bridge and aerodynamic force might reduce the accuracy of 

flutter derivatives. 

 

 

Fig. 2.1. Aeroelastic problem 

 

Fig. 2.1. shows the interaction of aeroelastic problem of the bridge deck with the 

Flow field

Aeroelastic 
forces 

Motion of  
a bridge 
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wind flow. Restraining the motion of a bridge limits lower arrow, which stands for the 

effect of aerolastic forces on the motion of a bridge.  

The equation of motion for forced vibration test includes external forcing term. 

 
)()()()()( ttttt exae FFKuuCuM    (2.1)

 

where M, C, K, Fae and Fex represent the mass, damping, stiffness matrix of a structure 

and an aeroelastic force and an external force, respectively, while  Th u denote 

the displacement of the structure.  

The aeroelastic force induced by the motion of a bridge is assumed as a linear 

function to the displacement and velocity of the bridge section [Iwamoto 1995 and 

Scanlan 1971] 
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where Lae and Mae are the aeroelastic lift force and momet, respectively, while ω  is 

the circular frequency of the oscillation, and Hi and Ai (i = 1, 2, 3, 4) are the flutter 

derivatives of oscillating section. Since the steady-state response of section model is 

in single frequency, the flutter derivatives are defined in certain frequency.  
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Substitution of Eq. (2.2) to Eq. (2.1) yields following equation. 

 
)()()()( tttt exeffeff FuKuCuM    (2.3)

 

where Ceff and Keff are effective damping and stiffness matrices of system as: 

 

aeeff CCC  , aeeff KKK   (2.4)

 

The prescribed sinusoidal displacement is imposed on the section model. One 

electrical motor rotates and rigid arm conveys its movement to the model into vertical 

and torsional motion. Imposing displacement is as follows 
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where exω  is the exciting frequency of the prescribed displacement. 

The reaction force in Eq. (2.3) is measured, and the steady-state response after 

the transient part damped out is: 
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where sL , cL , sM  and cM  are the measured amplitudes of sinusoidal re-

sponse, the reaction force of Eq. (2.3) 
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Substitution of Eq. (2.6) and Eq. (2.5) into Eq. (2.3) yields following equations 
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Above equations are linear to unknown variables, Ceff and Keff . Two different 

displacement controlled test ought to be carried out since one test yields 4 equations 

and unknown variables are 8 total. Once amplitudes for the reaction force and dis-

placement, the flutter derivatives are easily derived through analytic process. 
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2.2 Force Controlled Forced Vibration Test 

The force controlled forced vibration test is similar to the displacement con-

trolled forced vibration test. In analytic aspect, the input and output is switched as 

the force is imposed and the displacement is measured. This might leads to the simi-

lar result but the biggest difference between two test methods is the consideration of 

interaction. In the force controlled test, the motion of a section model is not con-

strained and suspended by elastic springs the same as in the free vibration test, with-

out restriction. As Fig. 2.1. describes, when the motion of a section model perturbs 

the flow field and the aerodynamic forces change, the motion of a section model 

should be changed due to the change in the aerodynamic forces. This nonlinearity 

can be fully considered in the force controlled test yet how critical this effect be is 

not known. The nonlinear effect of interaction is need to be checked as the displace-

ment controlled test has its limit that testing process is linearly constrained and aero-

dynamic force also is also assumed to be linear. Thus testing mechanism should re-

flect real bridge motion which is nonlinear. 

 

 

Fig. 2.2. Exciting mechanism of the force controlled forced vibration test 
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Shown in Fig. 2.2. above, total 4 motors attached to the metal guide rotates pen-

dulum to generate centrifugal force. Each coupled forces combined and remaining 

force is applied to shake the section model in 2-DOF motion. In this way, two assump-

tions made by Scanlan (1971) are both satisfied: sinusoidal and steady-state motion. 

The displacement of the section model is steady-state response of Eq. (2.3) in-

duced by exciting force as follows 

 

)ωsin(
)(

)(
)(

0

0 t
M

L

tM

tL
t ex

ex

ex
ex 

















F  (2.8)

 

After the transient response damped out, the displacement is:  
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Substitution of Eq. (2.8) and Eq. (2.9) to Eq. (2. 3) yields following equations 
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The same as the displacement controlled test, two separated tests must be con-
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ducted due to the lack of information. However, even sufficient information is gath-

ered, above equation is nonlinear to the unknown parameters, Ceff and Keff . Output 

error estimator (OEE) is difficult to be implemented since the sensitivity analysis for 

the equation is severely complex, thus analytic solution is hard to be derived, either. 

Equation error estimator (EEE) proposed by Hong (2012) offers efficient way to 

evaluate the flutter derivatives from the force controlled test.  
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3. Filter and System Identification Method 
 

3.1. FDM-FIR filter 

As displacement is measured discretely by a time interval of t , generating ac-

celeration should be employed in discretized fashion. The finite impulse response 

(FIR) filter is a digital filter that defines the relationship between the input values and 

the output values. In this section, a new approach to generate acceleration and velocity 

is presented as a boundary value problem. For given time interval, displacement at a 

fixed material point is fully measured by displacement meter. By definition, the min-

imization problem for generating acceleration is:  
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where )(tu , )(ta  and )0(v  are measured displacement, acceleration and 

measured initial velocity, respectively. This minimization problem is ill-posed and 

impossible to yield a unique acceleration as proper boundary condition is not known. 

The regularization technique that applies additional information, a priori, can estimate 

solution. The generated acceleration should stay around 0, the static value. Applying 

this regularization, Eq. (3.11) becomes:  
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where   is a regularization factor. By definition that acceleration is a second 

derivative of displacement about time, this equation becomes: 
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In variational statement, above equation yields following governing equations. 
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The transfer function of the governing equation Eq. (3.14) is derived by employ-

ing the Fourier transform.  
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22 )2()( fH E   (3.7)

 

where HTF , HE and f denotes the transfer function , the exact transfer function and the 

frequency, respectively. 
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The accuracy of the generated acceleration is specified with the accuracy function, 

which is the ratio of the transfer function HTF to the exact transfer function HE. The 

accuracy function of the transfer function used in the acceleration generation, 

)(acc
TFH is defined as follows.  
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It is convenient to normalize the transfer function and the accuracy function by 

the target frequency to make the frequency dimensionless. Normalized transfer func-

tion and accuracy functions are as follows 
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where TFH
~

, EH
~

, acc
TFH

~
, Tf  and Tfff /

~
  are the normalized transfer func-

tion, the normalized exact transfer function, the normalized accuracy function, the 

target frequency and the dimensionless frequency normalized to the target frequency, 

respectively. 

The accuracy at the target frequency is attained by setting 1
~
f  in Eq. (3.11).  
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where T is the target accuracy. The target accuracy may be chosen arbitrarily, 

in interval of 10  T  according to an engineering sense. The components related 

to the target frequency will be generated about the target accuracy, thus it means the 

desired accuracy. Once the target accuracy is selected, the regularization factor is de-

termined as following.  

 












 1

1

)2(

1
4

TTf
for  10  T  (3.13)

 

Substitution of Eq. (3.13) into Eq. (3.9) and Eq. (3.11) leads to the following 

expressions, respectively.  
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The transfer functions and the accuracy functions for different target accuracy are 

drawn in Fig. 3.1. and Fig 3.2., respectively. Compared with the exact function, the 

transfer function decreases fast as the exact function increases rapidly. For frequency  
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Fig. 3.1. Transfer functions for different target accuracy:  

(a) Log-log scale. (b) Detail in a linear scale 
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domain below the target frequency, both functions are almost identical. It shows this 

filter suppresses any noise which is in higher frequency range than the target frequency. 

Lower target accuracy yields stronger noise-suppression of the transfer function. In 

case high level noise is expected in measured displacement, lower target accuracy will 

be desirable for generating acceleration to apply strong noise suppression. The target 

accuracy of 0.97 is selected for filters in this paper. 

The FDM-FIR filter uses finite difference method to generate acceleration from 

the measured displacement and is formulated only in the time domain. Fig 3.3. demon-

strates the arrangement for the FDM-FIR filter. A moving time window which con-

tains 2k+1 points of displacements in it, expresses the acceleration at the center of the  
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Fig. 3.3. A time window and measured displacements for FDM-FIR filter 

 

time window, 1ka , as a linear combination of measured displacements in a time win-

dow. Once the time window size, which is referred to as the filter size, is determined 

it moves toward by t  and generate the acceleration at time tt  .  

Eq. (3.4) and the velocity are expressed in discretized form as follows 

 
uLuu 4 , uLa 2 , uLv 1  (3.16)

 

where iL , u , u , v , a  are the linear algebraic ith difference operator matrix, the 

measured displacement, generated displacement, velocity, acceleration, respectively. 

4L is order of )52()12(  kk , 2L  and 1L  are order of )32()12(  kk . 

Each operator matrix is expressed as Eq. (3.17-19). As finite differential operator is 

Time 
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used, one or two fictitious nodes are needed. The value of fictitious nodes is deter-

mined by engineering sense, but barely affects the result. 
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Eq. (3.16) can be expressed as follows, including fictitious nodes. 
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where iu , fu , i
4L , c

4L  and f
4L  are initial fictitious node, end fictitious 

node, operator matrix for each nodes, respectively. Since the fictitious nodes can have 
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zero values, Eq. (3.20) converts into:  

 

uCuLILauLuLuLIu Dcffiic  1
42444 )()(  (3.21)

 

where DC  is the coefficient matrix for the acceleration generation of order 

)32()12(  kk . Superscript ‘D’ denotes the FDM method. 

The acceleration at the center of a time window is the (k+2)-th component of a 

vector, 1ka . It is considered as the generated acceleration at time t.  
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where Dc denotes the center row of the DC  matrix. The Fourier transform of Eq. 

(3.20) yields the transfer function of the FDM-FIR filter, )( fH D .  

 

))((
)(

1
))(( 2

12
tuFec

t
taF tfpi

k

kp

D
kp






  

tfpi
k

kp

D
kpD ec

t
fH 




 2
12)(

1
)(  

(3.21)

 

where i is the imaginary unit. The transfer function of FDM-FIR filter approximates 

the original transfer function in discretized form given in Eq. (3.6)  
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Eq. (3.22) illustrates the truncated Fourier series of the transfer function and the 

coefficients of the FDM-FIR filter are determined by following process.  
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where tfs  /1  stands for the sampling frequency of measurement. The transfer 

function )( fHTF  is an even function. Thus the imaginary part of integrand dimin-

ishes by Euler’s fornula.  

 























)
~

2/(1

0 4

23
2

2

2

2
4

2
23

2

2

2
1

~
)

~~
2cos(~

)11(1

~
)(

)2(2

)2(1
)2()(

)()(

T

s

s

s

s

f

T

TT

f

f

tfpi

f

f

tfpi
TF

D
kp

fdffp
f

f

f

t

dfe
f

f
t

dfefHtc

 (3.24)

 

where sTT fff /
~
  denotes the target frequency to the sampling frequency (TSF) 

ratio. As the transfer function decreases very quickly for higher f
~

, the integral in Eq.  
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Fig. 3.4. Coefficients of the FDM-FIR filter: 

(a) Small scale. (b) Detail in a large scale. 
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(3.26) is almost independent of small TSF ratio and thus becomes a function of 

Tfpp
~~   as shown in Fig 3.4(a). To avoid the rippling amplitude, the filter size 

should be chosen carefully. The zero-crossing points of the coefficients, as shown in 

Fig 3.4(b), must be selected to be the last term. The time window, i.e. in one filter size 

interval, has 2k+1 measuring points inside which means it has 1
~

/~2 0 Tfp  points.  

The normalized transfer function and accuracy function of the FDM-FIR filter 

are derived as following equations.  
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where DH
~

 and acc
DH

~
 are the normalized transfer function and accuracy function 

of the FDM-FIR filter, respectively. The FDM-FIR filter is capable of generating the 

velocity as well. Only the linear operator matrix is changed in this process. The nor-

malized functions vDH ,

~
 and acc

vDH ,

~
 for the velocity generation:  
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Fig. 3.5. Coefficients of the FDM-FIR filter for different filter size: 

(a) Acceleration generation. (b) Velocity generation 
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Fig. 3.6. Accuracy functions of the FDM-FIR filter for different filter size: 

(a) Acceleration generation. (b) Velocity generation 

0
~p

0
~p

0
~p

0
~p

0
~p

0
~p



 

25 

 

10-2 10-1 100 101 102

Exact transfer function
Anal. transfer function 
    =0.668
    =0.964
    =1.26

10-3

10-2

10-1

100

101

102

N
or

m
al

iz
ed

 tr
an

sf
er

 f
un

ct
io

n

Normalized frequency

a

 

 

10-2 10-1 100 101 102

    =0.668
    =0.964
    =1.26

10-3

10-2

10-1

100

101

N
or

m
al

iz
ed

 a
cc

ur
ac

y 
fu

nc
ti

on

Normalized frequency

b

 

Fig. 3.7. Transfer functions of the FDM-FIR filter for different filter size: 

(a) Acceleration generation. (b) Velocity generation 
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The coefficients, accuracy functions and transfer functions of the FDM-FIR filter 

for TSF ratio of 1/500 are presented in Fig. 3.5. through Fig. 3.7.. Regardless of the 

filter size, transfer functions approximates the analytic transfer function very well ex-

cept for very low frequency section. 

As shown in Fig. 3.6(a), long filter size guarantees accurate approximation of the 

transfer function. There is a trade-off that long filter size causes loss of information 

and increase of calculation time. Since the given problem does not need real-time 

generation of acceleration and velocity, measuring time can extended as needed and 

calculation time is not major problem. Once the information is generated and the flut-

ter derivatives are evaluated, no further analysis on generating information is not 

needed. Thus long filter size of 26.1~
0 p  is used for the analysis in this paper. 
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3.2. Equation Error Estimator (EEE) 

Once the full history of displacement is acquired, velocity and acceleration can 

be calculated by FDM-FIR filter, which will be dealt with in the next section. With 

full information the unknown system parameters can be extracted by EEE through the 

minimization process. The EEE gives convenient tool to the force controlled test 

which is hard to process with sensitivity analysis or eigenvalue analysis. 

The EEE method minimizes the equation error of the dynamic system involving 

the unknown system parameters, which is the flutter derivatives for this research. To 

make this process clear, separate the known portion and the unknown portion of Eq. 

(2.13).  

 
)()()( iiexikn ttt uMFF   (3.27)

XsuKuCXF )()()(),( iieffieffiun tttt    (3.28)

 

where subscripts ‘kn’ and ‘un’ indicates known and unknown portion, s is a sensitivity 

matrix consists of displacement and velocity for each time step ti and X is the matrix 

which is composed of unknown parameters. s and X are defined as follows:  
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 T2221222112111211 kkcckkccX  (3.30)

 

where subscript 1 and 2 denotes each test and components of X represents elements 

of effective damping and stiffness matrices.  

Minimizing the equation errors for entire time history using L2-norm makes given 

problem quadratic since the equation is linear with respect to the unknown system 

parameter.  
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Substitution of Eq. (3.28) into Eq. (3.31) results in following equation.  
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where S and G are global sensitivity matrix and gradient vector and represented 

as follows 
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The solution of Eq. (3.32) can be simply attained by solving linear algebraic equa-

tion owing to its linearity about the unknown parameters.  
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A unique solution is always determined without iterations or complex analysis. 

The solution converges as long as the information measured in sufficient length of 

time is provided. Also EEE does not affected by initial conditions which usually bring 

errors to OEE.  
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3.3 Bias Check of L2-Norm EEE 

Measuring the motion of the section model inevitably involves noise. Elimination 

of noise is impossible, only suppression is probable method. Since the EEE used in 

extraction of flutter derivatives in formed with L2-norm, equation must be squared for 

making quadratic problem. Usually, as observation time increases the noise included 

in measured information. Noises which has mean value of zero diminishes as long 

length data is summed. However, in this problem, measured displacement is squared 

in the process of EEE and the included error is squared as well. Squared error has 

positive value and long range of time only cumulates error only to be bias. Eq. (3.31) 

is in extended form as follows 
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where m , t
exactu , t

erroru , t
exacts  and t

errors are the mass vector, exact acceleration, 

error in measured acceleration, exact sensitivity matrix and error in sensitivity matrix, 

respectively. Partial differentiation of Eq. (3.35) with respect to X yields following 

equation 
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In matrix form, Eq. (3.28) becomes:  
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where s  is standard deviation of the error included in the sensitivity matrix 

and subscript ‘Cross’ stands for the multiplication of exact term and error term. Cross 

terms diminishes as time cumulates but ‘Error’ terms does not disappear. Thus ex-

tracted flutter derivatives might be ‘shifted’ from the exact flutter derivatives. Bias 

effect can be eliminated only if the characteristic values of error should be known, 

which is impossible to achieve.  

To avoid this effect of bias, L1-norm EEE is tested. Optimization equation for L1-

norm EEE is as follows 
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Simplex is generally used for linear programming algorithm and it targets 

nonnegative variables. Therefore the algorithm need to be modified and an improved 

algorithm for L1-norm optimization by Barrodale et al. (1973) is implemented for bias 

check test. 

The EEE methods is applied to numerically simulated time-domain data of the 

section model. To acquire data, the flutter derivatives of the rectangular section which 

has width to depth ratio of 5 presented by Park et al. (2014) is used. The flutter deriv-

atives are modified to satisfy causality condition and the analytic motion response is 

generated by the virtue of the Fourier series approximation (FSA) proposed by Park 

et al. (2014). The information obtained through force controlled test carried out in the 

wind tunnel necessarily contains error but acquired analytic solution is noise free and 

both EEE methods yields same result out of it, which is referred as the exact flutter 

derivatives.  
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Fig. 3.8. Identified flutter derivatives for the rectangular section – damping coeffi-

cients: (a) *
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Fig. 3.9. Identified flutter derivatives for the rectangular section – stiffness coeffi-

cients: (a) *
4H  (b) *

3H  (c) *
4A  (d) *
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To verify the effect of bias, relative random noise is applied to simulated time-

domain displacement with amplitude of 5%. The velocity and acceleration is gener-

ated by FDM-FIR filter, which compresses the error. The displacement, velocity, ac-

celeration, exciting force is implemented to L1-norm EEE and L2-norm EEE to com-

pare the results. L1-norm EEE takes longer computing time than L2-norm EEE and 

from the characteristic feature of the simplex algorithm, the result can be blunder 

when the error is large. 

As shown in Fig. 3.8. and Fig. 3.9., both EEE method yields nearly identical flut-

ter derivatives. FDM-FIR filter has regularization scheme inside, as shown in Eq. (3.2). 

This regularization prevents the error from amplification when velocity and accelera-

tion is generated. The effect of bias is negligible when error amplification is small, 

especially the given problem is about sinusoidal motion in single oscillating frequency. 

Since L2-norm EEE has advantage of computing time and smoothing feature over L1-

norm EEE, this paper utilize L2-norm EEE throughout the verification of the force 

controlled forced vibration test. 
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4. Applications and Verification 
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Fig. 4.1. Dimension of cross-section used in the test:  

(a) a rectangular section. (b) Jido-bridge section 
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The Force controlled forced vibration test is applied to extract flutter derivatives of 

two bluff sections shown in Fig. 4.1. and to perform aeroelastic time domain analysis 

and frequency domain analysis with extracted flutter derivatives. The first section 

model, a rectangular section with a B/D ratio of 5, is typical case of bluff section 

which is often implemented in wind tunnel test for its complex behavior. The second 

section is the section model of Jido bridge, which is not more bluff than the first sec-

tion. However, cross-DOF force analysis using the flutter derivatives extracted 

through the displacement controlled test indicates that Jido bridge section has severely 

complex wind-motion interaction.  

All tests including the displacement controlled test, the force controlled test and 

free vibration test conducted using the wind tunnel, Le Cachalot at Seoul National 

University, Korea. Each section model is suspended on elastic springs to record its 

motion. Measured information can be compared to the time domain aeroelastic anal-

ysis. Four noncontact displacement meters measures motion of every corner of the 

section model and simple analytic process turns measurements into 2-DOF motion of 

the section models. Velocity and acceleration is generated by FDM-FIR filter and di-

vided by its target accuracy to restore precision. Exciting force is applied by four mo-

tors, and force imposed on the section model is not measured during the test but curing 

prior test that assures exact imposition of force with detached metal guide. The me-

chanical properties of the rectangular section and Jido bridge section are presented in 

Table. 4.1. The first-order derivatives of the lift coefficient, LC , and moment coeffi-

cient, MC , with respect to the attack angle are given in Table 4.2. These parameters 
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are used for FSA and complex eigenvalue analysis to evaluate flutter velocity. The 

sign convention for torsional displacement and moment force is assumed to be posi-

tive for the nose-up direction.  

 

Table 4.1. Mechanical properties concerning the systems used in the examples 

 Rectangular section Jido bridge section 

Masses 
  hm  ( kg/m ) 5.902 3.640 

  m  ( /mmkg 2 ) 0.229 0.102 

Damping 
ratio 

  hc   ( kg/s/m ) 1.626 1.003 

  c   ( /s/mmkg 2 ) 0.064 0.022 

Frequencies 
  hf   ( Hz) 3.05 3.05 

  f   ( Hz) 6.68 5.13 

 

Table 4.2. First-order derivatives of the lift and moment coefficients 

Type of section 
0

 LC
 

0
 MC

 

Rectangular section 7.65 -0.77 

H-type section 4.31 0.93 
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4.1 Rectangular Section of B/D=5 

The flutter derivatives extracted from the EEE does not satisfy the causality con-

dition, thus need to be modified by FSA. Fig. 4.2. and Fig. 4.3. show the flutter deriv-

atives representing aeroelastic damping ratio and stiffness, respectively. The flutter 

derivatives obtained by the displacement controlled test and the force controlled test 

are drawn together with unmodified flutter derivatives. Exciting force of the force 

controlled test and oscillating frequency of the displacement controlled test are 2.5Hz. 

It is selected based on the vertical and torsional natural frequency, since medium value 

of both frequency yields equal level of response. The results from two different test 

methods are almost identical in low non-dimensional wind velocity but slightly dif-

ferent in high dimensionless wind velocity section, However, the difference is small. 

The causality condition of flutter derivatives are properly satisfied when extracted, 

since only modest difference are observed with or without causality.  

Modified flutter derivatives are utilized in aeroelastic analysis. From frequency 

domain aeroelastic analysis using SMA (Jung et al. 2014), flutter velocity is estimated 

to be 5.88m/s for the displacement controlled test and 5.19m/s for the force controlled 

test. Both results and change of system torsional system damping is depicted in Table. 

4.3. and Fig. 4.4. In actual wind tunnel test, the flutter velocity for the rectangular 

section is observed to be in the range from 5.00m/s to 5.20m/s. From the result, it can 

be said that the force controlled test estimates the flutter velocity closely to the actual 

value. Time domain aeroelastic analysis is performed implementing FSA (Park et al. 

2014). Measured wind tunnel data at the wind velocity of 5.13m/s is used, which is 
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obtained during the force controlled test. Time domain data at high wind velocity is 

impossible to attain since the system damping increases as wind speed goes up, how-

ever, exciting force makes the motion stays at steady-state so that reliable long time 

data can be recorded. The dimensionless wind velocity of this analysis is 6.84, which 

indicates the difference of two flutter derivatives at x-axis value of 6.84 in Fig. 4.2. 

and Fig. 4.3. makes difference in time domain analysis. The results are presented in 

Fig. 4.5-6 and both test method estimates the motion of section model well. 
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Fig. 4.2. Flutter derivatives of the rectangular section for the aerodynamic damping: 

(a) *
1H  (b) *

2H  (c) *
1A  (d) *

2A  
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Fig. 4.3. Flutter derivatives of the rectangular section for the aerodynamic stiffness 

(a) *
4H  (b) *

3H  (c) *
4A  (d) *

3A  
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Table 4.3. Frequency domain aeroelastic analysis: a rectangular section 

 
Observation Calculation 

Wind tunnel Displ. control Force control 

Flutter velocity, 
m/s 

5.00 ~ 5.20 5.88 5.19 
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Fig. 4.4. Torsional system damping ratio for different test method of a rectangular 

section 
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Fig. 4.5. Displacement estimation of rectangular section for different test methods: 

Vertical excitation 

(a) Vertical displacement. (b) Torsional displacement 

 



 

45 

 

 

75 76 77 78 79 80

Disp. Control Force Control

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V
er

tic
al

 d
is

pl
ac

em
en

t, 
m

m

Time, sec

Measured

 

       (a) 

 

75 76 77 78 79 80

Disp. Control Force Control

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

T
or

si
on

al
 d

is
pl

ac
em

en
t, 

de
gr

ee

Time, sec

Measured

 

       (b) 

Fig. 4.6. Displacement estimation of rectangular section for different test methods: 

Torsional excitation 

(a) Vertical displacement. (b) Torsional displacement 
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4.2 Jido Bridge Section 

Same tests are conducted to Jido bridge section with the same experimental setup. 

This section model has flaps on both side which alleviates the vortex induced vibration 

(VIV). Natural frequencies of the section model are set to be close, ratio of 1.6. As 

excitation frequency got close to the natural frequency, response level will be maxim-

ize and the interaction between the motion and wind can be observed clearly. 

The flutter derivatives are shown in Fig. 4.7. and Fig. 4.8. Components show 

similar result for both test methods except for *
2H  and *

4H . Modified *
2H  shows 

quite different tendency from the unmodified one in Fig. 4.7.. The difference of the 

force controlled test is larger than that of the displacement controlled test. It can be 

interpreted as the linear assumption of *
2H  violates causality condition considerably 

in the force controlled test. Same result can be seen in *
4H  in Fig. 4.8., but this time 

both test methods violates causality condition by similar amount.  

Frequency domain aeroelastic analysis shows both methods estimate the flutter 

velocity well. Change of torsional damping ratio of the system is very similar and 

turns into negative value at very similar wind velocity. However, time domain aeroe-

lastic analysis result is very different from that of the first section. Time domain data 

at wind velocity of 10.97m/s is utilized and the dimensionless velocity is 11.46. Esti-

mation of displacement by both methods show similar results in Fig. 4.10. and Fig. 

4.11., but different from the measured displacement. Especially cross-displacements 

such as torsional displacement of vertical excitation case and vertical displacement of 
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torsional excitation case. This large difference is may caused by assumption of the 

aeroelastic forces. Since the interaction between the motion and the force is complex 

for bluff sections with cables and rails, linear assumption is not sufficient to model 

aeroelastic forces.  
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Fig. 4.7. Flutter derivatives of Jido bridge section for the aerodynamic damping: 

(a) *
1H  (b) *

2H  (c) *
1A  (d) *

2A  
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Fig. 4.8. Flutter derivatives of Jido bridge section for the aerodynamic damping: 

(a) *
1H  (b) *

2H  (c) *
1A  (d) *

2A  

 

 

 



 

49 

 

 

 

Table 4.4. Frequency domain aeroelastic analysis: Jido bridge section 

 
Observation Calculation 

Wind tunnel Displ. control Force control 

Flutter velocity, 
m/s 

11.0 ~ 12.0 11.56 11.39 
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Fig. 4.9. Torsional system damping ratio for different test method of Jido bridge sec-

tion 
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Fig. 4.10. Displacement estimation of Jido bridge section for different test methods: 

Vertical excitation 

(a) Vertical displacement. (b) Torsional displacement 
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       (b) 

Fig. 4.11. Displacement estimation of Jido bridge section for different test methods: 

Torsional excitation 

(a) Vertical displacement. (b) Torsional displacement 
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5. Summary and Conclusions 
 

 

A new technique to extract flutter derivatives is performed to consider complex inter-

action between the flow filed and the motion of a bridge. Freely suspended section 

model changes its motion as aeroelastic force is changed vice versa. This nonlinearity, 

which is ignored in conventional test method, is expected to bring difference to the 

flutter derivatives. The force controlled forced vibration test is simply designed to 

change input and output of the displacement controlled forced vibration test, however, 

extracting technique is very complex.  

Equation error estimation (EEE) technique is introduced by Hong (2012) and 

EEE requires full history of information, which is hard to achieve by experimental 

instruments. FDM-FIR filter is introduced to generate velocity and acceleration from 

measured displacement and moving window technique is adopted for generation. Op-

timal window size and regularization factor is decided based on the work of Hong 

(2012). L2-norm EEE has possibility for leaving bias to flutter derivatives when meas-

ured error is amplified as it goes through FDM-FIR filter, thus L1-norm EEE is de-

signed to check bias effect. The example implementing the mechanical properties 

from the work of Park et al. (2014) is examined and assured that the bias is negligible 

amount for given problem. And extracted flutter derivatives are modified by the Fou-

rier series approximation (FSA) (Park et al., 2014) to satisfy its causality condition. 

The force controlled test is conducted for two types of bridge section models, one 
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is typical bluff section, a rectangular section with B/D ratio of 5 and the other is real 

bridge section, Jido bridge section model. Frequency domain aeroelastic analysis over 

flutter derivatives estimated flutter onset velocity. Both methods evaluated similar ve-

locity which is very close to the flutter velocity observed in wind tunnel test. Time 

domain information collected during the force controlled test is utilized for compari-

son with the time domain aeroelastic anlaysis result. For the rectangular section, both 

methods showed similar result and coincide with observed data. However, Jido bridge 

section resulted differently, both methods yield similar displacement data but different 

from observed one. Linear assumption for aeroelastic force violated the causality con-

dition of the flutter derivatives severely in this section model. As long as the linear 

assumption for the aeroelastic forces is hold, the nonlinear effect of the interaction can 

be neglected for general bridge section model test.  
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초 록 

 

 

이 연구에서는 단면의 움직임과 공기력의 상호작용에 의한 비선형성을 반영할 

수 있고, 움직임의 정상상태 유지가 가능한 새로운 실험인 하중제어 강제가진 실

험을 통해 플러터 계수를 추출한다. 기존의 실험 방법인 변위제어 강제가진 실험

에서 플러터 계수를 추출하는 데에 사용된 MITD, ULS 그리고 해석해 등의 방법

이 적용되기 힘들기 때문에 Equation error estimation (EEE) 가 이용되고, 이 때에 

변위뿐만 아니라 속도와 가속도가 필요하게 된다. 이러한 정보를 생성하기 위해 

움직이는 시간창 기법이 적용된 FDM-FIR 필터가 이용되고, 최적의 창 크기와 정

규화 계수를 구하게 된다. EEE 기법에 사용되는 L2-nom의 경우 측정된 오차가 필

터를 통과하며 증폭될 시에 증폭된 오차가 제곱되어 편향성 문제를 일으킬 가능

성이 있기에 편향성이 발생하지 않는 L1-norm EEE를 구성하여 기존의 알려진 단

면에 대한 예제를 수행한 결과 오차의 증폭량이 크지 않아 편향성의 크기가 매

우 작기 때문에 L2-norm을 사용하였다. 새로운 실험의 타당성은 두 개의 단면에 

대해 검증되었는데 폭-깊이 비 5의 직사각형 단면과 지도대교 단면에 대해 실험

이 수행되었다. 추출된 플러터 계수가 Causality condition을 만족하도록 수정한 뒤 

주파수영역 공탄성 해석을 실시해 플러터 풍속을 비교한 결과 기존의 방법과 새

로운 방법 모두 플러터 풍속을 잘 예측하였다. 시간영역 공탄성 해석 결과는 두 

단면에 대해 다른 결과를 보였는데, 실험방법 간의 차이는 매우 작았으나 하중제

어 강제가진 실험 결과는 Causality condition을 상대적으로 크게 위반하며 두 가지 



 

 

 

방법 모두 실제 교량의 움직임을 정확히 예측하지 못하였다. 이는 공기력이 교량

의 움직임과 속도의 일차식으로 정의된다는 가정의 한계로 보이며, 교량의 움직

임과 공기력의 비선형적 상호작용의 영향은 일반적인 교량에 대한 실험에서 무

시할 만한 크기임을 보였다. 

 

주요어: 플러터 계수; Equation error estimation; FDM-FIR 필터; 강제가진 실험; 

공탄성 해석; 심플렉스 알고리즘 

 

학번: 2013-20942 


