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ABSTRACT

A new damage detection algorithm based on a system identification scheme with regu-
larization technique is developed using a frequency response function (FRF) in the fre-
guency domain. The algorithm is applicable to for a time invariant model of a structure
with recorded earthquake response or measured acceleration data from a dynamic test. The
error function is defined as the frequency integral of the least squared error between the
measured and calculated FRF. The FRF is obtained by a non-smooth, complex-valued fi-
nite Fourier transform of acceleration.

In most pervious studies on frequency domain in SI modal stiffness and modal damp-
ing properties are used as system parameters. In this work, stiffness properties of a struc-
ture and the coefficient of Rayleigh damping are selected as system parameters. Since it is
impossible to measure acceleration at all of the degrees of freedom in structural modal.
Sparseness of the measurements occurred due to incomplete data. Furthermore, the meas-
ured response included noise. Due to sparseness and completeness in measurement, S
problems are usually illposed.

Tikhonov regularization technique is applied to overcome the ill-posedness of system

identification problems. The regularization function is defined as on the L, norm of the

difference between estimated system parameter vector and the baseline system parameters.
The singular value decomposition is utilized to investigate the role of the regularization and
the characteristic of the non-linear inverse problem. The first order sensitivity of a finite
Fourier transform is obtained by direct differentiation to develop the mathematical model.

For an optimal regularization factor, a geometric mean scheme (GMS) method was used.



This method was a geometric mean between the maximum singular value and the mini-
mum singular value of the sensitivity matrix of the response transform. A recursive quad-
ratic progranming (RQP) was used to solve a constrained nonlinear optimization problem.
The Gauss-Newton approximation of the Hessian was used for a simple computation. The
validity of the proposed method was demonstrated by numerical examples on shear build-

ings.

Keywords: system identification (Sl), regularization technique, damage assessment, ill-
posedness, Frequency Response Function (FRF), geometric mean scheme (GMS), recur-

sive quadratic programming (RQP)

Student Number: 99415-817
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1.4 Notations

The symbols used in this study are defined where they first appear in the text and

whenever clarification isnecessary. The most frequently used symbols are listed below.

O spectra of output motion vector
H i  frequency response function matrix

I linear spectra of input forces vector

MP  number of input points

NP number of output points or measuring points
0] frequency

t time

u displacement vector

\Y velocity vector

a acceleration vector

M mass matrix

K stiffness matrix
C damping matrix
F forced vector

n number of degree of freedom
y modal displacement

() modal matrix

o, natura frequency
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L aplace operator

eigen vector for 1™ mode

transform forced vector
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vibration condition
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transformed accel eration response for r'™ mode at point p
for zero initial conditions
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Chapter 1

I ntroduction

Structural systems have to endure various events during their lifetime that may not be
considered in their original design. In particular, civil structures experience unexpected
severe loads such as earthquakes, blasts, gusts, fires and floods that may lead to damage. In
transportation infrastructures, roads and bridges suffer from gradually increasing
superimposed loads. Large damages due to unexpected loads may result into catastrophic
failures of the structures. To prevent these serious events and damages during a given
structure's lifetime, regular inspections are necessary.

The methods used for structural inspection can be categorized as destructive and non-
destructive methods. Non-destructive methods include global and local inspections. Visual
inspections, X-rays, ultrasonic tests, acoustic emissions, magnetic flux leakage techniques,
radiographic techniques, penetrant techniques, and eddy current techniques are local non-
destructive methods. These methods are used to inspect of local parts of complex structures
[Par01].

Structural health monitoring, which is defined as the science of inferring the health and
safety of an engineered system by monitoring its status [Par02, Akt00, Doe96], has been
used in civil engineering structures during the last few decades. This is a global non-
destructive method of system identification (S.I.). A mathematical model and measured
responses are utilized in this method. Measured data can be obtained using sensors and
computer simulations. Measured data with a high precision and a large amount of

numerical calculations are involved in the implementation of the system identification



(S.I.) method.

Several approaches base on various concepts have been proposed for system
identification in the time domain and frequency domain. However, previous approaches in
frequency domain estimating the system parameters used modal stiffness and modal
damping as system parameters while the regularization is not considered in system
identification. This study focuses on obtaining the stable parameter estimation using the
regularization technique in the frequency domain. A complex value finite Fourier transform
of the measured acceleration and a corresponding transform calculated from the response
of the mathematical model are used in the least squared error function, is defined as a
frequency integral which a frequency band can be specified to obtain more reasonable
results.

Tikhonov regularization technique can dleviate the ill-posedness of the inverse
problem. Damage detection is determined by change in the dynamic properties of the
structure. The basic concept is that modal parameters (frequencies, mode shapes, and
modal damping) are functions of the physical properties of the structure (mass, damping,
and dtiffness). Therefore changes in physical properties will cause changes in modal

properties and transfer functions are also changed.

1.1 Research overview

The layout of this thesis is as follows. Chapter 2 provides a frequency response
function of a mechanical structure due to forced vibration, free vibration, and ground
excitation. Included is an explanation of the fundamental frequency response function and

formulation of the acceleration response from forced excitation and free vibration.



Afterwards we compute the transfer function, and relations of the structural vibration
response as output and forced excitation as input. In chapter 3, system identification and
damage detection of the structure is presented. First, the output error estimator for the
transfer functions is computed using measured data and analysis techniques. Least squared
error minimization with regularization techniques are performed with respect to system
parameters, which include stiffness and damping properties. Verifications of the numerical
examples on shear buildings are presented in chapter 4. In the numerical example, we
investigate the regularization effect through a numerical simulation. Chapter 5 provides a
conclusion and future research directions on damage detection and structural health

monitoring.

1.2 Research outline

1.2.1 Frequency Response Function of the frame structures

The Fourier transform of the input and the output are related through a complex valued
transfer function, which are called a Frequency Response Function. The initial conditions
for this function are zero for and their complete histories are used in the calculations. The
differential dynamic equation is used as the governing equation. The structure is modeled
with classical normal modes, which are modal mass, modal stiffness and modal damping,
modal displacement, modal velocity, and moda acceleration. Using the First Fourier
Transform, the equation of motion is transferred from time domain to frequency domain.
This process requires proper treatments to avoid erroneous results such as aliasing leakage,
windowing, zooming, and averaging.

The modal velocity and modal acceleration and modal displacement in terms of



displacement and input ground acceleration or forced vibration are also transformed into
the frequency domain. Then we compute the displacement response and acceleration
response using the input ground acceleration or forced vibrations and free vibration, known
system parameters such as mass, stiffness, modal damping, and initial conditions. We also
calculate the theoretical transfer function with given initial conditions. Using the measured
response as output data we can compute the transfer function by using the measured
response and input ground acceleration according to the definition of the frequency
response function, which is called the measured FRF. Moreover, the responses can be
calculated with the known system parameters and initial condition for free vibration, which

iscalled theinitial FRF.

1.2.2 System identification and parameter estimation

In the last four decades, system identification and parameter estimation have become
important in the structural engineering research field. If a structure is modeled as an
analytical model with parameters and is passed through physical testing, there are
differences between the test data and model data. Therefore, system identification and
parameter estimation are used to reduce this gap.

Applications of inverse problems to engineering areas began in the 1970s for
aerospace engineering [Ali75, Bec84, Bec85]. The application area of inverse problems
include shape identification [Sch92, Lee99, Lee00], estimation of material properties
[Nor89, Hon94, Mah96, Par01], reconstruction of traction boundaries [Man89, Sch90],
tomography [Bui94], and defect identification [ Tan89, Mel95].

System identification is an inverse problem in which the unknown model is obtained



from known inputs and outputs, while the unknown output is obtained by using the known

input and model in forward problems (see fig.1.1).

Forward problem

M odé€l —

I nver se problem

Fig.1.1. Definition of forward and inverse problem

Zadeh (1962) defined system identification as “the determination on the basis of input
and output of a system within a specified class of systems, to which the system under test is
equivalent”. Parameter estimation can be defined as the determination of values of the
parameters that govern the behavior of the model. (Eykhoff 1974); this minimizes the error
between the structure and the model. Maximum-likelihood, Bayesian, and cross-entropy
estimators are mostly used in the field of system identification. The least square estimator
belongs to the Maximum-likelihood estimator, and does not require probability density of
measures or the parameter.

Basic approaches for parameter estimation are off-line or batch method and the on-line
or recursive method. In the batch method, processing of the measurements continuously
updates the estimation of parameters while working serialy through the measurements.

The recursive approach generates an updated estimation when it receives new information.



Although the batch method is computationally more efficient and robust, recursive methods
are popular in the fields of control and automation because the methods do not require the
storage of raw data.

The parameter estimation algorithm utilizes calculated responses and measured
responses. The calculated responses are computed by a numerical moda of structure
numerical integration methods. Unknown constitutive parameters are estimated by solving
a constrained nonlinear optimization problem. The recursive quadratic programming
method (RPQ) isto solve the estimation problem.

The minimization agorithm requires the gradient of the objective function with
respect to the unknown variables. The modal stiffness and modal damping used as system
parameters in the frequency domain approach have also been reported [Gra80]. If
elemental stiffness and modal damping are used as system parameters in the frequency
domain, the sensitivity of the mode shape vector is also required.

The recursive quadratic programming algorithm requires an estimate of the Hessian of
the objection function. An exact Hessian and Gauss-Newton approximation may be used.
The Gauss-Newton approximation of the Hessian is a part of the Hessian involving only
the computed first derivative terms. The exact Hessian takes the second derivative terms of
the objective function. The Gauss-Newton approximation of the Hessian needs less

computation and storage than the exact Hessian.

1.2.3 Regularization technique and regularization factor
The forward problems are usually well-posed problems while inverse problems are

typical ill-posed problems. The system identifications are inverse problems. Ill-posed



problems suffer form severe numerical instabilities, such as non-existence, non-unigqueness,
and discontinuity of solution. Regularization techniques can overcome these instabilities.

Two different methods, truncated singular value decomposition (TSVD) [Gol96, Han
98] and Tikhonov regularization [Tik77, Gro84, Bui 94, Han 98], can be employed
regularization technique. The regularization techniques improve the convergence and
continuity of the solutions.

A regularization function is constructed by the L,-norm of the system property. The
regularization factor controls the regularization effect through parameter estimation to
obtain a physically meaningful and numerically stable solution of an inverse problem with
the regularization technique. An optimal regularization factor can be determined by a well-
defined method such as the L-curve method (LCM), generalized cross vaidation (GVC)
method, geometric mean scheme (GMS), and the variable regularization factor (VRFS),
proposed by Hansen [Han92a], Golub et al. [Gol 78], Park et al.[Par02] and Lee et al.,
respectively.

In this research, the GMS method is used to find the optimal regularization factor for
the nonlinear inverse problem. An optimal regularization factor can be defined as the
geometric average between the maximum and minimum singular values of the sensitivity

matrix.

1.2.4 Damage assessment
Parameter estimation methods can determine the parameters for each member and
damage can be detected and assessed directly at the elemental level. Damage is defined as

areduction in estimated parameters or physical properties of a structure between two-time



separated references assuming the base line values of the parameters of a presumably
undamaged structure. The stiffness of a member cannot increase from a previous
investigation of the baseline properties. The present work deals with a damage assessment
based on system identification of a structure in the frequency domain by using the

measured response.

1.3 Literaturereview

Various kinds of damage detection and assessment algorithms have been developed in
engineering fields, and some algorithms are reviewed in this section. Graeme and Mcverry
developed a method that identified the modal structural data such as modal stiffness, modal
damping, and effective participation factor based on the system identification method using
earthquake records as input data. A mathematical model in the frequency domain was used
without regularization technique to obtain the finite Fourier transform of the measured
acceleration response and calculated transform [Gra30]. Park Hyun Woo developed
regularization techniques in system identification for damage assessment of a structure. He
proposed regularization techniques and a regularization factor, which is a geometric mean
scheme (GMS)], to aleviate ill-posedness of inverse problems. Shin et. al, proposed
structural damage detection using modal data with a regularization technique [Par02,Shi94].
The authors used Tikhonove regularization function as a Frobenius norm for the change of
stiffness of a structure and a regularization factor is determined by the VRFS. The
sensitivity of the normalized mode shape vector by an arbitrary matrix was proposed. Lee
et al [Lee02] reported similar model with the addition of a regularization function. The

stiffness properties of the structure and Rayleigh damping were used as system parameters.



[Lee00] reported a structural damage detection algorithm for measured accel eration data by
dynamic tests. [Lee00] developed a method for the damage assessment of bridged
structures using measured acceleration data by a system identification scheme in the time
domain. Fritzen and Zhu [91] used measured transfer functions to update the design
parameters by exciting mechanical models with an impact hammer. The FEM models of a
real structure were updated using the frequency domain. Yeo, I.H. developed a damage
assessment algorithm using a parameter grouping technique to localize the damage
members and to overcome sparseness of measured data. Statistical distributions of system
parameters with a set of noise-polluted measurement data obtained from the data
perturbation method [Yeo00]. Recently, Ge and Soong presented a solution procedure for
damage identification using a cost function. This cost function is based on the regulation
method for the inverse problem [Ge984d]. H.Y. Hwang developed an identification method
for stiffness parameters and damping coefficient parameters of connections using test data.
FRF was used as a response model to find the connection properties [Hwa98]. Ata Mugan
presented a frequency domain analysis of time integration algorithms for semi-discrete
finite element equations. An integral equation was obtained where the equation has to be
satisfied by discrete-time transfer functions of time integration [Ata01]. Kan, J.S reported
damage detection in structures based on mode shape change and operational mode shapes
[Kan99]. A generalization of these methods to the whole frequency range of measurements
was proposed. T.C.Lim and J.Li developed a theoretical and computational study of the
FRF based on a sub-structuring technique by applying enhanced least square and TSVD
approaches [LimOQ]. H.Y. Kim proposed vibration based on damage identification using

reconstructed FRF in composite structures. The FRF responses were obtained by vibration



testing of fatigue-damaged laminated composites [Kim03]. U.Lee and J.Shin developed a
frequency domain method for structural damage identification derived from the dynamic
stiffness equation of motion. The report describes a dynamic stiffness matrix for the intact

state that appearsin the final form of the damage identification algorithm [Lee02]
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Chapter 2

Frequency Response Function (FRF) of the frame structure

The Frequency Response Function (FRF) is one of the dynamic properties of a
mechanical structure. It describes the relation between the input and output as a function of
frequency. An FRF is a complex valued function of frequency. It can be expressed as

follows

0,=H,, @.1)

Where, [ ;1s the linear spectra of input forces(mp vector), O, is the linear spectra of
output motion(np vector) and  H; is the FRF matrix (npxmp). mp is the number of
inputs and np is the number of outputs in the frequency domain. If a system has
mp inputs and np resultant outputs, then the system has np xmp transfer functions.
The FRF matrix’s columns and rows correspond to inputs and outputs, respectively. When
the input is fixed and FRFs are measured for multiple outputs, this corresponds to
measuring elements from a single column of the FRF matrix. This is used in a typical
shaker test. Alternatively, when the output is fixed and FRFs are measured for multiple
inputs, this corresponds to measuring element from a single row for the FRF matrix. This is

a typical roving hammer impact test.

Depending on whether a motion is measured as a displacement, velocity, or

acceleration, the FRF and its inverse can be described by a variety of terms. FRF such as

11



compliance, mobility and inertance are displacement per force, velocity per force, and
acceleration per force, respectively. Dynamic stiffness, impedance and dynamic mass are
inverse of compliance, inverse of mobility and inverse of inertance respectively. Fig 2.1

diagrams the relation of input, output, and transfer function.

2.1 Model description and gover ning equation

A structural dynamic analysis is an important part of the design process for any
mechanical system. Structures deemed above or below optimum design and reliability are
not desirable because of economic and environmental considerations. Customer demand
for a structure include low cost, longer use, economical operation, the capacity to carry
greater load, less run noise, less vibration, and less frequent failure. At present, many
industries emphasize advanced structural dynamics testing and signal processing

technology to support these demands.

Experimental structural dynamics have been tested widely in different industries.
These techniques were first used in the aerospace field for predicting the dynamic
performance of combat planes. Measurements of the dynamic properties of a structure and
its components are essential to understand the dynamic behavior of a vibrating structure. In
most cases, finite element model results are necessary to verify experimental results for the

dynamic properties of certain components. Fig 2.2 shows a model of a frame structure.
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Time window

Input(z) — System — Output ()

Frequency window

Input(w) — ) [H(®)] System > Output (o)

Fig. 2.1 Diagram of the transfer function for the frequency domain

acceleration

(a) (b) (©)

Fig. 2.2 Frame structure and modeling. (a) Frame Geometry. () Model (ground
exciting). (c) Model (forcing).

The linear differential equation of motion for the relative displacement of a structure
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subject to external excitations and its initial conditions are given expressed in Eq.(2.2).

Ma+C(X)v+K(X)u=1(¢) (2.2a)
v(0)=0;u(0)=0 (2.2b)

where U,V ,a are displacement vector, velocity vector, and acceleration vector,
respectively. M, K, C, F are mass matrix stiffness matrix, damping matrix, and force

vector, respectively.

In this model, all of the necessary mass, stiffness and damping coefficients are
included in the mass, stiffness, and damping matrices to obtain the correct time response
due to any arbitrary applied forced. Eq.(2.2a) represents the time domain behavior of a
complex dynamic system. Although Eq.(2.2a) can be used effectively in time domain,
considerable frequency domain data is not obtainable in many cases. For example, natural
frequency is an important characteristic of a mechanical system, and this can be more
clearly identified by a frequency domain representation of the data. The choice of a domain
is clearly a function of what information is desired. The present work observes the system

parameters and acceleration response in the frequency domain approach.

2.2 Governing equation in modal coordinates

In the frequency domain, natural frequencies and eigenvetcors are required.

Eigenvalues and eigenvectors can be found using a diagonalization method in Eq.(2.2a). A
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new coordinate system can be transformed from the equation of motion. This is called
generalized coordinates, and is written as diagonal or coupled form coordinates. The
transformation relating the generalized coordinates to the actual degrees of freedom of the

structure is a matrix, the columns of which are the eigenvector of the system.

u=ay (2.3a)

In Eq.(2.3a), @ is modal matrix and Y is modal displacement.

P P Py,
Py P Oy,

D= [(I)./r]: : Do (2.3b)
i P = Py

where, j indicates the degree of freedom (DOFs), r is the number of modes, and ¢ 18
the scalar value for the j’h element of the r”natural vibration mode. Eq.(2.3b) is an
expression of the modal matrix. Eignevalue problem can be solved using Egs.(2.4a), (2.4b)
and (2.4c) [Ani 95]. Here the damping matrix is not a diagonal matrix if the damping in the

system is non-classic.

K¢ =0’Mg, (2.4a)
[K-0*M]p, =0 (2.4b)
det[K —w>M =0 (2.4¢)
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. 2 . . . .
where, ®, is natural frequency and ®, is engine value. mass matrix M and stiffness

matrix K are known and Eq.(2.3b) can be interpreted as a set of N homogeneous

algebraic equations for N elements, (I)jn (j=L12,--- N). Therefore natural frequencies

can be known by Eq.(2.4c), the characteristic equation or frequency equation. When the

natural frequencies are known, Eq.(2.4b) can be solved for the corresponding vector ¢, .
The following Egs.(2.5a) and (2.5b) are the modal coordinate system of the equation of

motion.

O'MOYy+D'COy+DP'KDy=0]'f (2.52)

where, m .k, ,c, arethe modal mass matrix, modal stiffness matrix, and modal damping

matrix, respectively.

m, =®"MD (2.5¢)
k, =D'KD (2.5d)
c,=0"'CD (2.5¢)

multiplied by both sides of Eq.(2.5b) with ¢,

mr¢p}“}"r + Cr¢pr YI’ + kr¢pr YI’ = ¢pr(p’:‘f (2.6a)

- - A T
mrapr + crvpr + krupr - ¢pr(prf (26b)
uApr :¢pr Y, (260)
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A

~ ~ . h . . . . .
where, @, ,v,., @, is r" mode’s relative acceleration, relative velocity, and relative

displacement at point p at time ¢. Eq.(2.6b) is the governing equation in modal

coordinates.

2.3 Fourier Transformation of Response Functions (continuous)

The Fourier transform yields a frequency spectrum of the time domain function. It is
defined for continuous functions. Laplace transformation and Fourier transformation allow
data to be transformed from one independent variable to another, such as for time,
frequency, or the Laplace s-variable. The Laplace transformation of a function of time may

be transformed into a function of the complex variable s by :

0

F(s)=[ ()™ dr (2.72)

0

where, s is a Laplace operator (complex variable). Time is always real, whereas the
equivalent information in the s domain described by the complex function ‘s’ is complex
and has real and imaginary parts. The Fourier transform is obtained by merely substituting
‘iw’ for s,

Flio)= [ £)e ™ dr 2.75)

The transforms of the relative displacement, relative velocity, and relative accelerations for
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the sampled frequencies can be expressed in terms of X', in Eq.(2.8a).

T
S[up - I n,e"dt=X, (2.8a)
0
T
s, |=[v,ear =i, (1)-0,0)+i0X, =d, +i0 X, (2.8b)
0 \_;’——J

— (2.8¢)

Vor

_ : 2
=v, tiod, -0° X,
where, X, is the transformed modal displacement, d . is the value of different modal
displacements at the initial and final time, and v, 1is the value of the different modal
velocities at the initial and final time. d, and v, can be expressed as Eq.(2.8d) and

Eq.(2.8e). Egs.(2.8a-2.8c) are transformed modal displacement Slﬁ J, transformed

pr

modal velocity Sl_ﬁ o J, and transformed modal acceleration S[& prJ [Gra80], respectively.

v, =9,(T)-7,(0) (2.84)
d, =i, (T)-,(0) (2.8¢)

To obtain the modal displacement and modal velocity ,, (T ), v, (T ) at time T by

using the initial conditions, we use Eq.(2.8f) and Eq.(2.8g).
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1. .
_Ecrvpr(())—l—krupr(O) . ( (k —lcijJ (2.8f)

. . (2.82)
vpr(0)+50rupr(0) 1
+ Sin (k,——cro
1, 4
k,——c. |T
4
Eq.(2.6b) becomes Fourier transformed equation using the Eqs.(2.8a-2.8g)
m3a, |+ e 3, ]+ 6 3a, =0, 0 R (2.8h)

In the Eq.(2.8h) ¢ 18 the scalar value of eigenvalue for r" mode at point p,@ is

the eigenvector for #" modeand R is the transformed forced vector.

m (v, +iod, —0*X, J+c,(d, +ioX, )+ kX, =¢ 0'R 2.9)

Eq.(2.9) can be calculated as displacement responses equation as below:
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Y - 9,0, N B m,

ek swa) Coa™ ok vioe)

v,

(2.10)
iom, +c,

(—mra)2 +k +iw cr) ”

There are three terms in Eq.(2.10) for the displacement response. The first term occurs by
force and the structural system. The second and third terms occur due to the initial
conditions of the structural system. Modification of Eq.(2.10) by multiplying

2 . .
the (— 0) )glve an acceleration response;

¢ 0 Rw’
dc, =-0°X, =- UhRs
7 7 (—m,af+k,+ia)c,)

2.11
m.ow’ N (iom, +c, o’ @1

+(—m,,a12+k,,+ia)c,,)vpr (—m,wz+k,+ia)c,) 7

where, Ac, is the acceleration response for the r" mode at point p . The initial

displacement and initial velocity are zeros, and Eq.(2.11) can be rewritten as Eq.(2.12):

4,0, R o
A =- LS 2.12
7 (—mra)2 +kr+ia)cr) (212)

2.4 Transfer Function (continuous)

According to the transfer function definition, The transformed function /%, can be
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obtained from transformed output Apr and transformed input R as Eq.(2.13a). This

transfer function is for the #” mode at point p for a given structural model.

T .2
h,(0)= N 8y, 0 (2.13a)

-m.w” +k, +io c,)

The denominator of Eq.(2.13a), (—m,w” +k, +iw c, ) is then assigned as y, and some

portion of the nominator of Eq.(2.13a) — ¢ pr(pf as & o » as follows.

v, =(—mrc«)2 +k,+ia)c,) (2.13b)
£, =—0,0, (2.13¢)

Rewriting Eq.(2.13a) by using the Eq.(2.13b) and Eq.(2.13c) gives the following

Eq.(2.13d)
h(0)=—:t, (2.13d)

The Fourier transform of the forced response is obtained from a summation of the
transforms of all of the excitation forces times the column of the FRF corresponding to the

excitation DOFs.
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H,(o) =Z h, (@) (2.13¢)

where, H, and mp are the transfer function measured at point p and number of

modes, respectively.

2.5 Transfer Function ( discrete)

One of the most important concepts used in digital signal processing is the ability to
transform data between time and frequency via the Fast Fourier Transform (FFT) and the
inverse FFT. The Fourier transform is defined for continuous functions but it is a discrete
version of the frequency spectrum a sample time signal. This discretion, a finite length
spectrum, is called a Discrete Fourier Transform (DFT). It is also a mathematical tool,

which is easily implemented in a digital processor.

In the previous section, the Fourier transform is developed for continuous functions in
Eqgs.(2.13a-2.13¢). Here we express a Discrete Fourier Transform as Eqs.(2.14a-2.14¢) for

the frequency response function (FRF).

- 60" &’
h ‘ __ Npr 7 Jj _ .
w(@) (— m@’ +k, +ich,) (2.142)
v, =(-ma@ +k +idc,) (2.14b)
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h (0)=—L¢& (2.14¢)

o= 2re,

h (a))zwfx 5—’2{ (2.14d)

pr ~ Spr :
I

(o) = S i (o) (2.14¢)

where, (~) sign represents the discrete type. Eq.(2.14e) is the discretized form of the

transfer function.

There are some rules for digital measurement. Although the Fourier transform is
defined for continuous signals, DFT is defined for discrete signals and a finite number of
samples of the time domain. First, time commences at f =0 and ends at ¢ =7 . The time

period of the sampling or the sample window is:

T=AtN (2.15a)

where, At is an increment of time in seconds between samples, N is the sampling
numbers, and 7 is the time period. Second, DFT transforms N samples of real valued
time domain data into (]% ) samples of complex valued frequency data with frequency
resolution Af between samples. The frequency spectrum is defined for the frequency

range f =0and f = F___. This can be described by the following equation.

N
Fow =8 (2.15b)
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The third rule is Nyquist Sampling, which is a frequency spectrum containing unique

frequencies in a range from f =0 up to a maximum frequency f = F_ _ equal to one

max

half of the sampling rate of the time domain signal. Therefore:

Fr == 2.15¢
mx =5 (2.15¢)

1
—_ —_— .
Af (2.15d)

Sampling window length in time domain 7 is an influent digital spectrum. If
samples are taken over a longer time period, we can obtain better frequency resolution [H.

Mar 99].

The rules above are basically all that are required to make digital measurements.
However, there are two remaining difficulties associated with the use of the FFT. These are

aliasing and leakage.

Aliasing of a signal occurs when the signal is sampled at less than twice the highest
frequency of the spectrum of the signal. When aliasing occurs, the part of the signal at
frequencies above the sampling frequency adds to the part at lower frequencies, thus giving
an incorrect spectrum. To prevent aliasing, the frequency content of the time domain
signals must be bounded to satisfy the Nyquist criterion. That is, the maximum frequency
in the analog signals cannot exceed one half of the sampling frequency used to digitize

them.
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If a signal is non-periodic in its sampling window, it will have leakage in its spectrum.
Leakage distorts the spectrum and makes it inaccurate. In this case, leakage can never be
eliminated but it can be minimized. To minimize the effects of leakage, specially shaped
windows are applied to the time waveform after they are sampled, but before they are

transformed using the FFT.

A Zoom transform is an essential digital filtering operation that takes place after the
time waveform has been sampled. It involves re-sampling, frequency shifting, and low pass
filtering of the sampled data to yield a DFT with increased frequency resolution, but over a
smaller frequency band. The Zoom transform is very useful for obtaining better frequency
resolution without performing an FFT on a very large number of samples. From a practical
standpoint, the Zoom transform is much faster than using a base band FFT (starting at zero

frequency) with more samples to greater frequency resolution.

Structural dynamic measurements are made by excitation provided with one or more
shakers attached to the structure. Common types of shakers are electro-dynamic and
hydraulic shakers. The sine wave excitation is useful for characteristic non-linearities in the
structures. The sine wave excitation is the best signal-to-noise and random signal (RMS)-
to-peak ratios of any signal controlled in terms of amplitude and bandwidth, with long
histories of use. In this testing, care should be taken not to avoid over excitation, which
may result in distortion. Broad band frequency means zero to nearly half of the sampling

frequency. A variety of new broad band excitation signals have been developed for making
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shaker measurements with FFT analyzers. These signals are transient, true random, pseudo
random, periodic random, burst random, fast sine sweep (chip), and burst chirp. Although,
a broad band excitation signal is faster than the sine wave excitation, it is still useful in
some applications. In current research, sine wave excitation testing is used in the shaker

measurements.

2.6 Transfer function for ground motion (continuous and discr ete)

The response of structures to ground shaking caused by an earthquake is an important
component of a structural dynamic analysis. Earthquakes can cause damage to many
structures. There are two categories of mechanical systems, linearly elastic and inelastic
systems. Time variation of ground acceleration is the most useful way of defining the
shaking of the ground during an earthquake. The dynamic properties of many structures are
markedly more different during their response to strong ground motion than in small
amplitude ambient and forced vibration tests. Strong motion earthquake records provide
one of the few sources of information on the response of large structures to potentially

damaging excitations.

In this study, the transfer function is calculated using ground motion data. This transfer
function approach in the frequency domain can be determined through the time variation of
the system properties by a moving window Fourier analysis, considering the records

segment by segment.
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The modulus of the transfer function has been determined and the parameters of the
lower mode are estimated from the theoretical form of the modulus of the transfer function.
These estimates involve the use a few of the values of the modulus of the transfer function.
Points near the maxima of the modulus of the transfer are used to determine the modal
frequencies, and the amplitude of the peaks and bandwidth at the half-power points are
used to estimate participation factors and modal dampings. The recorded ground motion at
a site in EL Centro, California during the Imperial Valley California earthquake and the
Kobe earthquake ground motion data are used as exciting forced. The ground acceleration
is defined by numerical values at distant time instants. These time instants should be
closely spaced to accurately describe the highly irregular variation of acceleration with
time. Typically, the time interval is chosen to be 1/100 to 1/50 of a second, requiring 1500
to 3000 ordinates to describe the ground motion. The ground exciting EL Centro ground
acceleration with time is used. The peak factor of ground acceleration is 0.319 in EL

Centro and 0.831 in Kobe ground acceleration.

A generalization of the preceding derivations is useful if all the DOFs of the system
are not in the direction of the ground motion or if the earthquake excitation is not identical
at all of the structural supports. In this general approach the total displacement of each
mass is expressed as its displacement due to static application of the ground motion plus

the dynamic relative to the quasi-static displacement:

' (t)=u,(t)+u(t) (2.16)
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The quasi-static displacements can be expressed as U’ (t) =lu, (t) , where the
influence vector / represent the displacements of the mass resulting from static application

of a unit ground displacement. The governing equation for ground motion can be written as

Ma+Cv+Ku=-M12 (2.17a)
v(0)=0;u(0)=0 (2.17b)

where, Z 1is acceleration and the governing equations for ground motion in modal
coordinate are:

m.a, +c. v, +k.u, =—¢pr(pf M1z (2.18a)
I =¢' M1 (2.18b)
uApl*:¢pr Y, (2180)

These Egs.(2.18a~2.18c) are similar to the Eqs.(2.6a~2.6c), except the right side of
equations that forces term due to ground motion. where I, is the participation vector. First,

the Fourier transform is written as a continuous function of Eq.(2.19)

[Z(®) (2.19)

pr-r

m, (vp,, +tio d,, —szgp,,)+ cr(dpr +im Xgpr)+ergpr =—0

VA (a))is transformed ground acceleration due to an earthquake in the frequency domain

and Xg 18 a transformed displacement response for " mode at point p due to ground
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motion conditions.

The displacement response is the structure displacement from the original position.
The ground displacement that is not total displacement is not included. Inclusion of the

initial condition effect can be achieved as follows.

r

VPV

/a rr m
Xgpr == j)p . Z\w)- 2 .
(— mo +k, +m)cr) (— mo +k, +w)cr)
. (2.20)
iom, +c,

(- m,0* +k, +ioc,)

pr

The total acceleration response for ground excitation is computed from the above equation

with initial conditions.

9,1, o
-mo +k + zo)cr)
5 ‘ 5 (2.21)
m. o (loamr +cr)(o
+ 2 . pr + 2 . pr
-mo +k +ioc, -m.o +k +ioc,
If the initial conditions are zero, the response acceleration can be written as
¢, I, o

g, =Z()+ Comof 5 ioe ) () (2.22)

-mo° +k, +zo;)c,)

where, Ag . is the transformed acceleration response for " mode at point p . A transfer
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or FRF function at zero initial conditions and ground acceleration and continuous type can

be formulated as Eqgs.(2.23a-2.23¢)

Eq.(2.23a) is a frequency response function due to acceleration response in ground

motion, and hg 18 the transformed function for " mode at point p for zero initial

conditions due to ground acceleration.

o T o

h _ pror .
220 (- m,0 +k, +ioc,) (2.232)

Eq.(2.22b-2.22d) are made the simplification of the Eq.(2.22a).

2

w
hg,(0)=—~¢, (2.23b)
v,
Y, = (— mo +k, + i(oc,) (2.23¢)
¢, =—¢,I, (2.23d)

Eq.(2.23e) is the FRF for total modes of the structure, summation of the each FRF for each

mode of structure.

Hg (o) =) hg, (o) (2.23¢)
r=1

Secondly, there Eqgs.( 2.24a - 2.24¢ ) are FRF for discrete type of the frequency range.
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2
hg (o)= Oyl ©, (2.24a)
& (M, 0’ +K, +io,C,)

- w?
h gm(a)) =—L¢, (2.24b)

Vi
7,=(M,0’+K, +io,C,) (2.24¢)
¢, =¢,T (2.24d)

Frequency response function (discrete type) for each mode.

R @ max 0'32
hg, (@)= —L¢, (2.24e)
=t ¥y
FRF for total modes at point p.
- mode omax _
Hg,(0) =3 2 hy(o) (224
r=1 Jj=1

In this chapter, if we know the system parameters (stiffness and damping) of a structure, we
can calculate the displacement response, acceleration response, and frequency response
function (FRF) in forced vibration including ground motion at zero initial conditions and

known initial conditions.

31



The process of FRF is as Following fig. (2.3)

FRF
7y
Measured Acc: (7)
»| FFT
Input motion (7)
FFT

Acceleration

Fig. 2.3 Process of the FRF
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Chapter 3

Parameter s Estimation and Damage Detection

Based on Sl in Frequency Domain

3.1 Theory

This chapter describes a parameter estimation and damage detection method based on
system identification (SI) through a regularization technique in the frequency domain.
Parameter estimation from dynamic response data has been developed in recent years.
There are two types of domains in dynamic response. One is time domain and the other is
frequency domain. During last two decades [Fri86], the governing equation and
mathematical models have been generally defined in the time domain; however, these can
also be transformed to the frequency domain using an integral transform.

Ljung and Glover (1981) compared the frequency domain method and time domain
method, and found that these methods complement each other. Banan and Hjelmsatd
(1993) later came to the following conclusions:

“In general, the choice between time domain and frequency domain is dictated by the
prior knowledge of the system and the intended use of the model. When the system is
governed by differential or difference equations, or when the model is intended to predict
future response or to simulate the system, or when a stochastic control is desired, a time
domain model will eventually be required. When the objective of the identification process
is to determine resonances in the response of the system, to design a model for a frequency
domain control system, or when the bandwidth and the frequency resolution are available

as a prior information, then a frequency domain model must be employed.” [Hje96a]
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Here we describe a parameter estimation and damage detection method based on
frequency response function (FRF) and system identification (SI) through a regularization
technique in the frequency domain. FRFs can be obtained and transformed from the
measured response and calculated response by using a mathematical model. A
mathematical model can be constructed using dynamic equilibrium, if the structure is
assumed as a linear time invariant system and its geometry and the boundary conditions are
also known. The history of dynamic loads and measured response in the time domain are
transformed to the frequency domain using first Fourier transform (FFT). We then proceed
to calculate the transformation function using these transformed measured responses as
output and dynamic load as input, which is referred to as a measured transfer function or
measured FRF. The responses at different locations do not interact with each other. The
calculated FRF can be obtained from the mathematical model. This model is constructed
using the transformed governing equation in the frequency domain with unknown system
parameters and transformed dynamic loads.

The basic concept is to detect the structural damage by the least square error method.
This minimizes the frequency integral of the least square error, which is the difference
between transformation from measured acceleration data and the corresponding
transformation calculated acceleration by the mathematical model, which is in turn the
difference between measured FRF and calculated FRF. This is also known as model
updating or the optimization method. Stiffness properties of the structural and structural
modal damping are used as system parameters. The structural modal dampings are molded
by the Rayleigh damping method.

Damage detection of the structure using the measured response by the modal analysis
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approach has been widely used. This approach has some disadvantages; for example, when
structural properties are changed, the modal data shows insensitiveness and damping
properties cannot be estimated. Kim et al. developed a damage assessment of bridge
structures using measured acceleration data by using system identification in the time
domain and the aforementioned drawback was also addressed. In the present work,
structural properties and modal damping are used as system parameters for system
identification in the frequency domain in order to overcome these drawbacks.

When taking measured data form a structure, we cannot take the measured data for all
the unknown system parameters of a structure. In practicality, it is difficult to measure all
degree of freedoms for a structure and total cost is also expensive for all measuring
instruments. At large structures are many structural elements, which are many degrees of
freedoms for the model. Therefore it is impossible to handle all the measured data. If the
ratio of the measured points and the unknown system parameters is small, the sparseness of
measurement effect may be large. Measuring error is called noise, and this occurs in
measurements as a result of the sensitivity limits of the measuring instruments and
uncertainty in experimental environments. Therefore SI for structural systems has
sparseness and noise problems [Shi94, Yeo00, Par02]. For example, bridges are complex
structures, and hence sparseness and noise problems are serious. This is because the
number of measurable responses is much smaller than that of the system parameters and
uncertainty in experimental environments.

System identification is an inverse problem. SI suffers from ill-posedness due to
sparseness and noise in measurements. Ill-posedness of SI based on the output error

estimator is investigated in the context of the inverse problems. Yeo00 and Par02 attempted
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to reduce the instabilities of the output error estimator by using a regularization technique
in the time domain. In current research, a similar concept of the regularization technique is
used in the frequency domain. Here, the bandwidth and the frequency resolution are

available as prior information.

3.1.1 Ill-posedness of the Output Error Estimator of the FRF

Non-uniqueness of a solution and discontinuity of solutions are characteristics of the
ill-posedness of the output error estimator [Han98, Yeo00, Par01]. Ill-posedness can be
overcome by using the solution of the linearized form of the output error estimator.
Because the output error estimator is a nonlinear optimization problem, it should be solved
iteratively by linearizing with respect to the system parameters.

Non-uniqueness of the solution problem in the sensitivity matrix is due to sparseness
of measurements [Han98, Par0O1]. Discontinuity and convergence difficulties of the
solution can appear due to inclusion of the noise in measurements [Gro84, Han98, Par01].
It can be said that numerical instabilities of the output error estimator are caused by rank-
deficiency of the sensitivity matrix and violation of discrete Picard, respectively.

Singular value decomposition (SVD) investigates numerical instabilities of the
linearized output error estimator [Gol96]. Either rank-deficiency or violation of the Picard
condition can be solved through the SVD. Therefore, SVD can investigate non-uniqueness
and discontinuity of solution of the output error estimator, which are two important kinds

of ill-posedness.

3.1.1a Non-Uniqueness of the solution

Sparseness in measured data occurs when the numbers of measured degree of
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freedoms are few as compared with the unknown system parameters in a finite model of
the structure. When the measured data are so sparse that the resulting equation in the
minimization problem of the output error estimator becomes underdetermined, there is an
infinite number of solutions. The sparseness of the measured response occurs very often in

the area of SI for structural systems.

3.1.1b Discontinuity of the solution

Discontinuity of the solution is due to the noise included in the measurements. The
degree of discontinuity increases as the number of system parameters increase when there
is noise in the measurements.

Measurement errors and modeling errors are sources of noise when SI algorithm is
applied. When we collect data during actual measurement, misreading of test equipment or
sensitivity of sensors can cause noise. Then the discrepancy between a real structure and its
mathematical model causes noise in the SI. Although measurement errors are probabilistic,
modeling errors are systematic in nature. Modeling errors cannot be reduced in
minimization with a predefined structural model. Modeling errors, which lead to errors in
the stiffness matrix, result in noise in the computed responses such as displacements,

velocity, acceleration; they do not include in measured responses.
The measured acceleration A can be theoretically decomposed into the noise-free

acceleration A and the noise vector € as follows.

According to Eq.(3.1), the noise-free displacements can be defined as the best-fitting
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response with measured ones obtainable by adjusting predefined system parameters in the
mathematical model. This decomposition of response cannot be achieved explicitly, and is
purely conceptual. A small change in noise may yield a totally different solution because
small singular values amplify the change in measurements, which is a source of

discontinuity characteristics in SI problems.

3.1.2 Regularization Preserving Regularity of the Solution of Sl

There are several kinds of complex methodologies and techniques that can realize the
regularization. However, the main concept of the regularization is to preserve the regularity
of the solution that defines a proper function space where the solution must exist [Tik77,
Joh87, Bui94]. Since a proper function space for the solution is usually provided in a
forward problem either explicitly or implicitly, the regularity of the solution is guaranteed
and the forward problem is well-posed.

To explain the regularity of the solution by an illustration, Fig. 3.1 shows the function
spaces representing the system property and the acceleration response field, and mapping
between the system property and acceleration response field. x, x*, a, and a” represent the
system property, an admissible system property, the acceleration response field, and an
admissible acceleration response field, respectively. In this study, the term ‘admissible’
implies that a function space representing a physical property should be regular so that it
has both physical and mathematical significance. Whether a function space is regular is
judged by the regularity (integrability) of the function space [Joh83].

In general, the forward mapping represented by a frequency response function (FRF)

equation is performed from an admissible system property onto an admissible acceleration
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Minimize 11,
X
Fig.3.1 System property, acceleration response field, forward and inverse mappings

response field as shown in Fig. 3.1. Here, the FRF equation is derived from the dynamic
differential equation and a First Fourier Transform. However, it is not guaranteed that the
inverse mapping represented by the output error estimator between the measured and the
calculated response is performed from the admissible. This is because a proper solution
space of the system property is not defined by the output error estimator and the
measurements inevitably contain random and modeling errors. In other words, ill-
posedness of the inverse mapping represented only by the output error estimator occurs
since there is no proper regularity condition of the system property. Therefore a proper
regularity condition should be adopted to alleviate ill-posedness of the inverse mapping.

In general, a strong form of the regularity condition with respect to the model space

is represented by the integrability of the model space [Joh87, Ode79].

1/r
(“x—xordV] <o, 1<r<w (3.2)
Vv
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where, xo is the center of the function space given a priori. The system property satisfying
Eq.(3.2) is an admissible system property, x in Fig. 3.1. The topology of the system
property depends on 7.

The weak form of the regularity is usually imposed in practice since it is impossible to

employ the strong form of the regularity condition directly.

I|x—x0|rdV<R: (3.3)
vV

where, R, denotes the size of the function space. 7 and R, are determined properly by the

regularization technique by considering the physical and the mathematical characteristics
of the system property as known a priori. For example, standard Tikhonov regularization
r=2, which means the original system property should be a square-integrable in the vicinity
of xo. In other words, the system property defined by Tikhonov regularization is a subspace

of the L,-space that consists of piecewise continuous functions [Joh87].

MinimizeIl , +Regularity condition

Fig. 3.2 Inverse mapping with regularization
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I|x—x0|2dV<Rf (3.4)
Vv

A subspace of function space x  satisfying Eq.(3.4) is also an admissible system
property, x * determined by the regularization technique in Fig. 3.2. Fig. 3.3 and Fig. 3.4
present the effect of the regularization that alleviate the typical ill-posedness, non-
uniqueness, and the discontinuity of the solution. x4, x;, and a4, denote elements that satisfy

the following condition.

Fig. 3.4 Alleviation of the discontinuity of the solution by regularization
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x, €x”
X, €Xx (3.5)

.
a,€a

Non-uniqueness of the solution may occur when the solution corresponding to the
displacement a4 is not unique. Solutions obtained from the inverse mapping corresponding
to a4 may include those in the admissible and inadmissible system property, as shown in
Fig.3.3. If the regularity condition is enforced by the regularization technique, only the
solution that belongs to an admissible system property can be obtained.

Discontinuity of the solution occurs when the inverse mapping from the acceleration
response field in the vicinity of a, to the system property yields large deviations, depicted
as the darkly shadowed region in the vicinity of x4. The darkly shadowed region includes
solutions of admissible and inadmissible system properties. In general, most of the darkly
shadowed region lies in the inadmissible system property, as shown in Fig. 3.4. Therefore,
if the regularity condition is enforced by the regularization technique, solutions continuous
with respect to the small perturbation of the output can be obtained, which lies in the

admissible system property.

3.1.3 Numerical Remediesfor Output Error Estimator

Ill-posedness of the inverse problems can be reduced by using the two major
numerical remedies. These are truncated singular value decomposition (TSVD) [Gol96,
Han98] and Tikhonov regularization technique [Tik77, Gro84, Bui94, Han98]. The TSVD
can be used to resolve the non-uniqueness of the solution and then Tikhonov regularization

enhances both convergence and continuity of the solution.
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Both methods have balance power to convert the ill-posed problem into a well-posed
problem by imposing the positive definiteness on the original ill-posed problems. The
degree of smoothness is proportional to that of positive definiteness, which is determined
by a truncation number of TSVD and a regularization factor in the regularization technique.

In these numerical remedies, the most important issue is to maintain a consistent
regularization effect on the parameter estimation, which is controlled by the truncation
number of TSVD [Vog86] and a regularization factor [Bui94, Han98, Par01] in the
regularization technique. Therefore, it is crucial to determine a well-balanced truncation
number and regularization factor in order to obtain a physically meaningful and
numerically stable solution of an inverse problem. This section presents a detailed

description of the TSVD and regularization technique

3.1.3a Truncated Singular Value Decomposition

There are an infinite number of solutions in the rank-deficient problem. Truncated
singular value decomposition (TSVD) is motivated from the simple idea that feasible
solutions are smooth rather than oscillatory among an infinite number of solutions if a
priori estimation of the solution is smooth. The degree of the smoothness of the solution
can be measured by the L,-norm of the solution vector. In TSVD, the solution with the least

L,-norm is defined as the most feasible one [Gol96, Han98 ].

3.1.3b Tikhonov Regularization
In various types of inverse problems, the concept of the Tikhonov regularization has
been successfully applied to overcome ill-posedness [Bec84, Sch92, Lee99, Lee00, Par02].

The regularization can be interpreted as a process of mixing a priori estimates of
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system parameters and a posteriori solution [Bui94, ParO1]. The baseline properties are
selected as the a priori estimates of the system parameters in this work. The priori estimates
are taken into account in the problem statement of inverse problems by adding a
regularization function with the a priori estimates of the system parameters to the error
function. The regularization function should be defined differently for different problems
since each problem has a different regularity condition that defines the feasible solution
space, as noted in section 3.1.2. It is square-integrable with respect to the system property
since the physical distribution of the system property is piecewise continuous. [Tik77,
Gro84, Mor93]. The regularization factor controls the degree of the regularity of the

solution space [Tik77, Gro84, Mor93, Bui94, Par01].
1 2 2
M, =2 j(x—xo) dv (3.6)
14

where A is the regularization factor that controls the degree of the regularity of the solution
space [Tik77, Gro84, Mor93, Bui%94, Par01]. Eq.(3.6) is the standard Tikhonov
regularization function. Then Eq.(3.6) is converted into the discrete form, giving the

following equation.
1., 2
I, :Ek X=X, (3.7)

where X, denotes the a priori estimates of system parameters.
The weighting factor o, which varies with the regularization factor from 0 to 1,

adjusts the relative magnitude between a posteriori solution and a priori estimates in the

44



regularized solution. The weighing factor approaches zero as the regularization factor
becomes smaller, and one as the regularization factor becomes larger. Therefore, the
solution converges to a priori estimates for a large regularization factor while the solution
converges to a posteriori solution for a small regularization factor. If the regularization
factor is fixed, the weighting factors become larger for smaller singular values. This
implies that the stronger effect of the a priori estimates is included in a solution component

corresponding to the smaller singular value, and vice versa.

3.1.4 Determination of an Optimal Regularization Factor

An optimal regularization factor can be determined by several well-defined methods
for linear inverse problems, including the L-curve method (LCM) proposed by Hansen
[Han92a], the generalized cross validation (GCV) method proposed by Golub er al
[Gol78], and the geometric mean scheme (GMS) proposed by Park et al. Kaller and M.
Bertrant utilized the GCV for medical image enhancing problems [Kal96]. Although
(LCM) and (GCV) schemes have been proven to be effective in linear inverse problems, no
rigorous schemes for nonlinear inverse analysis have thus far been proposed. These
methods can determine the regularization factors of nonlinear inverse problems at each
minimization iteration, where a linearized quadratic sub-problem is solved. The GCV is
unable to effectively control the instabilities of the SI algorithms when regularization factor
value is too small. (GMYS) is utilized to overcome the drawbacks of the (LCM) and (GCV)

schemes in the determination of the regularization factor for SI in elastic continua.

3.1.4a Geometric Mean Scheme (GMYS)
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One of the optimal regularization factors is the geometric mean scheme (GMS),
proposed by Park et al.(2001). In this method, an optimal regularization factor is defined as
the geometric average between the maximum and the minimum singular values of the
sensitivity matrix. The regularization effect on each component of the solution depends on
the magnitude of the corresponding singular value. Fig. 3.5 illustrates the variation of
weighting factors for the maximum and the minimum singular values with the
regularization factor. In the regularized solution, the maximum effect of a priori
information and a posteriori solution occurs with the smallest singular value and the largest

singular value, respectively. On the other hand, the minimum effect of a priori

. __ . __.—#_—-"’. \ l'amin
- »

=

- =-=Minimum effect of the a priori information
Maximum effect of the a priori information ............
Minimum effect of the a posteriori solution
Maximum effect of the a posteriori solution - ------- '

\

Fig. 3.5. Schematic drawing for an optimal regularization factor in the GMS
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information and the a posteriori solution occurs for the largest singular value and the
smallest singular value, respectively. Based on this observation, the optimal regularization
factor is defined as the one that yields the same maximum and minimum effect of the a

priori information and the a posteriori solution, which can be stated as

max - min ? 1- amin = a’max (38)

where, Ol . and o ., are the weighting factors corresponding to the maximum singular
value and the minimum singular value, respectively. The first and the second equation in
Eq.(3.8) represent the balancing conditions on the maximum and the minimum effect,
respectively, as shown in Fig. 3.5. An interesting point is that the two equations are
identical and yield the geometric average between the smallest and the largest singular

value for the optimal solution of Eq.(3.9)

A, =4O . O (3.9

If zero singular values exist, the smallest non-zero singular value may be used for Wp;p .

3.1.4b TheL-Curve Method (LCM)

The L-curve is a log-log plot of the regularization function versus the error function
for various regularization factors. Hansen showed for linear inverse problems that the plot
always formed an ‘L’ shaped curve as shown in Fig. 3.6, and that the optimal regularization
factor corresponds to the sharp edge of the curve where the curvature of the curve becomes
maximal [Han92a]. For nonlinear inverse problems, the L-curve is defined at each iteration

for the linearized error function.
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The regularization function 7, and the linearized error function 77, are expressed in

terms of the weighting factor, which is a function of the regularization factor as follows.
The parametric form of the L-curve for the current iteration step is given by the following

expression.

(P(1), (%)) = (log(}; ), log(n ) (3.10)

The curvature of the L-curve is given as

k(L) = PN —pMn

- ((pr)z +(nr)2)145 (3.11)

where the superscript ' denotes the differentiation of a variable with respect to A. Since p
and m are continuous functions of A and expressed explicitly for A, the derivatives in Eq.

(3.11) are obtained analytically. The optimal regularization factor that yields the maximum

curvature of the L-curve is calculated precisely by a one-dimensional line search.

Regularization dominant

T (A increases)
best balanced point N
(A is optimal)

»
»

A
o . )
R Error function dominant

(A decreases)

e

Fig. 3.6. Basic concept of the L-curve method
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However, for some nonlinear inverse problems, the solutions by the LCM do not converge.
The L-curve with a large regularization factor corresponds to a nonlinear problem affected
by a solution error and the L-curve with a smaller regularization factor is affected by

measurement noise.

3.1.4c Variable Regularization Factor Scheme (VRFS)
The variable regularization factor scheme (VRFS) is useful in nonlinear inverse
problem. The regularization factor can be reduced by multiplying a prescribed reduction

factor £ ranging from 0 to 1 when the regularization function becomes larger than the

error function by the solution of the current iteration. Lee et al. demonstrated that
identification results are relatively insensitive to moderate values of the reduction factor
around 0.1. For shape identification problems and damage detection in framed structures,

VRFS with # = 0.1 has been successfully applied [Lee99, Lee00, Yeo00]. The VRFS

method can be easily applied to any type of regularization functions, which is one of the

strengths of the VRFS

3.1.4d Generalized Cross Validation (GCV)

A popular method to find the regularization factor is generalized cross validation
(GCV). It can be used for determining the regularization factor and for estimating the
noise amplitude of measurements [Gol78, Han98]. GCV is based on the statistical idea that
an appropriate regularization factor should predict missing measurements. That is, if an
arbitrary component of the measurement vector is left out, the corresponding regularization

factor should predict this component of the measurement well. The minimization of the
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GCV function with respect to the regularization factor can obtain the GCV optimal

regularization factor [Gol78, Han98].

3.1.5 Recursive Quadratic Programming

The recursive quadratic programming (RQP) method can solve the constrained
nonlinear optimization problem. The RQP algorithm can be applied directly to problems
with inequality as well as equality constraints, it is globally convergent, and is amenable to

large-scale computation. In a typical iteration of the recursive quadratic programming

algorithm, the first step is selecting a feasible starting vector s,. At the current estimate,

the objective function is quadratified and the inequality constraints are linearized. The
quadratic objective is minimized and the linearized constraints are satisfied, using an active
set strategy. The search direction is then the solution to the quadratic subproblem. The
length of the step in this direction is determined by minimizing a line search objective
function and a penalty term that becomes positive whenever one or more of the constraints
is violated. The line search producer ensures the global convergence of the RQP method. A
general nonlinear optimization problem with both equality and inequality constraints can
be written as follows:

Minimize j(s)

Subjectto ¢, (s)=
C, (S)S

1

(3.12)

where, the object function j and/or some of the constraint ¢ are nonlinear with respect to

the unknown variables s . In this proposed parameter estimation problem, the loss function
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is the squared error objective function. The vector of the unknown variable s may contain
unknown parameters x (out put error estimator) and the constraints simply bound the

unknown parameters as shown below

x, <x<x, (3.13)

3.1.6 Sensitivity of the objective function

The gradient of the objective function with respect to the unknown parameters: The
recursive quadratic programming requires an estimate of the Hessian matrix of the
objective function. The exact Hessian matrix and the Gauss-Newton approximation of the
Hessian matrix can be used. In this study, the Gauss-Newton approximation of the Hessian
matrix, where second derivatives are ignored, is adopted. If we use the Gauss-Newton
approximation of the Hessian matrix, the equation becomes is quite simple and we can

obtain sufficient easily convergence.

3.2 Formulation

In the previous chapter, we computed the displacement response, acceleration response,
and calculated frequency response function (calculated FRF.) using the ground acceleration
and forced vibration, utilizing known system parameters such as mass, stiffness, and modal
damping. Here, system parameter estimation and damage detection are based on system
identification, which is an inverse problem. System parameters are priori estimated system
parameters. Therefore, the governing equation and modal dynamic equation are used in the

same manner as chapter 2. Here, continue to formulate for the output error estimator,
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minimization of least square error. There is minimization of least square error with
regularization functions by used Tikhonov regularization function. The next step is
sensitivity and decomposition of the objective function. Finally, we can obtain a posteriori
solution. Fig 3.7. shows the diagram of parameter estimation.

The frequency response function (FRF) is independent of the loading condition. It can
be easily known that compare with continuous types of FRF the Eq.(2.13a) for forced
vibration and the Eq.(2.23a) for ground motion (earthquake). Similarly, the discrete form of
FRF expressed in Eq.(2.14a) and Eq.( 2.24a), where the loading term has been omitted. In
these equations the difference between two pairs difference is the forced acting points. For

example, loading acts for all of the degrees of freedom in a shear building.

3.2.1 Governing Equation (used priori estimated system parameter)
The equation of motion is the same as Eq.(2.2a), for n-degrees of freedom subject to

forced vibration for a structure can be written as:

Ma+Cv+Ku=f (3.14a)
v(0)=0;u(0)=0 (3.14b)
where, U,V ,a are displacement vector, velocity vector and acceleration vector

respectively. M, K, E,f are priori estimated mass matrix, priori estimated stiffness

matrix, priori estimated damping matrix, and force vector. System parameters are element

stiffness of a structure and damping ratios or coefficients of Rayleigh damping.
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Fig. 3.7 Diagram of the parameter estimation

Eq.(3.14a) is changed to modal coordinate form as follows; it is also the same as
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Eq.(2.6a).

— . — . e T
r(I)pr Yr +cl’ ¢p}‘ YI’ +k}" ¢pr YI" = ¢pi‘ (pl"f (3'153)
ma,+c, ¥, +k.i, =6, (3.15b)
0, =0,y, (3.15¢)

where, m,, ¢, k, are modal mass matrix, modal stiffness matrix, and modal damping

r

A

. . .. . A A . h
matrix by using the priori estimated system parameters. Then @, ,v ., u . is r" mode’s

relative acceleration, relative velocity, and relative displacement at point p at time ¢ .

3.2.2 Acceleration Response Function

State here is an acceleration response function for forced vibration including initial

conditions terms, where Ac - 18 the acceleration response for " mode at point p.R is

the transformed forced vector.

) 9,0, R o
c,. =- —
7 (— m.ow’ +k, +ia)5r)

_ — N o (3.16)

m, ® iom, + ,)03

+ — e .= vpr + — 2 7 - dPV
(—mrw +kr+lcocr) (—m,a) +kr+1a)cr)
If the initial conditions are zero, the Eq.(3.16) becomes as follows:
¢,0, R o’
Ac, =- (3.17)

(— .o+ /g, + iwa)
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We can then calculate the acceleration response for the ground motion, including the

ground acceleration. In Eq.(3.18), Ag, is the transformed acceleration response for

" mode at point p .

q) rrr 0)2
Ag, =Z(o)+ —2—————7(o)
(—mrw +k, +ia)cr)
o, N, (3.18)
m, ® (i(om,+c,)(o
=2 7 =\ — 2 T . = pr
-m.w” +k, +ioc, -m.w” +k, +ioc,
I', is the participation vector, expressed as
I =¢'M1 (3.18a)
If the initial conditions are zero, the response acceleration can be written as
(I)prrr (02
Ag, =Z(0)+ Corot +F viok Z(w) (3.19)
-mw +k, + la)cr)

where, Ag - 1s the transformed acceleration response for " mode at point p . In

Eq.(3.19), the acceleration response is an absolute value, while the input data uses
absolute measured acceleration. We can use the measured acceleration response, since the

calculated acceleration response is also a relative acceleration response, as in Eq.(3.20)

55



(3.20)

¢prrr (’02
- Z
ﬁra)2 +k, +ia)5r) (03)

(rel)dg,, =

3.2.3 Frequency response Function (discrete type)

Eq.(3.21a) to the frequency response function
~ 9,0, &
h,(®)=- o 3.21a
@) (— mw’ +k + ia)E,,) (3:212)

v, = (— mw’ +k, +iw5,) (3.21b)

£, =—0,0, (.21¢)
Simplifying Eq.(3.21a) using Eq.(3.21b) and Eq.(3.21c) gives

C
(@)==¢, (3.21d)
Vi
R @ max 52
h(0)=72 ==&, (3.21¢)

g

(3.219)

hg , transforms function for " mode at point p for zero initial conditions due to ground

acceleration. Egs.(3.22a-3.22¢) are FRF for discrete type of the frequency range.
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o T (ojz
(3.22a)

pr—r
— 2 7 .=
mo” +k, +1wcr)

ngljj(o‘)): (_

Modifying to simple a form of Eq.(3.22a) gives
®*
he (@)= l;—’g“p, (3.22b)
i
~ — 2 e -
v, = (— mao +k, + zwcr) (3.22¢)
S, =9, 1 (3.22d)
(3.22¢)

FREF for total modes
(3.22¢)

3.2.4 Output error estimator for FRF
Here we formulate the output error estimator function using Eq.(3.22b) and Eq.(3.22b)

for ground motion. The output error function is different between the measured response

function (measured FRF) and the corresponding calculated FRF by the mathematical model.
(3.23)

E,=H" - Hf
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where £, H 1'," and H ; are the output errors estimator function of the total modes

FRFs at measured point p , measured FRF (transformed form measured acceleration), and

calculated FRF for total modes (transform by calculated acceleration) from the

mathematical model

3.2.5 Minimization of least square output error estimator for FRF

The least square error of the output error estimator is expressed by the following Eq.

(3.24a).

n, =|E,E, do (3.24a)
0

where, 7, is the least square error for measured point , E , 1s the conjugate of £, and

FRF are complex numbers. Here the Euclidean norm is used in Eq.(3.24a). Then,

substituting the output error estimator function , we can obtain the following equation:
”ﬁﬂHZ"—HZ][ Zz—HE]dw (3.24b)
0
where, H b H , are the conjugates of H ', H  , respectively.

Vb =T[HZ H:do (3.24¢)
0
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where, y, is the normalization of the least square error by using the estimated system

parameter.

npoint T npoint J.[ ;1 - H; ] [171’7" - ﬁ; ] d())
M,=> +£=> 2 (3.25a)
SRS [ <] do

S ey

where, I1, is the normalized total least square error or objective function. Eq.(3.25a) is

expanded as Eq.(3.25b)

NlEpEy —Hr H-H B B H de

npo int T npo
Mn,=>» —+= 0 — (3.25b)
et Vo [[a; 7:do
0

Eqgs.(3.24a) to (3.25b) are expressed as a continuous type for frequency integrity. Now we

change the normalized total least square error function to a discrete type as follows:

nmode
1 npo int 1 qo m h ; Z hpr/
He=g 2~ (3.25¢)
2 p=l 'Y = nmode . nmode . nmode
Z fy + Z hy Z hpr/
where, /., h ,; are measured FRF and conjugate of measured FRF for each mode and

s h ., are calculated FRF and conjugate of the calculated FRF.

The normalized minimization problem can be written in the following form.
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MininizeHE
_ nmode
lnpoint 1 2o hZ hlzl _hlr; ; h;i:/' <0
:>ax, 2. Y, b g nfehc +n§iehc nfeﬂ“ = (3.25d)
» — pij L prj — prj

subject to R(X) <0

Eqgs.(3.24a-3.54d) are not included in the regularization function to overcome the ill-

posedness. Here through the Tikhonov regularization function adds at least square error

function. IT, is the Tikhonov regularization function. Modified error functions has been

expressed as Eq.(3.6)
IT,, =11, +11, (3.26a)
In Eq(3.25a), we obtain the new least square error function as follows:

[l - )l - 7] do
0

npoint

o + l/12I(x—xo)2a’V (3.26b)
p=l c Jrce 2 Vv
[ e B de

0

where, x, is the center of the function space given a priori, A is a regularization factor that

controls the degree of the regularity of the solution space standard Tikhonov regularization

function. Then Eq.(3.26b) is expanded and converted into discrete form.
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nmode

npo int 1 no hm hm Z hc

I, IS L +lk2||x—x(
2 - - nmode nmode nmode
p=l I p p=1 Z hc + Z hc Z hc
(3.26¢)
1 a npo1nt
=—— —L 1+ 27 x=x,] <0
206\ 3 Y,

subject to R(X) <03

where, X, X, are system parameter vector and priori system parameter, respectively.

The least square error minimization is also changed. Therefore Eq.(3.25d) becomes
Eq.(3.26d)
oIl ., a(HE +HR) o, dl,

Minmizell,, = = = +
x 6x, ox, oX, ox,

2
- <0
2 6x, ( PZ ]—i_}\‘ ”X X0||<

subject to R(X) <0

(3.26d)

Here the gradient of the objective function differentiates with respect to system parameters.

The first term of Eq.(3.26d) is a little complex. Therefore it needs to derived in more detail.

61



a npoint ﬂ-p n]iint 1 aﬂ-p
axl p=l 7/p p=l 7p axl
_nmode ¢  nmode nmode nmode A, €
) PV] h + h P"]
3 npo int L nw ; ax[ ; prj Z prj ; axl
p=l1 717 J=1 —h ’7%6 ah i"’j h m ’1§19 8h ;"]
L r=l1 ax[ Y r=1 ax[
nmode nmode ah <
]’l c —h prj
_npoint 1 e (Z Py ] rzl: axl (3273)
= 717 = nmode Jnmode ah ;r/
| She —h" =
i nmode nmode ahc
conjg\h ¢ . )—conjg\h ", —
_npomt 1 nw (; ]g( PrJ) Jg( P/)J ; axl
o o nmode nmode ah ¢
= 7/ = c 7]
T (N T L R
r=1

In the last sentence of Eq.(3.27a) , the calculated FRF must be differentiated with respect to

the system parameters.

ahcp)j 0 2 0‘)5 ~ agpr/ 8\TI 7y
8 A 7 k c
Vo _ O o Ok /. o, . (3.27¢)
ox, ox, Oox, 7 ox,
oc,. 0b, or
ﬁ - ¢1’ o+ (I)pr r (327d)
ox, ox, ox,

If the eigenvectors are mass-normalized, then 7z, = ¢ [M]Cbr =1 for all modes
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m, =o' [Mp, =1 (3.27¢)

Gradient of the modal mass with respect to the system parameters is

[¢[ ]¢]—— - (3,270

Gradient of the modal stiffness w.r.t system parameters is

7_8 ; K o, _, 00,
o [¢ Ko, |- 2 K¢ -0 ¢ K =22, o7 2 ¢(327g)

Gradient of the modal damping w.r.t system parameters is

ac, ok,
= (3.27h)

8x, 8x1 le 0ox,

where, ¢, is the damping ratio for each mode. The modal damping ratios are used as the

system parameters. If we substitute the coefficients of the Rayleigh damping in modal

damping, the following is obtained

K 1 KZ\/T
A TR (3.27i)

§\|>-\

‘S\ PT‘\

where, k| K, are coefficients of Rayleigh damping

Gradient of the participation w.r.t system parameters is
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= 2 o] 2 o or Ty @21

ox, “1 I I
% =0 (3.27k)
1
o o —
r =2 M
o M i} (3.270)

Eq.(3.27g) and Eq.(3.27g) included the differentiation of the mode shape vector. They can

be solved using the reference of [Kan02]

09, _~

x ;“mq’s (3.27m)
ok,
b o O 3.27
OLVS :_% (I’;ﬁs) ( ) n)
kS _kl
ok,
ad) nmode (I)f axll (I)’ (3 27 )
L - _ d) 210
ox, Z“ k,—k,
If 7 isequalto s, Eq.(3.27n) change to follow
0
B _y , (o, =0) (3.27p)
ox,

3.2.6 SVD of the Output Error Estimator
The solution of the minimization problem Eq.(3.26d) is obtained by solving iteratively.
The second order sensitivities of the objective function differentiate with respect to the

system parameters. It is the Gauss-Newton Hessian matrix, can be expressed as follow
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o, o, +11,) o, o,

hessian = = = +
Ox,0x, Ox,0x, Ox,0x,  Ox,0x,
2 npo int 3.28
L9 N <o (3:282)
20x0x,\ 53 7,

subject to R(X) <0
Expending the Eq.(3.28a)

62 n]iint n_p
axl axt p=1 Yp

npoint 1 82 T

P

p=1 yP axlaxt
1z (nm oh ;] nmod e ah ;] nmode Af ;] nmode ah ;]
I e : 2 : : (3.28b)
eI DIE I e
npo int 1 & nmode ah ¢ nmode ah ¢ nmode ah ¢ nmode ah ¢
= — — con + — con e
3, jzz[ ,Z: ox, ,Z; ]g( ox, J ; Ox, ,ZI: ]g[ ox, D

The next chapter is verification of these formulations and concept.
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Chapter 4

Numerical Example

In this chapter, the effectiveness of the regularization of Sl for shear building framed
structures is investigated through numerical simulation studies. Noise caused by
measurement error is simulated by adding random noise generated from a uniform
probability function to acceleration calculated by a frame structure model [par02].

Here, existing damping models cannot exactly describe the actual damping
characteristics of the real structure. Therefore, the damping properties are assumed as
known properties, and only stiffness properties are identified. The damping has an
important effect on the dynamic response of a structure. Although the damping properties
are not known a priori, they should be included in the system parameters in the SI. The
modal damping ratios are used as known damping properties when simulating the
acceleration response. The coefficients of Rayleigh damping can be determined when any
two modal damping ratios and the corresponding modal frequencies are specified. Rayleigh
damping coefficients are taken as the system parameters. Because the modal damping is
employed in the parameters, the number of system parameters associated with the damping
isegual to that of the total number of DOFs, which increases the total number of unknowns
in the optimization problem.

Both of Rayleigh damping and modal damping cannot exactly describe actual damping.
The modal damping requires more unknown parameters than the Rayleigh damping in the
system parameter estimation. Here, Rayleigh damping coefficients are used as system

parameters to reduce the unknown system parameters. The approximate natural frequency
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frame structure can be obtained from the UBC formula as follows

(h, ) (4.1)

where, C,isequal to0.0488 asafactor (MKS) and h, isthetotal height of the building.

25% of the Kobe ground accel erations with a peak factor of 0.831 are used. Time interval
of ground accelerations is 0.005 seconds. One of the every four data is picked up from the
acceleration data in the time domain to change the acceleration response data in frequency
domain. In the examples, the stiffness of each element and Rayleigh damping coefficients

are taken as system parameters.
The convergent criterion, ||Ag|| /||g|| <107, is used to terminate optimizations unless

otherwise stated. The baseline properties are assumed for the stiffness of elements and
Rayleigh damping coefficients. The initial values of the system parameters are taken to be
the same as the baseline properties for the optimization. The upper and lower bounds of the
stiffness system parameters are 0.01 times and 3 times the baseline stiffness, 0.01 times and
10 times for mass-proportional damping coefficient, and 0.01 times and 100000 times for
the dtiffness-proportional damping coefficient of the baseline Rayleigh damping
coefficients. Recursive quadratic programming with an active set algorithm [Lue89] is
utilized for optimization.

Damage detection based on S| algorithms has been proposed for frame structuresin a
global sense [San91, Doe96, Hje96, Yeo00, Par02]. All of these methods have respective

advantages and limitations.
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For a framed structure, the solution space of Sl is properly defined by the L,-norm of
the system property. To overcome difficulties caused by sparseness of measurements and
measurement noise, an Sl-based damage assessment algorithm is presented.

In modeling a framed structure (shear building), model is idealized by a line
representing the story stiffness, which is a summation of column stiffness in each story.
The material properties of a member are considered to calculate the column stiffness and
total weight of each floor as alump mass. Numerical examples are five story shear building
and ten story shear building. And three story shear building is experimental example.

The solution space of the SI problems can be defined by the regularity condition that
represents the integrability condition of the system property. For the solution of a square
integrable function, the following regularity condition defined by the L,-norm around the

baseline value is appropriate.

4.1. Numerical Examplel — Damage detection for a 5 story shear building

Numerical simulation studies are performed for two damage cases with the proposed
method to determine the damage status of the five stories shear building. Fig. 4.1ais the
frame structural geometry, support conditions, and Fig. 4.1b is the model of the structure.
Each story’s dtiffness is summation of total columns' stiffness in each floor. Story’s
stiffness is used as the element stiffness as shown Fig. 4.1b. The material properties of the

structure are as shown in Table 4.1.
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Fig. 4.1 Five story shear building (a) Frame structure, (b) modeling

Table 4.1 Material properties for afive story shear building

Type Amount Unit

Stiffness (For each story) 75,000,000.0 N/m
Mass 45,000.0 kg

Young's modulus 210.0 Gpa
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Table 4.2 Baseline properties for afive story shear building

Mode no Frequency (rad/sec) Frequency(Hz) Modal damping ratio
1 11.6200 1.8486 0.0100
2 33.9185 5.3961 0.0101
3 53.4693 8.5065 0.0134
4 68.6881 10.9276 0.0199
5 78.3423 12.4635 0.0296

The mode shapes and the natural frequencies are computed by using baseline
properties and assumed modal damping ratios shapes as shown in Fig. 4.2a, Fig. 4.2b.and
Fig. 4.2c, respectively. Fig. 4.2a shows the mode shapes of the no damage structure. These
mode shapes are used in selecting the measured points. If one point is an inflection point
which point can not use as a measuring point. In this structure, the point of inflection is not
on the any node. Therefore every point can be used as a measuring point. But results have
differences depend on selected measuring point or measuring point combinations. It can be
seen in example case2. The values of the natural frequencies and modal damping ratios are
givenin Table 4.2.

This example has two damaged cases. Case 1 is single damaged case that is 30%
reduced stiffness at the first story with 10% noise and two measuring points at the top floor
and third floor. Case 2 is multi-damaged case. In case 2, damages are 60% reduced stiffness
at the first floor and 30% reduced stiffness at the third floor. 10% noise includes as error
and three measuring points are at the first floor, third floor and top floor, respectively.
Comparison of the frequency response functions and system parameters are tested by

various combinations of measured points, various frequency bands, and full measuring
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Fig. 4.2 Five story shear building. (8) Mode shapes. (b) Natural frequencies.
(c) Modal damping ratios.

points. Moreover, the estimated system parameters are compared with using regularization

function in objection function and no using regularization function.

Case 1. Two points measuring at 3 and 5™ floor, 10% noise-30% damage at element 1
(a) Full frequency band used in S

Damage is simulated with 30% reduction in the stiffness of the first story, as shownin
Fig. 4.3. Proportional random noise generated by a uniform probability function between +
noise amplitude is added to the acceleration response obtained by a mathematical model to
simulate real measurements.  Unless otherwise stated a noise amplitude of 10% isused in
examples. There are five unknown system parameters of stiffness and two unknowns for
the coefficients of Rayleigh damping. In this case, the measuring point is located at
the top floor and 3" floor. The natural frequencies for the damaged structure are

shown in Table 4.3. The frequency response function at measured point 3 can be seen as
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shown in Fig. 4.4. Also the estimated stiffness and damping ratios are shown in Fig. 4.5
and Fig. 4.6, respectively.At the damaged structure, reduced the stiffness and mass are not

changed Therefore, values of the damaged natural frequencies are smaller than the value of

no damage can be seen easily in Table 4.3.

Measured data4—@

k2 Lt C2

30% damage _kkl'.lf" el

Ground acceleration

Fig 4.3 Model with 30% reduced stiffness damage at first story

Table 4.3 Natural frequencies (Hz) for no-damage case and with 30%damage case

Mode no no damaged case With 30%damaged case
1 1.8486 1.7196
2 5.3961 5.1077
3 8.5065 8.2329
4 10.9276 10.7685
5 12.4635 12.4180
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Fig. 4.4 Exact FRF3 by using the damaged stiffness value and measured FRF3

20 7

16

107 === = T == T T T T T T
T —O— estimated stiffness (gms)
-====exact giffness
— — initial stiffness
- - %~ = estimated stiffness( non regul arization)
0.0 \ \ \
1 2 3 4
element

Fig 4.5 Estimated stiffness for regularization and non regularization, using full
frequency band in S| for damaged structure
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Fig. 4.6 Damping ratios using full frequency band in Sl for damaged Structure

Fig. 4.4 shows the exact FRF3 by using damaged stiffness, measured FRF3 calculated from
the mathematical model with 10% noise and estimated FRF3 from the author’s proposed
method. The FRF3 is the measured point at the third floor. The peak points frequency
values of FRF3 are the natural frequencies and the peak values are damping.

The regularization effect can be seen in Fig. 4.5, in which the results of estimated
stiffness values of the structure show better accuracy than when the regularization
technique is not used. Tikhonov Regularization method is used followed by the Geometric
Mean Scheme (GMS) regularization factor. The baseline properties are used as the initia
stiffness. Table 4.4 shows the value of estimated stiffness at using the regularization and
not using the regularization. The regularized estimated stiffness is more similar to the exact

value than no regularized estimated stiffness.
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The estimated damping ratios are shown in Fig. 4.6. The damping ratios' results are
reasonable. Initial damping is Rayleigh damping. It has just two unknowns which are mass
proportional coefficient and stiffness proportional coefficient. But exact damping is
assumed modal damping and it has five unknowns as the modal damping ratios. Therefore,
the first and the second estimated damping ratios are nearly exact damping ratios and

others are different from exact damping ratios.

Table 4.4 Comparison of the initial, exact and estimated stiffness (N/m) with regularization

and non regularization technique

. Estimated with | Estimated non
Story no. Initial Exact o o

regularization | regularization

1 75,000,000 52,500,000 52,506,818 49,93,907

2 75,000,000 75,000,000 73,073,452 62,735,391

3 75,000,000 75,000,000 78,631,133 150,040,046

4 75,000,000 75,000,000 74,475,631 73,121,757

5 75,000,000 75,000,000 72,491,802 61,695,421

(b) Various frequency bands used in 9
Frequency bands are used in system identification. Thisis one of the advantages of the
Sl in frequency domain. Mostly, frequency ranges are used within first and third mode
frequency range in Sl and do not use full frequency range because noise is dormant in full
frequency band. Fig. 4.7 is mode3 frequency range FRF and full band frequency FRF. Here,
noise is dormant in after mode3 frequency range. Both of the estimated FRFs are same
shape with exact FRF. The frequency band needs to take just before noise dormant portion.

In this example, the frequency band up to mode 2 is not enough to get the good result and
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Fig. 4.7 FRF3 for full band frequency and FRF3 for frequency band up to mode3
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Fig. 4.8 Estimated stiffness with various frequency bandsin S|
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needs the frequency band up to mode 3. Fig. 4.8 shows the estimated stiffness that used the
mode 3 frequency range in Sl is the best among the estimated stiffness at model frequency
band, mode 2 frequency band and full band. The estimated stiffness which mode 3
frequency band and using regularization function in Sl is more reasonable than the

estimated stiffness without regularization as shown in Fig. 4.9.

(c) Full measuring points
In Fig. 4.10, FRF1s are using the full measuring data at full band frequency and mode 2
frequency band. The reasonable estimated stiffness results can be obtained at frequency

band up to mode 2 and full measuring data. Although using the frequency band up to first

20

v - - x- - mode 1-3 freq band (non regu)
—=— mode 1-3 freq band
--m-- exact
— —initia
1 2 3 4 5
dement

Fig. 4.9 Estimated stiffness using regularization and non regularization at frequency
band up to mode 3in Sl).
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Fig. 4.11 Estimated stiffness for full measuring points at various frequency bands
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Fig. 4.12 Estimated stiffness for full measuring points at mode2 frequency band

mode and full measuring is also good result, the regularization factor istoo small in Sl.
Therefore, the regularization effect is not influent in parameter estimation and the
estimated stiffness used regularization function and do not use the regularization are same.
Fig. 4.11 shows the estimated stiffness for various frequency bands. Frequency band up to
second mode is the best result. The result of regularized estimated stiffness which is better

than without regularized estimated stiffness are shown in Fig. 4.12.

Case 2 10% noise , three measuring points are at first floor , third floor and fifth
floor , 60% damage at element 1 and element 3

Fig. 4.13 shows a multi-damaged case. There are 60% damage at the first floor of the
structure (element 1 of the model) and 30% damage at the third floor (element 3). The

percentage of the generated noise is 10. The measuring points are at first, third and fifth
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floors. The frequency response functions, estimated FRF, measured FRF, and exact

FRF for point 1 are presented in Fig. 4.14. We can then obtain the natural frequency, which
corresponds to the point of the peak values of FRF, where the peaks points are slightly
different from the exact and estimated FRF at 3" mode and 4™ mode. The regularized

estimated stiffness results are better than the not-regularized estimated stiffness.

(a) Full frequency band used in S

Measured data

60% damage

Ground acceleration

Fig. 4.13 Model for multi-damaged structure
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Table 4.5 Comparison of the natural frequencies (Hz) base line data with 60%damage at
first story and 30%damage at third story

Mode no No damage With damage
1 1.8486 1.4418
2 5.3961 4.5007
3 8.5065 7.6572
4 10.9276 10.4256
5 12.46350 11.8055
1000
100 —

—
LL
14
LL
exact FRF1
0.01 O  estimated FRF1
********* measured FRF1
0.001 I I I I I I I
0 2 4 6 8 10 12 14 16

frequency (hz)

Fig. 4.14 FRF1 for full band frequency for multi-damaged structure
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Fig. 4.15 Estimated stiffness for regularization and non regularization using full
freauencv band in S| for damaoed structure

Fig. 4.16 Measuring point combinations. (a) 135, 145, 125. (b) 123, 345, 234, 135.
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there is a dlight difference from the exact values (see Fig.4.15). Adjusting the measuring
points gives more reasonable results. The measuring points are changed as the
combinations of points 125, 145, and 234. Among these combinations, the best results are
the point 125 combinations, as shown in Fig 4.17 and Fig 4.18. Also we can see the
numerical datain Table 4.6 and the error percentage of the estimated stiffness with respect
to the exact dtiffness for kinds of combinations of three measuring points which can be
seen in Table 4.7. The 125 measuring point combination is the smallest error percentage of
estimated stiffness among the all measuring point combinations. The results of the damping

properties can be seen in Fig. 4.19.
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10

0.025

0.02

0.015

modal damping rat

0.01

0.005 \ \ \ \ \ \ \ \ \ \ \

fregency hz

Fig. 4.19 Damping ratios for measuring points combination 125
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Table 4.6 Estimated stiffness (N/m) for various combinations of three measuring

points
story no exact 135 125 245
1 30,000,000 29,895,578 29,469,070 34,570,551
2 75,000,000 69,297,444 78,712,602 50,012,544
3 52,500,000 61,212,729 52,828,121 64,359,905
4 75,000,000 67,600,742 77,096,990 58,896,987
5 75,000,000 70,421,493 71,714,473 68,443,300

Table 4.7 Error % of estimated stiffness (N/m) with respect to exact stiffness for kinds of

combinations of measuring three points.

story no 135 125 245
1 0.35 1.77 15.24
2 7.60 4.96 33.32
3 16.60 0.63 22.59
4 0.87 2.80 21.47
S 6.10 4.38 8.74

Bolds numbers represent the smallest error percentage.

(b) Various frequency bandsused in S

The measuring point combination 125 is used in the testing for the various frequency
bandsin SI. According to measuring FRF1in Fig. 4.20, noise is dormant nearly third mode.
Therefore, the best result of the estimated stiffness can be obtained when using the

frequency range istaken start to third mode as shown in Fig.21.
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Fig. 4.21 Estimated stiffness for various frequency bands
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(c) Full measuring points

The natures of the FRF and estimated stiffness of this examplel-case 2 is similar to the
examplel-case 1. Fig. 4.22 shows the FRF1 for frequency band taking three modes at full
measuring points and Fig. 4.23 is estimated stiffness for various frequency bands and Fig.
4.24 shows the estimated stiffness which using regularization function in Sl and estimated
stiffness do not use the regularization function. In the results of the estimated stiffness,

effect of regularization function can be known. The estimated Rayleigh damping ratios are

inFig. 4.25.
1000
100 |
10 3 I n
A A e
L T
01| ‘
oot mmrw FRFl
©  estimaed FRF1(freq band 1-2 mode)
=====estimated FRF1 (full band)
0.001 : : : :
0 5 10 15 20

frequency (Hz)

Fig. 4.22 FRF1 for full measuring points at frequency band up to mode2
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4.2. Numerical Example2 — Damage detection for a 10 story shear building

For a 10 story shear building, the mechanical properties are as listed in Table 4.8.
Structural geometry and modeling are presented in Fig. 4.26a and Fig. 4.26b. Mode shape
and baseline properties of the structure data such as stiffness and damping ratio are given in
Table 4.9 and Fig. 4.27a, Fig. 4.27b and Fig. 4.27c. Inflection points are 3,6,7 and 9 at
mode shapes are in the Fig. 4.27a. Therefore, these points 3,6,7 and 9 can not be used as

measuring points. In this example 2, point 1, 2, 5 and 10 are used as measuring points.

Table 4.8 Mechanical properties for the ten story shear building

Type Amount Unit

Stiffness (For each story) 131,436,076.0 N/m
Mass 450,000.0 kg

Young's modulus 210.0 Gpa
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Fig. 4.26 Ten story shear building. (a) Frame geometry. (b) Model.

Casel. Threepoints measuring at 1%, 5" and 10" floor-—30% damage at element 1.
(a) Full frequency band

Damage is 30% reduction in the stiffness of the first story, as shown in Fig. 4.28 and
Fig. 4.31. Three measuring points 1, 5, 10 and four measuring points 1, 2, 5, 10 are used in
Sl. The results are better than the three points measuring results, as shown in Fig.4.32. If
there are more measuring points, the sparness will be reduced and estimated system
parameter results are better. At measring points 1, 5, 10 and using the full band frequency

in Sl of the FRF1 and estimated stiffness are shown in Fig. 4.29 and Fig. 4.30., respectively.
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Fig. 4.27 Ten story shear building. (a) Mode shapes. (b) Natural frequencies.

(c) Modal dambina ratios.

Table 4.9 Baseline properties for the exampl e structure

Mode no Frequency (rad/sec) Frequency (Hz) Damping ratio
1 8.0775 1.2851 0.0100
2 24.0520 3.8265 0.0105
3 39.4893 6.2824 0.0122
4 54.0444 8.5980 0.0149
5 67.3923 10.7215 0.0188
6 79.2348 12.6055 0.0238
7 89.3072 14.2080 0.0299
8 97.3847 15.4930 0.0372
9 103.2868 16.4320 0.0455
10 106.8816 17.0039 0.0550

(b) Various Frequency bands used in S

Fig. 4.33 and Fig. 4.34 show the FRF1 and estimated stiffness for frequency range are
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taken up to moded. Fig. 4.35 is comparison of estimated <tiffness results with

regularization and without regularization.

(c) Full measuring points
There is aso same as examplel. The best estimated stiffness results are at frequency

range up to mode 2. It can be known in Fig. 4.36, Fig. 4.37aand Fig.4.37b. Fig. 4.38 shows

the effect of regularization.

Measured data

Measured data

30% damage

— K
<>

Ground acceleration

Fig. 4.28 Ten story shear building. (a) Frame geometry. (b) Model.
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Fig. 4.29 FRF1 at full band frequency for example2-casel
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Fig. 4.30 Regularization effect for the estimated stiffness at full band frequency
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Four points measuring at 1%, 2", 5" and 10" floor-—30% damage at element 1.

Measured data

30%damage  L— K1 cl
PR
SOOI aSSaEhEESESSS
«—>

Ground acceleration

Fig. 4.31 Model of the 10 story shear building with four measuring points 1,2,5,10
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Fig. 4.32 Comparison of estimated stiffness with three and four measuring points
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Fig. 4.33 FRF1 at 5 mode frequency band for examlple2-casel
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Fig. 4.34 Estimated stiffness for various frequency bands
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Fig. 4.35 Regularization effect for estimated stiffness at 5 mode frequency band

99



1000

— exact FRF1
1001 measured FRF1 §
o estimated FRF1 (1-2 mode freq band) - ‘;
04 = = = = = estimated FRFL (full band) . /
o
o1 § “
01 4 ‘
¥
0014 |
0.001 | I I I I I I I
0 2 4 6 8 10 12 14 16 18
frequency (Hz)
Fig. 4.36 FRF1 at full measuring point for example2-casel
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Fig. 4.37 Effect of the frequency range for the estimated stiffnessin Sl.
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Fig. 4.38 Regularization effect for the estimated stiffness
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Case2 5% noise—-40% damage at element 1 and 30% damage at element 4

Case 2 issimilar to case 1 and isillustrated in Fig. 4.39 and Table 4.11, Also, it shows
the exact natural frequencies and baseline data The GM S regularization factor is employed
and the new regularization factor is singular value from the decomposition. The results of
using each singular value as a regularization factor are better than those obtained via the
method using GMS as a regularization factor for this problem (see Fig. 4.41). Measuring
points are 1, 5, 10. Fig. 4.40 shows comprising of the estimated results of 5% noise and

10% noise.

30% damage

Measured data:

40% damage

N W\*\x R
<—>
Ground acceleration
Fig. 4.39 Model for 40% and 30% reduced stiffness damage at first and fourth stories,
respectively
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However, a singular value cannot be decided as regularization factor in the singular
numbers. In this problem, the maximum value of the singular number can converge. A
singular value for regularization factor depends upon the condition of the problems. The
results of estimated damping ratios are shown in Fig. 4.42.

Fig. 4.43, Fig. 4.44, Fig. 4.45 and Fig. 4.46 are FRF1, estimated stiffness for various
frequency bands, estimated stiffness with regularization effect and estimated Rayleigh
damping ratios, respectively and all the figures are measured at points 1, 5, 10.

Full measuring point condition is similar as pervious examples. The best result of the
estimated stiffness is frequency band up to second mode see Fig.4.48a and Fig. 4.48b.
FRF1 and regularization effect in estimated stiffness and estimated damping ratios are
shown in Fig. 4.47, Fig. 4.49 and Fig 4.50, respectively.

Table 4.10 Comparison of the natural frequency (hz) base line data with multi-damaged
data

Mode no No damage Damaged
1 1.2851 11781
2 3.8265 3.6196
3 6.2824 5.7926
4 8.5980 8.1600
5 10.7215 10.4266
6 12.6055 11.9440
7 14.2080 13.8211
8 15.4930 15.3833
9 16.4320 15.9343
10 17.0039 16.8251
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Fig. 4.41 Estimated stiffness at different regularization factors.

104

10



0.06
s  — esimated Rayleigh damping e
' -=-= exact moda damping t
--------- initial Rayleigh damping J
004 /
2
<
2 0.03-
yol
&
© 0.02
0.01 -
0.00 \
2 4 6 8 10 12 14 16 18
frequency (Hz)

Fig. 4.42 Estimated Rayleigh damping ratios using GM S regul arization factor
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Fig. 4.43 FRF1 for 4 mode frequency band
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Fig. 4.45 Regularization effect of estimated stiffness at 4 mode frequency band
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Fig. 4.46 Estimated damping ratios at 4mode frequency band
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Fig. 4.47 FRF1 at full measuring point and mode2 frequency band
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Fig. 4.48 Effect of the frequency range for the estimated stiffnessin Sl.

(2)1-8 mode. (b) 1-10 mode.
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Fig. 4.49 Regularization effect of estimated stiffness at 2 mode frequency band
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Summary of example one and two are using full frequency band or partial frequency bands, a selected measuring
points and full measuring points
There are the best estimated stiffness conditions

Table. 4.11 summary of examples one and two

Damage Measured Mode shape | Partia band Full
Case Damage % location Noise % oints (up to mode) | (up to mode) measuring
(element) P (up to mode)
5 story
(single damage) 30 1 10 35 3 3 2
5 story 60 1
(multi damage) 30 3 10 12,5 2 3 2
_ 10tory 30 1 10 15,10 4 5 2
(single damage)
10 story 40 1
(multi damage) 30 4 5 1,510 4 4 2
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4.3 Numerical Example3 — Parameter estimation for a 5 story shear building
The idealized frame structure and model are shown in Fig. 4.51. In this example,

second and third modes of the frame structure are very close position. 5% noise include

error in measuring data. The measuring points are 1,3 and 5. Structural properties are in

Table 4.12.

Measuring data 5

51 floor

4™ floor

Total height
k4 Measuring data 3

3" floor

2" floor

Measuring data 1

1% floor

i
|

Ground acceleration

(@) (b)

Fig. 4.51 Five story shear building (a) Frame structure. (b) Modeling.

The exact and estimated natural frequencies are shown in Table 4.13.The second mode
and the third mode of the natural frequencies are very close at exact and estimated natural
frequencies of the structure. Table 4.14 shows exact and estimated stiffness of the structure.
In estimated stiffness are cal culated by used regularization and non regularization methid in

Sl. The modal damping ratios are used exact and Rayleigh damping is used initia
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damping and estimated damping is also Rayleigh damping ratios.

Table 4.12 Structural properties

Element Stiffness (N/m) Mass(kg)
1 50,000.00 50,000.00
2 1,000.00 1,000.00
3 1,000.00 1,000.00
4 1,000.00 1,000.00
5 1,000.00 1,000.00
Table 4.13 Natural Frequency (Hz)
Mode exact estimated
1 0.0550 0.0550
2 0.1530 0.1550
3 0.1660 0.1600
4 0.2441 0.2600
5 0.2991 0.3200
Table 4.14 Stiffness (N/m)
Element exact Regularized Non regularized
1 50,000.00 49,428.15 49,359.14
2 1,000.00 1,024.69 1,009.92
3 1,000.00 969.91 986.01
4 1,000.00 1,009.51 1,004.01
5 1,000.00 1,009.28 1,034.06
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Table 4.15 Damping ratios

Exact Initial Estimated
Mode modal damping Rayleigh damping Rayleigh damping
1 0.0300 0.0500 0.0370
2 0.0310 0.0500 0.0339
3 0.0393 0.0520 0.0351
4 0.0550 0.0669 0.0441
5 0.0780 0.0786 0.0514

Second mode and third mode are very close or coincide. All of the values of mode
shapes at point 2 are nearly zero. Alternatively, points of inflection are at point 2. It can be
seen in Fig. 4.52. Therefore, the point 2 is unsuitable to use as a measuring point. Here,
measuring points are selected 1, 3 and 5 to obtain reasonabl e results.

Fig.4.53 is estimated FRF1 and measured FRF1 with 5%noise at no damage. Fig 4.54
shows detail. The second and third modes are as very close between two modes at FRF1.
Fig. 4.55, Fig. 4.56 and Fig. 4.57 show the exact FRFs , measured FRFs and estimated
FRFs at measuring point 1, 3 and 5 respectively.

The regularized estimated stiffness and non regularized stiffness are shown in Fig.
4.58. This example is 5% noise and no damage. Therefore, the regularized and non
regularized estimated stiffness are the same. It shows the verification of the system
parameters estimation. Fig. 4.59 shows that estimated Rayleigh damping ratios are

reasonable.
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Fig. 4.56 FRF3 at frequency band in SI and measuring point at 3
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Fig. 4.57 FRF5 at frequency band in Sl and measuring point at 5

0.5

—

6 10*
510 o — exact stiffness
= === estimated stiffness(regularization)
410" - O estimated stiffness(non regularization)
3
c
b= 4 |
=31
210" -
110" -
0 ] 7 z
1 2 3 4

element

Fig. 4.58 Comparison of the regularized estimated stiffness and non regularized
stiffness

117



--------- initial Rayleigh damping ratio
007 .  -—®— estimated Rayleighdampingratio .~
— exact modal dampingratio .7

o

o

o)
|

modal damping ratio
o o
g &
| |

©

Q

@
|

©
Q
(]

0.05 0.1 0.‘15 0.2 0.25 0.3
frequency (Hz)
Fig. 4.59 Comparison of the regularized and non regularized estimated stiffness

4.4 Experimental study

The proposed method is applied to detect damage in a 3-story shear building using
accelerations measured from experiments. The experimental model and the finite element
model of the shear building are shown in Fig. 4.60 and Fig. 4.61, respectively. The floor
plate consists of 45cm x 45cm rectangular steal plate welded to 5mm plate on 4 sides to
increase the flexural stiffness and provide connections to columns. The 1%, 2 and 3" floor
plate weighs 11.2 kg, 11.2 kg, 10.46 kg, respectively. The material properties of columns
are given in Table 4.16. Two sets of cross bracings are installed in the perpendicular
direction to the plane of vibration to prevent out-of-plane vibration in each story. Since the
weights of cross bracings are very small compared with those of the floor plates and the
columns, the weights of the cross bracings are neglected in Sl. Stiffness of column and

mass are shown in Table 4.17.
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One accelerometer is placed at the center of the each floor plate, and acceleration is
measured from free vibration induced by sudden release of a static loading. A steal block
of 12.78 kg is used as a static loader, and is applied at the top floor in horizontal direction.
Acceleration is measured in the time period from 0 sec to 200 sec with the sampling rate of
50 Hz. However, the accel eration data measured during the early 60 seconds are used in the
S| process. The natural frequencies of the frame structural model are 2.5 Hz , 6.8Hz and

9.2 Hz.

Fig. 4.60 Experimental model 3-story shear building

Table 4.16 Material properties of columns

Thickness (cm) Area (cm?) Length (cm) Mass (kg)
1 floor 0.4 2.0 320 1.20
2" floor 0.3 15 315 0.88
3% floor 0.3 15 315 0.86

119




7cm [ N —uU;
315cm / Rigid body
85cm | | /— v,
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- T b
Fig. 4.61 Frame structural model
Table 4.17 stiffness and mass of frame structure
story Stiffness (N/m) Mass (kg)
1% floor 21,480.10 11.20
2" floor 9,530.30 11.20
3 floor 9,530.30 10.46

Damage of the shear building is imposed by loosening two bolts at the joints between
the columns and the floor plates at the 1% and 2™ floor. The damaged joints act like hinges
as shown in Fig. 4.63, and thus flexural rigidities of the 1¥ floor and the 2™ floor are
approximately reduced by 37.5%. Fig. 4.66 shows the identification results of the flexural
rigidities of the damaged state. In the figures, the reductions in the flexural rigidities of the
1% and the 2™ floor are clearly seen, and the damage status of the structure is assured. Fig.
4.67 illustrates the variation of the estimated damping propertiesin time. Fig 4.64 and Fig.

4.63 are damaged and no damage FRFs from measured accel eration.
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Fig. 4.62 Joint damage status

The estimated FRF using the converged system parameters at the final time step is
compared to the measured FRF for the 1% floor in Fig. 4.65. The estimated FRF agrees very
well with the measured FRF, which implies that the system parameters estimated by the

proposed method represent the actual status of the structure closely.
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Fig. 4.63 Measured FRF at 1%, 2™ and 3" floor (no damaged condition)
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Fig. 4.64 Measured FRF at 1%, 2™ and 3“ floor (damaged condition)
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Fig. 4.65 Measured FRF1 at 1%floor and estimated FRF1

122



12

1.0 7
0.8 7

0.6 ¢

stiffness

0.4 7

0.2 7

0.0

--------- inital stiffness
—O— estimated stiffness (regularized)
- -FI- - estimated stiffness (non egul arized)

0.05

o
g

damping ratios

0.01

0.00

2 3
element

Fig. 4.66 Regularized and non regul arized estimated stiffness

-==-= estimated damping ratio g
initial damping ratio

— -

frequency (Hz)

Fig. 4.67 Rayleigh estimated damping ratios

123




Chapter 5
Conclusions

This study presents a damage detection algorithm based on system identification
with a regularization technique in the frequency domain. Previous researchers have
developed static or modal measured responses and seismic time history data, which have
also been used for civil structures. The current algorithm uses dynamic time history data
transformed to dynamic accel eration response in the frequency domain by using FFT.

An output error estimator can give the difference between the frequency response
function (FRF) from the measured acceleration response and the corresponding calculated
frequency response function (FRF) to estimate the unknown structural parameters. System
identification is used as a basic concept in developing this algorithm. The minimization of
the least squared error nonlinear inverse problem is a direct differentiation of L2 norm of
the output error estimator.

Generaly, noise is inevitable and occurs randomly in a real situation. Hence, we
should include the effect of noise in measurements. If we can perfectly exclude the noise
from each measured acceleration vector, we can obtain the compatible acceleration vector
and the correct system parameters. However, it is not possible to obtain the compatible
acceleration vector because we cannot perfectly exclude the noise. Sparseness and noise
are the main problems in the damage detection algorithm. Sparseness can be resolved by
increasing the number of measured degrees of freedom or mitigating the number of

variables. This means that the noise in the measurements causes the ill-posed properties of
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the inverse problem in the output error estimator. The ill-posedness of the inverse problem
is unlike the forward problem, suffers from inherent instabilities such as non-existence,
non-uniqueness and discontinuity.

There are several potential remedies for the ill-posedness. 111-posed properties can be
solved using the regularization technique. A general concept of regularity condition of
system property for Sl is presented. Based on the proposed regularity condition, a
regularization function based on the L2 norm with respect to the system properties is
proposed. A regularity condition of system properties is discretized in terms of system
parameters. Two different approaches to impose the discretized regularity condition on
minimization of error function are presented; a truncated singular value decomposition
(TSVD) and Tikhonov regularization. In the TSVD, the truncation number determines the
degree of regularity while the regularization factor does this in the Tikhonov regularization.
In the Tikhonov regularization, the most important issue is to keep consistent regularization
effect on the parameter estimation, which is controlled by a regularization factor. In this
study, the object function is modified by the addition of a continuous regularization
function to stabilize the output error estimator.

This study illustrates that the error function with the Tikhonov regularization
function results in a solution of a generalized average between a priori estimates and the a
posteriori solution. Here, a priori estimates represent known baseline properties of system
parameters, and the a posteriori solution denotes the solution obtained by given measured

data. A geometric mean scheme (GMS) is used as optimal regularization factors in
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nonlinear inverse problems. In the GMS, the optimal regularization factors are defined as
the geometric mean between the maximum and minimum singular value for balancing the
maximum and minimum effect of the a priori estimates and a posteriori solution in a
generalized average sense.

A nonlinear constrained optimization problem is used to solve the optimization
problem of the least squared form in the parameter estimator. The recursive quadratic
programming and the Fletcher active set strategy are used to solve the nonlinear
constrained optimization problem. The structural systems are represented by a shear
building model with known topology and geometry. Therefore, the constitutive parameters
which parameterized in terms of the vector are the unknown to be estimated.

The proposed method can estimate the stiffness properties accurately even though the
damping characteristics are approximated by the Rayleigh damping. The proposed method
yields accurate solutions for numerically generated data and the experimentally measured
data at full frequency band or selected frequency bands and using full measuring data or
selected measuring data. It is believed the proposed method provides an engineering tool to
identify dynamic characteristics of structures and to detect damage in structures using

measured accel erations.
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