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Abstract

A new class of displacement reconstruction scheme is presented using only
acceleration measured from a structure. For a given set of acceleration data, the
reconstruction problem is formulated as a boundary value problem in which the
acceleration is defined by the second-order ordinary differentiation of displacement.
The displacement is reconstructed by minimizing the least squared errors between
measured and approximated acceleration within a finite time interval. The dis-
placement reconstruction problem becomes ill-posed because the boundary condi-
tions at both ends of each time window are not known a priori. Furthermore,
random noise in measured acceleration causes physically inadmissible errors in the
reconstructed displacement. A Tikhonov regularization scheme is adopted to al-
leviate the ill-posedness. The governing equation for the reconstruction is derived
by taking the variation to the regularized minimization problem, which yield beam
on the elastic foundation problem. The conventional FIR (CFIR) filter directly
approximates the transfer function of the governing equation, while the FDM-
based FIR (FDM-FIR) and FEM-based FIR (FFIR) filter are formulated by the dis-
cretization of the minimization problem with the finite difference method and the
finite element method, respectively. The FFIR filter is capable of reconstructing
displacement and velocity simultaneously. The fundamental characteristics of the

proposed filters are investigated in the frequency domain using the transfer and
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accuracy functions. It is shown that the proposed FIR filters suppress low fre-
quency noise components in measured accelerations effectively, and reconstruct
physically meaningful displacement accurately. The validity of the proposed fil-
ters is demonstrated through several examples.

In the final example, a force-acceleration-based identification of the flutter de-
rivatives of bridge decks in a wind tunnel is presented. An equation error estima-
tor (EEE), which is the least square residual errors of the equation of motion, is
employed to formulate the force-based identification scheme. Unlike most of
previously proposed methods, the acceleration of an oscillating section model is
measured in wind tunnel tests. The velocity and the displacement required in the
EEE are reconstructed from the measured acceleration using the FFIR filter. As
the EEE is expressed as a quadratic form with respect to flutter derivatives, neither
an iterative solution scheme nor a complex eigenvalue analysis is required for op-
timization. The EEE method is capable of identifying the representative values of
the flutter derivatives by one optimization process using multiple measurements for
a wind velocity in wind tunnel tests and can be generally employed for the extrac-

tion of the flutter derivatives regardless of the testing procedures.
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1. Introduction

Dynamic responses of structural systems are frequently measured for the purpose
of structural health monitoring (SHM) and structural control (SC) [Sohn 2004 and
Housner 1997]. Among the dynamic responses, the time history of the dynamic
displacement may contain precious information on structural behaviors that can be
utilized in various SHM and SC applications. For example, in case a structure
experiences severe events such as a strong earthquake or a typhoon, a quick deci-
sion on the possibility of structural damage could be made based on the maximum
displacement of the structure [Gupta 2001, Park 1984 and Smyth 2007]. The dis-
placements measured under normal operational conditions are utilized to identify
nonlinear dynamic characteristics of a structure and to monitor abnormal changes
in structural behaviors. For SC applications [Housner 1997], information on dis-
placement should be provided in real-time or at least in near real-time to identify
the states of a structure. Unfortunately, it is very difficult to measure displace-
ment directly in large-scale structures such as bridges and buildings because fixed
reference points are rarely found to install displacement transducers [Gavin 1998].
Moreover, the reference points as well as a structure move together during severe
events, and thus the direct measurement of displacement becomes almost impossi-
ble.

Acceleration is easily measured without a fixed reference point unlike dis-
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placement, and various types of accelerometers are commercially available for a
wide range of dynamic frequency. Consequently, acceleration has been common-
ly measured for various engineering applications in real situations. From this
point of view, the reconstruction of displacement from measured acceleration
seems an attractive alternative to the direct measurement of displacement.

Various digital filters may be considered for the purpose of displacement re-
construction from measured accelerations. Among them, infinite impulse re-
sponse filters (IIR filters) and finite impulse response filters (FIR filters) are widely
employed in various applications [Bardella 2003, Boore 1997, Hamming 1989,
Kumar 1996, Rabiner 1975 and Smyth 2007]. However, conventional digital fil-
ters have several drawbacks in the displacement reconstruction for low-frequency
dominant structures. The IIR filters usually require initial conditions on dis-
placement and velocity, which are generally unavailable. Low-frequency noise
components in measured accelerations are amplified and propagate through time.
Although some remedies have been proposed to suppress low-frequency noise,
they either cause nonlinear phase errors [Hamming 1989, Kumar 1996 and Rabiner
1975], or require additional pieces of information [Smyth 2007]. In the case of
FIR filters, it is difficult to approximate the analytic transfer function in a low-
frequency range accurately by a finite Fourier series due to the singularity of the
analytic transfer function at the zero frequency [Hamming 1989 and Kumar 1996].

The frequency domain integration approach (FDIA) is a possible alternative to

digital filters for the displacement reconstruction [Lee 2010]. The time-history of
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displacement is obtained using the inverse Fourier transform on the discrete Fouri-
er transform (DFT) of measured accelerations multiplied by the analytic transfer
function which will be defined in chapter 2.  This approach, however, suffers from
severe discretization errors if the DFT of the measured acceleration is performed
on relatively a short time interval [Hamming 1989]. This is a major drawback for
the real-time or near real-time reconstruction required in the SHM or the SC.

The current study formulates a new class of the displacement reconstruction
scheme, which is suitable to low-frequency dominant structures, as a boundary
value problem using measured acceleration without any information on initial
conditions. The displacement is reconstructed through an inverse problem de-
fined as the minimization of the least squared errors between measured accelera-
tion and the second-order time derivative of displacement within a time interval,
referred to as a time window. An overlapping time-window concept proposed
by Park et al. [2008] is adopted to enhance the accuracy of reconstructed dis-
placement.

Two major difficulties should be properly addressed to reconstruct displace-
ment from acceleration based on the inverse problem. First, the reconstruction
problem becomes rank-deficient because the boundary conditions at both ends of
each time window are not known a priori. Furthermore, a small amount of low-
frequency spectral noise in measured accelerations may significantly pollute the
reconstructed displacement with physically inadmissible components, which is

known as the ill-posedness of inverse problems. The Tikhonov regularization
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scheme, which has been widely used in various types of inverse problems [Hansen
1988 and Park 2001], is utilized to overcome these difficulties.

The governing equation of the inverse problem is obtained by taking variation
of the regularized minimization problem, which leads to the same type of differen-
tial equation as that of a beam on an elastic foundation (BEF) [Hetenyi 1946].
The transfer function of the inverse problem is hereafter referred to as the BEF
transfer function. The exact relation between the regularization factor and the
accuracy of the proposed filter is established through the desired accuracy at the
target frequency which is the lowest frequency in physically meaningful frequency
contents in measured acceleration.

The current thesis proposes three types of FIR filter, the CFIR filter, the FDM-
FIR filter and the FEM-FIR (FFIR) filter based on the inverse problem formulated
with a form of the BEF function. Two filter sizes are proposed for the CFIR filter
from the viewpoint of the stability independently to the regularization factor. As
the BEF transfer function is capable of suppressing noise components below the
target frequency, the FDIA using the BEF transfer function dose not require low-
cut filter or and band-pass filter.

The coefficients of the CFIR filter is obtained by approximating the BEF-
transfer function with the Fourier series in the frequency domain, while the coeffi-
cients of the FDM-FIR and the FFIR filters are obtained by discretizing the inverse
problem with the standard finite difference method and finite element method in

the time domain, respectively. The proposed filters have their own merits and
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disadvantages in relation to each other. The filter size can be selected arbitrarily
for the FDM-FIR filter and the FFIR filter, while the uniform frequency responses
are expected in the CFIR filter for the proposed filter sizes. The FDM-FIR filter
needs relatively small computational time than other filters. A great advantage of
the FFIR filter over the FDM-FIR filter and the CFIR filter is that velocity as well
as displacement can be reconstructed simultaneously as the velocity field is em-
bedded in the finite element model of the FFIR filter. The characteristics of the
proposed FIR filters are presented and discussed in detail by investigating the
transfer function and accuracy function.

Five examples are presented for demonstrating the validity of the proposed fil-
ters. Various characteristics of the FDIA, CFIR filter and FFIR filter are verified
with reconstructed displacement and velocity from numerically simulated accelera-
tions in the first example. Displacements are reconstructed from the accelerations
measured from the small cantilever beam and the real-scale stay cable in laboratory,
and are compared with the measured displacement in the second and third exam-
ples, respectively. In the forth example, the displacement reconstruction is em-
ployed for the accelerations measured in a simply supported railroad bridge during
commercial operation, and is compared with the measured one.

The last example presents the evaluation of the flutter derivatives using the re-
constructed responses together with the measured acceleration, this example is not
just the verification of the reconstruction itself but the further application of the

reconstructed responses to the other SI scheme. Moreover, it contains new SI al-
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gorithms for the identification of the flutter derivatives and the valuable discussion
about the aeroelastic phenomena and the experimental procedure for the extraction
of flutter derivatives. Hence, the last example organizes the separated chapter of

4.



2. Displacement Reconstruction for Dynamic Accelera-

tion

Numerous attempts have been made to reconstruct displacement with meas-
ured acceleration based on the definition of acceleration, i.e., the second-order de-
rivative of displacement in a time domain. Time integration schemes based on
time-marching algorithms such as a Newmark’s method and a third-order corrector
are probably the most straightforward and easiest way to obtain displacement from
measured acceleration. However, the time-marching algorithms yield erroneous
displacement [Boore 1997 and Smyth 2007] caused by the following facts. First
of all, initial conditions on velocity and displacement required in the time-marching
algorithms are usually unavailable or inaccurate in real situations. Moreover, ran-
dom noise in measured acceleration data causes physically inadmissible errors in
the reconstructed displacement. Particularly, low-frequency spectral components
in random noise are amplified during time-marching procedures, which severely
deteriorate the accuracy of the reconstructed displacement [Hong 2010 and Lee
2010]. This undesirable effect becomes a critical issue in the displacement recon-
struction for large-scale civil infrastructures, which usually exhibit very low fun-
damental frequencies [Smyth 2007].

Several remedies to overcome the drawbacks of the time-marching algorithms

have been proposed for the displacement reconstruction with measured accelera-



tion. A baseline correction technique used in seismology applications is a well-
known approach for eliminating the erroneous components in the reconstructed
displacement by the time-marching algorithms [Boore 1997, Chiu 1997, Iwan 1985
and Stephens 1985]. In this approach, polynomial functions approximately repre-
senting the inadmissible errors are constructed, and are subtracted from the recon-
structed displacement. However, the baseline correction depends on an engineer’s
decision, and thus is inadequate to SHM and SC applications [Sohn 2004 and
Housner 1997] in which measured acceleration should be automatically processed
in real time or pseudo-real time. Moreover, this approach corrects erroneous re-
sults obtained by the time-marching algorithms, and is not completely free of the
aforementioned drawbacks. For SHM applications, Smyth and Wu (2007) com-
bine displacement data from a global positioning system (GPS) with measured ac-
celeration, and reconstruct displacement through the multi-rate Kalman filter
approach [Smyth 2007]. However, their approach is not applicable for the dis-
placement reconstruction at positions where the GPS signals are unable to reach.
In addition, the low accuracy in the vertical positioning capability of the GPS may

act as an additional source of noise in the reconstruction of vertical displacement.



2.1 The Exact Governing Equation and Transfer Function

This thesis formulates a new class of the displacement reconstruction scheme
as a boundary value problem rather than an initial value problem using measured
acceleration without any information on initial conditions. In case measured ac-
celerations are given over a finite time interval referred to as a time window [Park
2008 and Lee 2010], the relation between the measured acceleration and the defini-
tion of acceleration forms a boundary value problem. As the second-order time
derivative of displacement is acceleration, the displacement is reconstructed
through the minimization of the least squared errors between measured acceleration
and the second-order time derivative of displacement in a time window.

As the reconstruction problem of displacement is defined as a boundary value
problem in a time window, boundary conditions at both ends of the domain should
be specified to solve the minimization problem, but neither displacement nor veloc-
ity is known at the boundaries. Therefore, the minimization problem for the re-
construction of displacement becomes ill-posed or rank-deficient, and cannot be
solved for unknown displacement in a time window. Furthermore, a small
amount of low-frequency spectral noise in measured acceleration data may signifi-
cantly pollute the reconstructed displacement as like to the reconstruction with the
time-marching algorithm. To overcome these two difficulties, the Tikhonov regu-
larization scheme [Hansen 1988 and Park 2001], which has been widely employed

to alleviate the ill-posedness of inverse problems, is adopted.
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2.1.1 Displacement Reconstruction Scheme as an Initial Value Problem
Dynamic structural responses such as acceleration, velocity and displacement
are calculated by solving the following equation of motion of a structure with

proper initial conditions [Chopra 2000].

Ma(r)+Cv(r) + Ku(¢) =p(¢), v(0)=V, and u(0)=u, (2-1)

where M, C, K, and p represent the mass, damping, stiffness matrix of a structure
and a load vector imposed on the structure, respectively, while a, v and u denote

the acceleration, velocity and displacement of the structure, respectively. The

prescribed initial conditions for velocity and displacement are given as V, and

U,, respectively. The equation of motion given in Eq. (2-1) is the system of an

initial value problem in time domain, and represents a physical phenomenon that
the specified initial conditions propagate through time.

To solve Eq. (2-1) numerically, a time integration scheme based on a time-
marching algorithm is employed to express displacement and velocity in terms of
acceleration. The propagating characteristics of Eq. (2-1) should be properly con-
sidered in a time integration scheme. Several well-formulated time-integration
schemes have been proposed and successfully applied to various types of dynamic

problems.

Backward difference: (2-2-a)
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v, =v,_ +a, At

u, =u, , +v,_ At

Forward difference:
v, =V, +a,At (2-2-b)
u, =u, , +v,At

1

Backward trapezoid rule:

1
v, =V, +E(a,._1 +a;)At 220
-2-C

u, =u, +%(vi1 +v.)At

1

Third order corrector:

Vi =Vt %(Sai +8a,,-a.,) (2-2-d)

A
u, =u,, +1—2t(5vi +8v,., —v.,)

1

Newmark’s method:
v, =vi +((A=vy)a,_, +vyya,)At (2-2-¢)
u; =, + (A, +((0.5-B)a, , +Bya, (A

where subscript i denotes a discrete time step, a, = a(kAt), v, =v(kAt) and

u, =u(kAt) represent the acceleration, velocity and displacement of the structure,

At s a step length for the time-marching algorithm, which is often referred to as a
time increment or a sampling size, while 3, and 7y, represent numerical pa-

rameters for Newmark’s method [Chopra 2000], which define the variation of ac-
11



celeration over a time step, respectively.

Once displacement and velocity are expressed in terms of acceleration using
the time-marching algorithms in Eq. (2-2) for current and previous time steps, Eq.
(2-1) is solved for acceleration. As the above procedure is applied stepwise, the
entire histories of dynamic responses of a structure are calculated.

In case the initial conditions are known in previous and acceleration at a fixed
material point is measured at every discrete time step with the time increment of Az,
the displacement at the point is calculated by use of Eq. (2-2) in theory. As one of
the dynamic responses, the acceleration, is measured and thus known, the system
information in Eq. (2-1) is not required, but only the relationship between dis-
placement and acceleration, i.e., Eq. (2-2) is utilized to calculate displacement.

As mentioned at the beginning of this chapter, there exist two major draw-
backs in the application of Eq. (2-2) for reconstructing displacement with measured
acceleration.  First of all, the initial conditions are generally not given, especially,
for large-scale structures such as bridges and buildings. The second drawback is
that noise in the initial conditions and measured accelerations not only propagate
through time but also are severely amplified. This is because the time integration
scheme given in Eq. (2-2) is developed to describe the propagating characteristics
of the initial value problems accurately, and thus noise in measurement as well as
true information on a dynamic system propagates [Hong 2010 and Lee 2010].

Among the algorithms in Eq. (2-2), the most popular one in the civil engineer-

ing field may be the Newmark’s method, hence, all discussions about time-
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marching algorithms are represented by Newmark’s method in equation (2-2-¢)
hereafter.

To investigate propagating characteristics of Eq. (2-2-e), the velocity is elimi-
nated from the equations, and the displacement is expressed in terms of the initial

conditions and measured acceleration.

u, =u, +kAty, _k(At)zyNao +(AZ)2BN(ak —a,)

k-1 , k=1 -
1y + A0S, + (40X S, 3)
p=1

k
where S, = Za[ . From Eq. (2-3), it is clearly seen that noise in the initial dis-
i=0

placement propagates though time while noise in the initial velocity and accelera-
tion are amplified linearly and quadratically, respectively.

In case noise components in measured acceleration are random with zero
mean, noise in term S, ; may vanish. However, the last term in Eq. (2-3) causes

the accumulation of noise, which is explained by expressing the term for measured

accelerations.

k-1
(At)ZZSp,1 = (A1) (ay, +(a, +a,) +--+(a, +a, +a,--+a,_,))
p=1

i (2-4)
=AY Ai(k - p)a,

p=1
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f~1Hz u, =1m, v, =0m/sec

Figure 2-1. A single DOF system

Obviously, noise in accelerations measured in the past becomes larger rather
than canceling out as time passes by. It may be concluded that the application of
a time integration scheme for the initial value problem to the displacement recon-
struction yields noise-polluted, meaningless results. More precise and accurate
discussion about noise amplification will be discussed in the Chapter 3 with fre-
quency domain analysis.

The aforementioned characteristics of the Newmark’s method are demonstrat-

ed through a simple numerical simulation study on a single DOF system shown in

Fig. 2-1. The integration constant for the Newmark’s method, B, =1/4,

vy =1/2, are used [Chopra 2000]. The natural frequency of the system is about

1Hz, and the exact initial condition for displacement and velocity are 1.0 m and 0.0
m/sec, respectively. The reconstructed displacement for the initial displacement
of 1.2 m by Newmark’s method is compared with the exact displacement in Fig. 2-

2(a), which shows that the noise in the initial displacement propagates through time.
14
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Figure 2-2. Reconstructed displacement by Newmark’s method : (a) Noise in the
initial displacement. (b) Noise in the initial velocity. (c) 5% random proportional

noise in measured acceleration
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The noise of 0.2 m/sec in the initial velocity causes linearly increasing dis-
placement in the Newmark’s method as illustrated in Fig. 2-2(b). Finally, Fig. 2-
2(c) shows that the Newmark’s method yields almost meaningless displacement in

case the measured acceleration is polluted by 5% random proportional noise.

2.1.2 Displacement Reconstruction Scheme as a Boundary Value Problem
In this section, a new approach to reconstruct displacement with measured ac-
celeration is presented as a boundary value problem. Suppose acceleration at a

fixed material point is completely measured during a time interval (or a time win-

dow), T, <t<T,, and thus known. By definition, the acceleration of a fixed
material point, a(?), is expressed in terms of displacement through a second order
ordinary differential equation.

d*u(?)

an = dt?

~a(t)y T, <t<T, (2-5)

where u(t)and a(z)are and displacement and measured acceleration, respective-
ly. As only the dynamic information is utilized for the displacement reconstruc-
tion in this thesis, the displacement in Eq. (2-5) represents the dynamic component
measured from the static equilibrium position of a structure.

Provided that proper boundary conditions on displacement or velocity at
t=T, and ¢ =T, are given, the displacement is easily obtained by integrating

Eq. (2-5) twice and applying two boundary conditions. This study utilizes the
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following minimization problem rather than attempts to solve Eq. (2-5) directly.
. 17 _
MinTl, () = [ (a(u(t) ~@)* di (2-6)
L

where II, is error function of acceleration, and subscript ‘£’ denotes ‘error’.

Since, however, the boundary conditions for Eq. (2-5) are generally not known, the
displacement field cannot be determined by integrating Eq. (2-5) twice. Further-
more, random noise components included in the measurement should be properly
taken care of in the displacement reconstruction with Eq. (2-5).

The homogenous solution of Eq. (2-5) is given as a linear function in time.
Since, however, the real dynamic displacement induced by structural vibration is
defined with harmonic functions through the Duhamel integral [Chopra 2000], a
linear function is not an adequate basis for the dynamic displacement induced by
structural vibration. Therefore, the homogeneous solution should vanish, and the
solution of Eq. (2-5) is expressed solely by the particular solution. Note that the
displacements at the boundaries of a time window are determined by the particular
solution rather than specified as boundary conditions.

The particular solution of Eq. (2-5) can be found through the Fourier trans-
form [Rabiner 1975]. The transfer function of Eq. (2-5) is also derived by this

transform procedure.
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Fu(t) = H , () F(@(0)) =—§F(a(r» (2-7)

where F and H, =-1/ ®” denote the Fourier transform and the exact transfer

function of the second order ordinary differential equation in Eq. (2-5), respectively,
while o is the angular frequency. Here, the exact transfer function implies the
transfer function of the exact governing differential equation between displacement
and acceleration.

Theoretically, the time history of displacement is obtained by applying the in-

verse Fourier transform to Eq. (2-7).

u(t) = —F" %F(am)) 2-8)

where F' represents the inverse Fourier transform. The displacement reconstruc-
tion scheme defined in (2-8) is referred to as the frequency domain integration ap-
proach (FDIA) [Hong 2010 and Lee 2010] hereafter.

In case the measured acceleration contains random noise, pure noise frequen-
cy contents in measured accelerations below the target frequency [Lee 2010 and
Hong 2010], which is the lowest frequency in physically meaningful frequency
contents in measured acceleration, are severely amplified by the exact transfer
function in the frequency domain. Consequently, the reconstructed displacement

in the time domain is polluted with the amplified noise components. Here, the
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target frequency is easily determined by investigating the Fourier transform of
measured accelerations or just by the engineer’s decision in practical problems.
Even if measured accelerations are noise-free, the FDIA defined in Eq. (2-8)
can not be directly applied to reconstruct displacement. Since the Fourier trans-
form of measured accelerations in Eq. (2-8) is performed on the finite time interval
and the acceleration is measured in discretized sense, the Fourier transform (dis-
crete Fourier transform, more precisely) contains frequency responses below the
target frequency [Rabiner 1975 and Hamming 1989], which should not exist, by
truncation and discretization errors. These errors act as an additional source of
noise, and thus pollute the reconstructed displacement in the time domain similar to
the random measurement noise. To suppress the measurement noise and the trun-
cation error below the target frequency, low cut filters or band pass filters are usu-

ally applied to Eq. (2-8) before performing the inverse Fourier transform.

u(t) = —F~ (é H(@)F (@) (2-9)

where ¢ is a proper weighting function for a low cut filter or a band pass filter.
The Fourier transform in Eq. (2-9) holds for infinite and continuously measured
acceleration. Since, however, the finite and discretized acceleration with the con-
stant time step, Af, is measured in real situation, the Fourier transform in Eq. (2-
9) should be implemented by the discrete Fourier transform (DFT) which inevita-

bly contains the truncation and discretization errors. If the measured acceleration

19



is long enough to ignore these errors, the displacement can be reconstructed by the

FDIA with proper weighted transfer function.
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2.2 The Governing Equation and Transfer function of an Regularized In-
verse Problem

As proper boundary conditions are not specified for Eq. (2-5), the minimiza-
tion problem in Eq. (2-6) becomes ill-posed and unable to yield a unique displace-
ment for given measured acceleration due to rank-deficiency. To solve ill-posed
problems, the regularization techniques, in which a priori estimates of solutions are
defined by a regularity condition as additional information, are widely adopted
[Hansen 1988 and Park 2001]. The reconstructed displacement should stay

around the static displacement of a given system, u ,, which is expressed by the

st

following equation.
L <
I, (u) =5j(u(r) —u (1))*dt <1 <o (2-10)
T

where 11, isaregularization function, and » defines a solution bound.

As the static displacement has no effect on the acceleration defined in Eq. (2-
5), only the dynamic component in the total displacement can be reconstructed.
Therefore, the displacements in Eq. (2-6) and (2-10) represent the dynamic dis-
placement measured from the static equilibrium position of a structural system, and
the static displacement in Eq. (2-10) should be set to zero, which leads to the fol-

lowing expression
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HR(u):%j(u(t))zdtSr2 < -11)

Since the solution bound is not known a priori, the regularity condition Eq. (2-
11) is enforced as a penalty function to the original minimization problem in Eq.
(2-6) [Kang 2005].
d

"u —5)2dt+ﬁ]gu2dt 2-12
dt’ 2 (2-12)

h

Min TT(u) =TT , (u) +HR(u)=%f(

The above minimization problem is generally known as the Tikhonov regular-
ization scheme [Hansen 1988 and Park 2001]. The penalty number  in Eq. (2-
12) is usually referred to as the regularization factor that adjusts the degree of the
regularization in the minimization problem. As the regularization factor becomes
larger, the solution bound approaches zero, and zero displacements are reconstruct-
ed. Meanwhile, a small regularization factor yields an ill-conditioned problem for
Eq. (2-12), which may result in a meaningless and/or unstable solution. Therefore,
a well-balanced regularization factor should be selected to obtain physically mean-
ingful and accurate displacements [Park 2001].

The governing equation and the boundary conditions associated with the min-
imization problem is obtained by taking the variation to the object function in Eq.

(2-12)
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d*du d*u _ i
o —a)dt + B | Suudt = 0 (2-13)
T

SIT(u) = Yj

The integration of the first term of Eq. (2-13) by parts twice leads to the fol-

lowing equation.

) T

3
AL

d4u+B2 _dzc_l ddu dzu_
dr’ dt

dt + a
dr? ! dtz) alt(a’t2 a)

=0 (2-14)

TZ
jSu(
T T h

Based on the above variational statement, the governing equation and the boundary

conditions of the minimization problem are defined as follows

4 2—
G.E.: fl?JrBzu:d? T, <t<T,
t 4
(2-15)
2 3
B.C.: ‘;ﬁ’:a, Z::% at t=T,,T,

Since the displacements and the velocity are unknown at the boundaries, the
Neumann type boundary conditions [Cheng 2005] are adopted. The governing
equation in Eq. (2-15) is the same as that of a beam on an elastic foundation (BEF)
[Hetenyi 1946]. Hence the problem in Eq. (2-15) is referred to as the BEF prob-
lem hereafter. The existence and uniqueness of the solution can be guaranteed
with only the Neumann type boundary conditions by virtue of the second term of
the left-hand side of the governing equation, which comes from the regularization

function.

23



The transfer function of the governing equation in Eq. (2-15), which is abbre-

viated to the BEF transfer function, is derived by applying the Fourier transform.

Hy(@)= - =)

4 2 4 2 (2-16)
o+ 2nf)" +Pp

where f'is the frequency and H , denotes the BEF transfer function. The time-

history of displacement can be reconstructed by the FDIA with the BEF transfer

function.

2
u(t) = F ™ (H ,(0)F (@) = —F ™ (—— F(@())) (2-17)
o +p

Since the BEF transfer function by itself is capable of suppressing noise com-
ponents below the target frequency, it is not necessary to apply an additional band
filter to the FDIA defined in Eq. (2-17).

It is rather convenient to express the exact transfer function and the BEF
transfer function in terms of the dimensionless frequency normalized to the target
frequency. For example, the exact transfer function defined in Eq. (2-7) is nor-
malized as follows.

Hy(o) _ -1/2xnf)* _

~ o~ 1
=y ™ Ty

(2-18)

where H s> fr and f = f/f, are the normalized exact transfer function, the

target frequency and the dimensionless frequency normalized to the target frequen-
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cy, respectively. The normalized exact transfer function yields 1 at f =1, where

frequency is equal to the target frequency, while the un-normalized exact transfer

function becomes 1 at f =1/2m. Since the performance of proposed recon-

struction scheme is focused on the frequency region near the target frequency, the
normalization presented in Eq. (2-18) is a very convenient tool for representation
and comparisons for the transfer functions.

The normalized BEF transfer function is derived by applying the same nor-

malization scheme to the BEF transfer function in Eq. (2-17)

Hy(®) @) /2nf,)’ f?

7, ()=~ - -—
D= e,y " @) B, (e

(2-19)

where ﬁ p 1s the normalized BEF transfer function. The term “normalized” is

hereafter omitted for brevity of explanation, unless otherwise stated.

The accuracy of the reconstructed displacement is defined with the accuracy
function [Hamming 1989 and Smyth 2007], which is the ratio of the transfer func-
tion used in the displacement reconstruction to the exact transfer function [Hong

2010 and Lee 2010]. The accuracy function of the exact transfer function,

H (), and the BEF transfer function, H ;" (®) , are defined as follows.

acc H
H ()= H—E =1 (2-20)

E
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HaCC(m)Z HB — 0‘)4 — ?4
’ H, o'+ (F*+p*/2nf;)")

(2-21)

The exact accuracy function in Eq. (2-20) always yields 1 regardless of the

frequency. On the other hand, the BEF accuracy function in Eq. (2-21) becomes 0

~

at f =0, and rapidly converges to 1 as the frequency approaches to the target

frequency. The transition characteristics of the BEF transfer function in

0< 7 <1 are governed by the magnitude of the regularization factor. The accu-

~

racy at the target frequency is obtained by setting f =1 in Eq. (2-21).

1

where o, is the target accuracy, i.e., the desired accuracy for the reconstructed

displacement of the frequency component corresponding to the target frequency.
If the target accuracy is pre-selected based on an engineering sense, the regulariza-

tion factor is determined by the following equation.

p= [Ur @) =20 )Cnf) 050, <] (2-23)

where A*(at;)=(1—a,)/a,. Substitution of Eq. (2-23) into Eq. (2-19) and Egq.

(2-21) leads to the following expressions, respectively.
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Figure 2-3. BEF transfer functions for various levels of the target accuracy: (a)
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The BEF transfer functions and the accuracy functions for various levels of
target accuracy are drawn in Fig. 2-3 and Fig. 2-4, respectively, along with the ex-
act transfer function. The BEF transfer function begins to decrease quickly below
the target frequency while the exact transfer function keeps increasing as the fre-

quency approaches to zero. For frequency ranges larger than the target frequency,
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the BEF transfer function and the exact transfer function are almost identical re-

gardless of the target accuracy. Therefore, the FDIA with the BEF transfer func-

tion is able to reconstruct the displacement components for f >1. Meanwhile,

the BEF transfer function suppresses the acceleration components below the target
frequency, which are merely measurement noises, in the displacement reconstruc-
tion. The degree of the noise suppression becomes stronger as the frequency ap-
proaches zero. Higher target accuracy yields weaker noise-suppression capability
of the BEF transfer function, and vice versa as shown in Fig. 2-3 and 2-4. As an
apparent trade-off between the accuracy at the target frequency and the noise-
suppression exists in the selection of the target accuracy, the optimal target accura-
cy depends on a specific problem. For example, in case the noise level of meas-
ured accelerations is expected to be high, lower target accuracy may be adequate to
provide strong noise suppression capability to the BEF transfer function. The tar-

get accuracy of 0.97 is selected for all forthcoming discussions in this study.
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3. Design of FIR FILTERS

As acceleration is measured discretely by a uniform time interval At in actual
situations as illustrated in Fig. 3-1, the reconstruction should be implemented in
discretized form. In the digital filter field, the discretized relationship between
input acceleration and output displacement has a meaning of the digital filter. In
this chapter, the displacement reconstruction defined with the BEF problem in the
previous section is designed by the finite impulse response (FIR) filter for the prac-
tical real-time or near real-time processing.

The digital filters define the relationships between discrete input values and a
discrete output values. In the context of this thesis, the input values and output
values refer to the measured accelerations and the reconstructed displacements,
respectively. From the filter theory, displacements could be reconstructed from

measured accelerations using various types of digital filters.

A

Acceleration

[

Time

1

T, T,+At T +kAt T, =T, +nAt
Figure 3-1. Definition of measured accelerations at discrete time steps
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Among them, infinite impulse response (IIR) filters and FIR filters have been
successfully applied in numerous fields [Kumer 1996, Boore 1997 and Smyth
2007]. An IR filter and an FIR filter are often referred to as a recursive filter and
a non-recursive filter, respectively. An IIR filter utilizes output values (displace-
ments) as well as input values (accelerations) to define output values while an FIR
filter expresses output values in terms of input values only. Unfortunately, how-
ever, it is difficult to reconstruct displacements from measured accelerations with
the conventional digital filters for various reasons in low-frequency dominant
structures.

Numerical integration schemes in Eq. (2-2) are a type of IIR filter [Boore
1997]. Namely, these time marching algorithms adopted in structural dynamics
require the output of the previous steps to define the output of the present step.
As mentioned in section 2.1.1 the IIR filters have several shortcomings when a dis-
placement is reconstructed from a measured accelerations. First of all, initial
conditions on velocity and displacement, which are usually unavailable in real situ-
ations, are required. Moreover, low-frequency components in random noise are
amplified in the IIR filters, and thus severely deteriorate the accuracy of the recon-
structed displacement [Rabiner 1975] as discussed in the previous chapter. This
undesirable effect becomes a critical issue in the displacement reconstruction for a
low-frequency dominant structure. In case noise-suppressing algorithms are in-
troduced in the IIR filters, nonlinear phase errors are inevitably included in the re-

constructed displacements [Bardella 2003, Boore 1997, Kumer 1996 and Smyth
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2007]. Several remedies to overcome the drawbacks of the IIR filters with the
time-marching algorithm have been proposed for the displacement reconstruction
[Boore 1997, Chiu 1997, Iwan 1985 and Stephens]. However, since the remedies
try to correct erroneous results obtained by the IIR filters with additional pieces of
information on displacement or filtering operations, they are not completely free of
the drawbacks of the IIR filters. To date, a reliable IIR filter for the reconstruc-
tion of displacement with measured acceleration alone has rarely been reported.

The FIR filters approximate displacement as a linear combination of measured
accelerations. The coefficients of the FIR filters are usually defined as the coeffi-
cients of the finite Fourier series of transfer functions in the frequency domain
[Hamming 1989, Oppenheim 1999 and Rabiner 1975]. Due to the singularity of
the exact transfer function in Eq. (2.8) at the zero frequency, the maximum flatness
criterion, rather than the standard least square approach is employed to calculate
the coefficients of the FIR filters [Kumar 1996]. The maximum flatness criterion
yields inaccurate approximation of the transfer function in the low-frequency range
[Kumar 1996], which is a critical drawback of the FIR filter for the displacement
reconstruction in low-frequency dominant structures. Moreover, as the order of
the FIR filter is increased beyond a certain limit to improve the accuracy of the fil-
ter, the system matrix derived by the maximum flatness criterion tends to be singu-

lar.
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3.1 FIR filter design and accuracy analysis

In this section, the displacement reconstruction defined with the BEF problem
in the previous section is designed to become filters using one frequency-domain
theory and two time-domain theories. These filters, which will be designed in this
chapter, have a form of FIR filter consequently. The general performances of
three FIR filters are verified with the transfer function and the accuracy function

presented in the previous section.

3.1.1 Conventional FIR Filter

A conventional finite impulse response (CFIR) filter based on the BEF trans-
fer function is designed in this section. A CFIR filter approximates a given trans-
fer function in the frequency domain. Fig. 3-2 illustrates the basic setups for the
formulation of the CFIR filter. In case accelerations are measured discretely by a
uniform time increment, A¢, the CFIR filter expresses the displacement at the center

of the time interval, u,,,, as a linear combination (or a time convolution) of

measured accelerations in a time window.

2k+1

k
U, =u(t)= (At)z Zczap = (At)z chﬂkﬂa(t + pAt) (3-1)
p=1

p=k
where c; is the coefficient of the CFIR filter. Here superscript ‘c’ implies ‘con-

ventional’.
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Figure 3-2. A time window and measured accelerations for FIR filters

The square of the time increment is introduced in Eq. (3-1) to make the coefficients
of the CFIR filter dimensionless.

The size of the time window is referred to as the filter size in the digital filter
field. Once the displacement is computed for time ¢, the time window moves for-
ward by At to reconstruct the displacement at #+A¢. This procedure is identical to
the overlapping time-window technique proposed by Park et al. [Park 2008] for the
structural damage detection.

The Fourier transform of Eq. (3-1) yields the transfer function of the CFIR fil-

ter.
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Flu(t) = (A Y5, Flae + po)

i (3-2)
Flu®) = He(NF(@0)= (40" 3 ¢j.ae™ Fla()
He()= (M) Y50, (3-3)

where H . (f) is the transfer function of the CFIR filter, and i is the imaginary

unit. The transfer function of the CFIR filter is supposed to approximate the BEF

transfer function given in Eq. (2-16).

k
Hy(f) = (A D ¢l (3-4)
p=k

Eq. (3-4) represents the truncated Fourier series of the BEF transfer function,
and the coefficients of the CFIR filter are determined as following equation by the

theory.

1 1 fil2 o
CC+ N . H (f)eﬂﬂmpdf
ey )

fi!2

[ H (e df

—fs/2

(3-5)
1
At
where f, =1/At denotes the sampling frequency of measurement.

Since the BEF transfer function in Eq. (3-5), H4(f), is an even function, the

imaginary term inside the integration is zero by Euler’s identity and thus there is no
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phase response in the CFIR filter.

512

c 1 i2mfAy
Copn = [Hy ()™ df
At P

11 e g
- cos(2mpfAt)df 3-6
At (2m)? /7!./2f4+7»4fT4 (-6)
| ef) 72

- - 2mpf, £)df
v j = sl )l

where ?T = f,/ f, denotes the target frequency to the sampling frequency (TSF)

ratio. The coefficient of the CFIR filter approximating the exact transfer function
cannot be evaluated like Eq. (3-6) due to the singularity at the zero frequency.
The coefficients in Eq. (3-6) are always real and symmetric with respect to

p =0, since the BEF transfer function is an even function in the frequency do-

main. As the BEF transfer function decreases rapidly for larger fas shown in
Fig. 2-3, the integral in Eq. (3-6) is nearly independent of the upper limit for a

small TSF ratio of ]NFT <0.1, and thus becomes a function of p = p]?T. Conse-

~

quently, the relation between ¢, =¢,,;,, f; and p is TSF-ratio independent

as shown in Fig. 3-3 (a). The trapezoidal rule is employed to evaluate the integral.
Although the number of terms included in the CFIR filter varies with filter sizes,
the coefficients for the same p are always identical for all filter sizes at a fixed TSF

ratio.
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Figure 3-3. Coefficients of the CFIR filters for two different TSF ratios: (a) Small
scale. (b) Detail in a large scale.
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The Gibbs phenomenon, which is the rippling characteristics of a truncated
Fourier series, occurs in the CFIR transfer function. To reduce the rippling ampli-
tude, the filter size should be selected so that the coefficients smoothly converge to

zero as p approaches to k [Rabiner 1975, Hamming 1989]. Therefore the last term

of the CFIR filter should correspond to zero-crossing points, p,, in Fig. 3-3.

~

Ky =P, or k=20 (3-7)

T
When the calculated value for & with Eq. (3-7) is not an integer, the closest integer
to the calculated k is employed. The filter size is defined using & in Eq. (3-7)

- 2p 1
d, =2kAt=2£p0At= Po _ (3-8)

fr fr S

where d,, and N, =2p, are the filter size expressed in terms of time and the

target period, respectively. The target period denotes the reciprocal of the target
frequency.

The zero-crossing points appear periodically from 0.421 by a constant interval
of 1.687 such as 0.421, 2.108, 3.794, etc in Fig. 3-3. The filter sizes correspond-
ing to the three zero crossing points become 0.842, 4.215 and 7.588 times the target
period.

As the coefficient of the CFIR filter does not converge to zero near the first
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zero-crossing point as shown in Fig. 3-3 (a), the filter size of N, =0.842 yields
a large rippling amplitude in the transfer function (it will be illustrated in later in

this chapter), and is not an adequate size. The filter sizes of N, = 4.215 and

7.588 result in the acceptable rippling amplitudes in the transfer and accuracy func-
tions, and therefore are selected as the standard filter size and the long filter size,
respectively. The long filter size yields smaller rippling amplitude but requires
more computational effort than the standard one. The selection of the filter size
between the standard and long filter size depends on specific applications. Of
course, a filter size longer than the long filter size may be utilized, but it is believed
that the long filter size gives sufficiently accurate results in an engineering sense.
Because of the symmetry of the coefficients, the transfer function of the pro-

posed CFIR filter has no phase differences and becomes as follows.

He ()= (A0 (e +2 ¢ COSRTp/AL)) (3-9)

p=l

The normalized transfer function and accuracy function of the CFIR filter are

derived as following equations:

He(f)=~Qnf7)" (€1 + 22} ps c0sCmpf /) (3-10)
HE () ==Crfr 1) (a2 51 €050 /) (3-11)
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where H. and H/“ are the normalized transfer function and accuracy function

of the CFIR filter, respectively.
The transfer functions of the CFIR filter are shown Fig. 3-4 for the standard

and long filter sizes at the TSF ratio of 1/1000, while the transfer function for

N, =5 is added to Fig 3-4 (a) to verify the rippling characteristic of the CFIR
filter with other filter size. The CFIR filters for both standard and long filter sizes
approximate the BEF transfer function very well for ]7 >1.

As shown in Fig. 3-4 (a), the transfer function for N, =35 oscillates severe-

ly, and tends to diverge as the frequency increases. These severe oscillations in
the transfer function are always observed for filter sizes other than the standard and
long filter sizes. The smaller filter size except the two filter sizes not only causes
the larger oscillation amplitude, but also triggers the oscillation at the smaller fre-

quency. The transfer function of the CFIR filter with the standard filter size de-

creases faster than that with the long filter size for j~r <0.1, and becomes negative

when f <0.043. The negative transfer function causes the phase error of 7 in

the reconstructed displacement. Since, however, only noise components exist in
the frequency range, the negative transfer function would not cause any phase error

for physically meaningful displacement components.
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As shown in detailed graph with the linear scale in Fig. 3-4 (b), the transfer

functions for the standard and long filter sizes converge to —0.079 and 0.004 at

~

f =0, respectively. This fact implies that the long filter size provides stronger

noise suppression capability in the extremely low frequency range than the stand-
ard filter size to the CFIR filter.

The Gibbs phenomenon is clearly observed in the plot of the accuracy func-
tion in Fig. 3-5. The rippling amplitudes for the standard and long filter sizes are
1.4% and 0.06%, respectively. The rippling of the accuracy function is hardly
noticeable for the long filter size even in the plot with a large scale in Fig. 3-5 (b).

The accuracy functions for the standard filter size at two different TSF ratios
of 1/1000 and 10/1000 are presented in Fig. 3-6, and are almost identical up to the
corresponding Nyquist frequencies. The enlarged plot of the accuracy functions
near the target frequency is also presented in Fig. 3-6 (b). This figure verifies the
TSF ratio independence of the transfer function. The rippling amplitude of the
accuracy function for the TSF ratio of 10/1000 increases slightly near the Nyquist
frequency. The accuracy at the target frequency is evaluated as 0.984 for the both
TSF ratios.

The proposed CFIR filter exhibits uniform frequency responses from the tar-
get frequency to the Nyquist frequency, and is able to reconstruct displacement
with the same level of accuracy independent of the TSF ratio for the frequency
range. Noise components below the target frequency are effectively suppressed in

the CFIR filter. The only restriction of the proposed CFIR filter is that the filter
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size should be fixed at either the standard or long filter size, and cannot be adjusted

freely as needed in actual applications.

3.1.2 FDM-FIR filter

The direct discretization of the minimization problem in Eq. (2-12) with the
finite difference method leads to a new class of FIR filter, which is referred to as
the FDM-FIR filter. The FDM-FIR filter is formulated purely in the time domain
unlike FDIA and CFIR in previous chapter, and is able to reconstruct displacement
history.

nodes required in evaluating the second-order central difference

at the boundaries

»

fictitious node
Time

A T T T T T
1 1 1 Uy,
1 1 1 1
1 1 1 1 1
1 |uk+1 1 1 \ u2k+1
- 1 1 1 1 u
g 1 1 1 1 1 2k+2
1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1
1
1

T, T,
Figure 3-7. Definition of the displacements at discrete time steps and the fictitious
nodes for FDM-FIR filter.
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As the CFIR filter, the FDM-FIR filter reconstructs displacement using the moving
time-window technique, the standard and long filter sizes defined for the CFIR fil-
ter in the previous section are adopted for the FDM-FIR filter.

The first term of Eq. (2-12), I1,(u), is discretized by the trapezoidal rule

with an odd number of time step, 2k+1, as shown in Fig. 3-7.

11 _ _ _ 1 _
()~ — (- (aq,— al)z +(a, - a2)2 oot (ay —ay, )2 +—(ay — az/m)z)At

22 2 (3-12)
L,(a-a) At

—@-a(L)'L (-2 =

where 2k+1, a,, a, and ||||2 are the number of data points in period

1, <t <T,, the calculated acceleration, the measured acceleration at the p-th time
step and the 2-norm of a vector, respectively, while the bold-faced variables denote
the corresponding vectors. L, is a diagonal weighting matrix of order (2k+1)
with all diagonal entries of 1 except the first and last entry, which are equal to
1/ \/E . The calculated acceleration, a o is discretized by the central finite dif-

ference of Eq. (2-12), which is the proper approximation of the second-order

boundary value problems [Lapidus 1982].

U, —2up +tu,,
(Ar)?

=a, for p=1---2k+1 (3-13)

where u,is the displacement at the p-th time step as illustrated in Fig 3-7. Eq.
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(3-13) is rewritten in a matrix form for all time steps.

1
A Lu=a (3-14)

where L_and u denote the linear algebraic operator matrix of order

(2k +1)x (2k +3) and the vector of displacements at the discrete time steps, re-

spectively, and are defined as follows.

Uy
1 -2 1 ] u,
1 -2 1 0
L = . u=|u,, (3-15)
0 1 -2 1 :
L I -2 1) Ui
[ U2k |

Substitution of Eq. (3-14) into Eq. (3-12) leads to the following discretized mini-

mization problem of Eq. (2-6).

. 1 ) 1 S 2
1\/1umnE(u)=5||La(a—a)||2m=E Lu—(as) Laa\zm (3-16)

1
At
where L=L L.

As discussed in Chapter 2, the minimization problem of Eq. (3-16) is unable

to yield a unique displacement for given measured acceleration due to the rank-
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deficiency in linear algebraic operator, L . The rank-deficiency is caused by the

fact that only (2k +1) finite difference equations are defined in Eq. (3-13) for
(2k +3) unknown displacement. The two additional displacements at time step 0
and (2k + 2) outside the time window are included in Eq. (3-15) to define the se-

cond-order central finite difference at the two boundaries as illustrated in Fig. 3-7.

The time steps denoted by 0 and (2k +2) play the same role as fictitious nodes

[Lapidus 1982], which are usually employed to solve partial differential equations
by the finite difference method. Should two boundary conditions be supplied to
Eq. (3-16) as in well-posed boundary value problems, two additional equations are
defined with boundary conditions, and the sufficient rank of (2k + 3) is provided to
solve the minimization problem given in Eq. (3-16).

Because of the fictitious nodes, the domain of regularization function should

be extended to contain this outside displacement at the time steps 0 and (2k +2).

Hence the original minimization problem should be changed by following equation.

2 T, +At

d’u  _ 2 B 2
—a)'dt+— |u-dt 3-17
dt? ) 2 TL (3-17)

h{inH(u)=HE(u)+HR(u)=%f(

By this extension of domain, the second term of Eq. (3-17), IT,(u), is dis-

cretized by the same procedure used in Eq. (3-12) with trapezoidal rule.
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| 1
I, (u) = %(5“02 +”12 teeet ”2k+12 +5”2k+22)At
(3-18)
2
zAt

Lu

2 2
= B—uTLuTLuuAt = B—\
2 2

where L is a diagonal weighting matrix of order (24k+3) with all diagonal entries

of 1 except the first and last entry, which are equal to 1/\/5 .
Substitution of Eq. (3-16) and (3-18) into Eq. (3-17) leads to the following

discretized minimization problem,

MinIT(u) =11, (u)+11,(u)

i (3-19)
~ %AL#HLU —(an*La + %H'—u“”z

As the time increment is considered to be a constant in this study, the term on
the time increment that appears outside the 2-norm has no effect on the solution of
the minimization problem, and thus is omitted from the objective function in Eq.
(3-19).

The minimization problem in Eq. (3-19) forms a quadratic problem with re-
spect to the unknown displacement vector, and thus the solution of Eq. (3-19) is

given analytically as
u=(L"L+p2(a0)1, ) UL a(ar) =CPa(ar? (3-20)

where 1, =L "L, is the near identity matrix of order (2k +3) with all diago-
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nal entries of 1 except the first and last entry, which are equal to 1/2, and C” is
the coefficient matrix for the displacement reconstruction of order

(2k +3)x(2k +1). Here superscript ‘D’ denotes the FDM-FIR filter.
The displacement at the center of a time window is the (k + 2)-th component
of U vector, u,,,, in Eq. (3-15). Without the loss of generality, u,,, of a time

window is considered as the reconstructed displacement at time ¢.

2k+1
u(t) =u,, =c’a(Ar’ =(A*>.Cp, a,
2k+1 " k (3-21)
=AY cla(t+(p—(k+1)At) = (A1)’ Y el a(t+ pAt)
p=l p=rk

where C” denotes the (k + 2)-th row vector or the center row of the C” matrix.

The displacement reconstruction scheme defined in Eq. (3-21) represents an FIR
filter that requires no initial condition.

The FDM-FIR filter of Eq. (3-21) is formulated completely in the time-
domain rather than the frequency-domain. The transfer function and the trans-
formations of measured accelerations to and/or from the frequency domain, which
are required in the CFIR and FDIA, are not included at all in the whole reconstruc-
tion procedure of the proposed method.

The FDM-FIR in Eq. (3-21) have the identical expression with the CFIR filter
in Eq. (3-1) except for the coefficient array. Hence, the only difference between

the two filters is the method for determining the coefficients. The transfer func-
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tion and accuracy function of the FDM-FIR filter in Eq. (3-21) are derived and

normalized with the same method used in the CFIR filter as following equations.
TN 7 \2.,.D : D 7
H () = =Q2nf;)* (¢ +22 €5, c05Qmpf 1 ) (3-22)
p=l1

Hy" 1) =-Cf el 4 220k, cosCmly /) (3:23)

where H , and H [ are the normalized transfer function and accuracy function
of the FDM-FIR filter, respectively.

The coefficients of the FDM-FIR filter, cik .1 » for various window sizes are

plotted against p/k for the TSF ratio of 1/1000 in Fig. 3-8 together with those of
the CFIR filter with the standard and long filter size. The coefficients are sym-
metric with respect to p =0 and converge smoothly to zero regardless of filter

sizes dissimilar to the CFIR filter. Therefore, as far as the rippling amplitude in
the transfer function is concerned, the filter size can be selected freely as needed in
specific problems. The convergence to zero becomes smoother for a longer filter
size than other smaller filter size, which yields the smaller rippling amplitude
[Rabiner 1975 and Hamming 1989].

The imaginary parts of the displacement transfer function vanish due to the
slymmetry of the coefficients, and thus no phase error occurs in the reconstructed

displacement with the FDM-FIR filter like the CFIR filter. The coefficients of the
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FDM-FIR and the CFIR filter appear to be almost identical in the figure, and the
differences in the coefficients between the two filters seem negligible. However,
the differences cause considerable effect on behaviors of the two filters.

The transfer functions of the FDM-FIR filters with various filter sizes for the
TSF ratio of 1/1000 are presented in Fig. 3-9. The transfer functions appear al-
most identical above the target frequency regardless of the filter size in the figure,
but the longer filter size the better approximation result of the BEF transfer func-
tion in the frequency region under target frequency. The transfer function of the
FDM-FIR filter approximates the BEF transfer function better than that of the
CFIR filter shown in Fig. 3-4 below the target frequency for the same filter size.

The severe oscillations in the transfer function of the CFIR filter found for
N, =5 do not occur in the FDM-FIR at all. The Gibbs phenomenon is clearly

seen in the accuracy functions plotted for various filter sizes in Fig. 3-10 (a), and

more precisely in Fig. 3-10 (b).
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The larger filter size yields the smaller rippling amplitude of the accuracy

function, and virtually no rippling in the accuracy function is observed for filter
sizes larger than N, =5 as shown in Fig. 3-10 (b).

Unlike the CFIR filter, the rippling amplitude damps out quickly for all filter
sizes as the frequency increases. The accuracy at the target frequency varies
slightly with the filter size, which is caused by the rippling of the accuracy function.
The standard and long filter sizes yield an accuracy of 0.98 and 0.97 at the target
frequency, respectively.

Fig. 3-11 (a) presents the accuracy functions of the FDM-FIR filters with the
standard filter size for two different TSF ratios of 1/1000 and 10/1000. In Fig. 3-
11 (b), the accuracy functions plotted against the frequency normalized to the sam-
pling frequency are also presented. The FDM-FIR filter yields identical accuracy
functions independent of the TSF ratios near the target frequency as shown in Fig.
3-11 (a). Fig. 3-11 (b) reveals that the accuracy functions begin to deviate from the
exact value 1 at 4% of the sampling rate, and become greater than 1.03, which
means 3% amplitude amplification, after 12 % of the sampling rate regardless of

TSF ratios. The FDM-FIR filter yields less accurate transfer functions for high

frequencies over 0.1f, than for frequencies near the target frequency. Never-

theless, overall accuracy of the reconstructed displacement would not deteriorate

much due to the aforementioned inaccuracy because the transfer function decreases
rapidly in proportion to 1/ f*, and the contribution of high frequency contents in
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measured acceleration to the reconstructed displacement becomes negligible. To

ensure the accuracy of the reconstructed displacement, all dominant frequencies in

measured accelerations should be smaller than 0.1f,. The frequency range to

achieve the accuracy level of 0.97, which means 3% error in amplitude, is given as

£, <f<0.1f..

3.1.3 FEM-FIR filter

The discretization of the variation statement in Eq. (2-14) with the finite ele-
ment method yields a FIR filter, which is referred to as the FEM-FIR filter (FFIR
filter). Like the FDM-FIR filter in section 3.1.2, the FFIR filter is also formulated
purely in the time domain for the purpose of the displacement reconstruction; it is
able to reconstruct velocity as well as displacement at the same time. The FDM-
FIR filter proposed in the previous section can successively reconstruct displace-
ment history from measured acceleration, but the reconstruction of velocity is not
considered.

The FFIR filter reconstructs displacement and velocity using the moving time-
window technique as like other FIR filters in previous chapter. Even though the
FFIR filter has no limitation about the filter size similar with the FDM-FIR filter,
the standard and long filter sizes defined for the CFIR filter are also adopted for the
FFIR filter for proper comparisons. Eq. (2-14) is discretized in time with 2k ele-

ments representing the time increments.
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Figure 3-12. Finite element model for the FFIR filter

Oll(u) = Zjd ou’ —a®)dt +p° ZJ.Bueuedt 0 (3-24)

e=1 As dt e=1 As

Here, u° and a‘ denote the displacement and acceleration in element, e, respec-
tively. The displacement is interpolated with the Hermitian shape function, Ng,
and the measured acceleration is interpolated with the linear shape function, N, in

an element [Hughes 1987].
u*=N, -u°, a°=N,-a° (3-25)

where U° and @°¢ are the nodal unknown vector and measured nodal acceleration

in element e, respectively, and are defined as follows.
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ue = (uy,vy,us,vs), a‘=(a’,a) (3-26)

where ()] and (-); indicate nodal unknowns at the left and the right node of

element e, respectively, and v is the velocity. The definitions of the nodal varia-
bles are illustrated in Fig. 3-12. Notice that the measured acceleration may be
modeled as a constant in an element by averaging the two nodal accelerations if
necessary.

The standard FEM formulation for a beam on an elastic foundation [Hetenyi

1946] is adopted to derive the following matrix expression of Eq. (3-24).
(K+B*(A)'M)u = (Ar)’Qa (3-27)

where U and @ denote the nodal unknown vector and the measured acceleration
vector associated with all sampling points of measurement. The nodal unknown
vector consists of the nodal displacements and the nodal velocities. The matrixes
in Eq. (3-27) are defined as

d*N’!

K=Z£d;§N} iH de,M = ZINHNHdi Q= Zj HN L (3-28)

e

where Z is the assembly operator of the FEM, and § is the natural coordinate

[Hughes 1987] for the time variable ranging from 0 to 1. The nodal unknown

vector is obtained by solving Eq. (3-28).
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u=(A)*(K+B*(AH*M)"'Qa =(Ar)°’C'a (3-29)

where C” is the coefficient matrix of order 2(2k +1)x (2k +1). Here, super-

script ‘F” denotes the FFIR-filter.

Since the Neumann type boundary conditions are enforced in a weak sense for
Eq. (3-24), the reconstructed variables are inevitably affected by errors in the
boundary conditions. However, the errors rapidly decrease inside of the domain
away from the boundary due to the diffusive characteristics of the FEM for elliptic
boundary value problems. The displacement and velocity at the center of a time
window are least affected by the errors induced by the weak enforcement of the
boundary conditions, and are taken as the reconstructed solution in a time window.
Assuming the time step at the center of a time window represents time ¢ as in the

CFIR and FDM-filter, the reconstructed displacement is expressed as

2k+1

u(t) =u,,, =c"a(An’ =(AN*>.C5,.,a

2k+1,p~" p
. (3-30)
= (AZL)2 Zcirkﬂc_l(t + pAt)

p=—k

where ¢’ denotes the (2k +1) -th row of the C” matrix. As shown in Eq. (3-

30), not only FDM-FIR filter and CFIR filter but also FFIR filter has the identical
expression. The transfer function and accuracy function of the FFIR filter in Eq.

(3-30) are derived and normalized with the same method used in the CFIR filter as
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following equations.

~ ~ ~ k ~ o~
H . (f)=-Qnf;) (chy +2D ¢, cosQmpfy /) (3-31)
HE (f) =—2nf, ) (e, +2D ¢l cosCmpfy /) (3-32)

where H, and H{ are the normalized transfer function and accuracy function
of the FFIR filter, respectively.

Since the coefficients of the FFIR filter and the transfer function and accuracy
function of it are nearly identical to the results of FDM-FIR filter, the detailed dis-
cussion is omitted and substituted by the Fig. 3-13~3-16. The frequency range to

achieve the accuracy level of 0.97 is given as f, < f <0.1f, by Fig 3-16 (b).

The velocity at the center of a time window is reconstructed using the (2k+2)-

th row of the coefficient matrix in Eq. (3-30).

2k+1

k
V() =V, = (MDD Chyyp @, =At Y 60 a(t+ pAr)=CaAr  (3-33)
p=l p=—k

e
where ¢,

:AICZF,MWM. The coefficients for the velocity reconstruction
are shown in Fig. 3-17 for various filter sizes at the TSF ratio of 1/1000, and al-
ways maintain anti-symmetry with respect to p =0. The anti-symmetry of the

coefficients is also held for different TSF ratios because the compositions of the

system matrices in Eq. (3-28) are independent of the TSF ratios.
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Figure 3-14. Transfer functions of the FFIR filter for various filter sizes
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The velocity transfer function of the FFIR filter is obtained by applying the Fou-
rier transformation of Eq. (3-33). All real parts of the velocity transfer function

vanish due to the anti-symmetry of the coefficients.
k
Ve(f)=2iMY E7 . sinQrpfAr) (3-34)
p=1

where V. is the velocity transfer function of the FFIR. As the exact transfer
function for velocity is 1/i®, the normalized transfer function I7F and the accu-

racy function V. of velocity are defined as follows.

-~V ~ & ‘ -~
V()= /Fz'(cf) =27, 2% ", s ) (3-35)
T p=l
=V N g
e (f)=%{0)=—2nfrf220§+k+l sin(2npf 7) (3-36)
p=1

The accuracy function of velocity is presented in Fig. 3-17 for two TSF ratios.
As in the displacement reconstruction, most of the frequency contents smaller than
the target frequency in measured accelerations are suppressed in the velocity recon-

struction. The accuracy of the velocity reconstruction reaches 0.982 at the target
frequency, and 0.97 at 0.1f,. The accuracy decreases rapidly after 0.1f,, and

becomes zero at the Nyquist frequency.
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An advantage of the FDM-FIR filter and FFIR filter over the CFIR filter is
that the filter size can be flexibly selected as needed in actual applications. For
example, a filter size shorter than the standard filter size may be employed to re-
duce computational effort for the real-time or near real-time reconstruction of dis-
placement and/or velocity. However, shorter filter sizes lead to a less accurate
transfer function at the target frequency and a larger rippling magnitude of the ac-

curacy function.
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3.2 Numerical and Experimental Verification for the FIR filters

The validity of the proposed FIR filters is demonstrated through a numerical
simulation study, two laboratory experiments in different scales and a field test of a
real railway bridge. The numerical study is presented to compare results by the
proposed method with exact solutions quantitatively. Displacements as well as
accelerations are measured in all cases, and the reconstructed displacements are
compared with measured displacements. The fast Fourier transform (FFT) is uti-
lized for the DFT. All calculations for the results presented here are performed
after the completion of actual measurements. The instant when the displacement
reconstruction begins is set to ¢ =0 throughout all the examples. The standard
and long window sizes defined for CFIR filter are adopted for the filter size and
0.97 is used for the target accuracy. The results by the FDIA based on the BEF
transfer function are also presented. For the real-time or near real-time processing,
the overlapping time window technique, which is employed for FIR filters, is used
for the FDIA.

As demonstrated in previous section with the transfer function and accuracy
function of the FDM-FIR filter has nearly identical performance with the FFIR fil-
ter for the displacement reconstruction. Hence the results of the displacement

reconstruction by the FDM-FIR filter are omitted in the forthcoming examples.

3.2.1 Numerical Simulation Study

The accelerations at the center of a simple beam with the span length of 40m
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are measured. The excitation force is applied at the location 12m right of the left

support of the beam, and is defined as follows.

O(t) =8.9sin15.4nt +35.9sin31nt + 29.3sin 567t (3-37)

The forcing function given in Eq. (3-37) generates the maximum displacement of
Imm at the center of the beam during the force vibration. The free vibration of
the beam is introduced by withdrawing the excitation force at 6 second. To obtain
measured accelerations and displacements at the center of the beam, the dynamic
analysis of the beam is performed by the finite element method using 10 elements
with the Hermitian shape function [Hughes 1987]. The fundamental frequency of
the beam is found as 6.22 Hz, and the frequencies of the excitation force are 7.70

Hz, 15.50 Hz and 28.00 Hz.

| ‘ 12m "| Measurement location
» Excitation h@

20 m ;I: 20 m 4’|

EI =6.03x10"N-m”’
Mass per unit length =1.5x10° kg/m

Figure 3-19. A simply supported beam for the numerical simulation study
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The excitation force is withdrawn after 6 seconds to induce the free vibration of the
beam. The Rayleigh damping model is adopted for the structural damping of the
beam. The coefficients of the damping model are determined so that the modal
damping ratios of the first and second mode are equal to 0.1%. The Newmark’s
method is employed for the dynamic analysis with a time increment of 0.001 se-
cond. Accelerations and displacements are measured at the sampling frequency
of 1000 Hz.

The result of the FFT with the calculated accelerations is shown in Fig. 3-20,
in which the normalization with respect to the maximum value is employed. Four

dominant frequencies are identified at 6.17 Hz, 7.67 Hz, 15.5 Hz and 28.0 Hz.
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Figure 3-20. FFT of measured accelerations for the numerical simulation study
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The lowest dominant frequency corresponds to the fundamental frequency of
the beam, and the other three frequencies are the forcing frequencies. The minor
peak at 24.80 Hz is the second natural frequency of the beam. The differences
between the actual frequencies and identified frequencies are caused by the trunca-
tion and discretization errors that occur during the FFT.

From the lowest dominant frequency of the FFT result in the figure 3-20,
6.17Hz is selected for the target frequency of the reconstruction and 0.97 is used
for the target accuracy. The standard and long window sizes corresponding to the

target frequency are 0.684 second and 1.230 second, respectively
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Figure 3-21. Exact displacement for the numerical simulation study
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Figure 3-22. Details of the reconstructed displacement by FDIA with noise-free
data : (a) During the forced vibration. (b) During the free vibration.

75



Fig. 3-21 shows the exact displacement from 5 to 8 seconds. Since it is hard-
ly to figure out the differences between reconstructed displacement and exact dis-
placement in large scaled graph in Fig. 3-21, the details at the two peaks marked
with circles in Fig. 3-21 are presented in following discussion for more accurate
comparisons. Not only FDIA but also CFIR and FFIR yield almost same accura-
cy in the result of reconstruction, therefore the large scale graphs are skipped and
just the details are illustrated hereafter.

Fig. 3-22 (a) and (b) show the details of the displacement reconstruction by
FDIA during the forced vibration and free vibration for different window sizes to-
gether with the exact displacement, respectively. The overlapping window tech-
nique is employed for standard and long time-window sizes for the FDIA, and the
FDIA with whole acceleration measurement without time window technique is
tested for comparison.

The FDIA using the long window size yields almost same result with the
FDIA without time window. It means that the long filter size is long enough to
ignore the errors caused by the truncation and discretization of DFT which is dis-
cussed in section 2.1.2. The amplitudes of the reconstructed displacements by
FDIA are slightly smaller than the exact displacement. Theoretically, if the input
acceleration is single frequency component which only contains the target frequen-
cy component, the accuracy of reconstructed displacement should be 0.97 because
the target accuracy is fixed to 0.97. However, in forced vibration region the dy-

namic responses contain multiple frequency components, the target accuracy not
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hold for other frequency components except for the target frequency component.

This is more clearly seen in free vibration which contains nearly single domi-
nant frequency component. The details of reconstructed displacements by the
FDIA during the free vibration are drawn in Fig. 3-22 (b) for the standard window
size and the long window size. As expected by previous discussion, the recon-
structed displacement by FDIA with the long window size and without time win-
dow yield around 3 % error at the peaks, while the standard window size
reconstructs slightly greater result at the peaks than other reconstructed displace-
ment. No phase error is found in both the forced vibration and the free vibration.

The FDIA reconstructs displacement by applying the inverse Fourier trans-
form to the Fourier transform of measured accelerations multiplied by the BEF
transfer function. Though he FDIA yields very accurate result for the reconstruc-
tion but it requires a rather large computational effort, and may be inadequate for
real-time or near real-time processing because the Fourier transform and the in-
verse Fourier transform should be performed for every reconstruction step.

The details of the reconstructed displacements by CFIR and FFIR are present-
ed in Fig. 3-23 with the standard and long filter sizes, and compared with the exact
displacement. No phase error is found in the reconstructed displacement by both
filters. The reconstruction errors at the peak shown in Fig. 3-23 (a) by the FFIR
filter for the standard and long filter sizes are evaluated as 0.8 % and 0.6%, respec-
tively, and those by the CFIR filter for the two filter sizes as 1.3% and 0.5%, re-

spectively.
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Figure 3-23. Details of the reconstructed displacement by CFIR and FFIR filter
with noise-free data : (a) During the forced vibration. (b) During the free vibration.
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The FFIR filter yields 1.8% and 2.9 % error for the standard and long filter sizes at
the peak shown in Fig. 3-23 (b), respectively, and the CFIR filter yields 1.6% and
3.0 % errors for the two filter sizes.

The accuracy of the reconstructed displacement by the CIFR and FFIR filters
at the peak shown in Fig. 3-23 (b) almost coincides with the accuracy of the BEF
transfer functions corresponding to the filter sizes at the target frequency. This is
because the displacement components corresponding to the excitation frequencies
have damped out, and only the displacement component corresponding to the fun-
damental frequency of the beam remains around the second peak.

To investigate the effect of noise on reconstruction results, displacement is re-
constructed from noise-polluted accelerations and plotted in Fig. 3-24 together with
those from noise-free accelerations. The noise-polluted accelerations are simulat-
ed by adding 5% random proportional noise generated with the uniform probability
function to the accelerations calculated by the finite element analysis. The root
mean square (RMS) errors in the measured accelerations and the displacement re-
constructed by the proposed FIR filter with the standard filter size are shown in Tab.
3-1. The 5% random proportional noise causes around 2.90 % RMS errors in the
accelerations. The RMS errors in the reconstructed displacements are around 4%
for the forced vibration, and less than 2% for the free vibration, which demon-
strates the robustness of the proposed filters against noise. The reconstructed ve-
locity from the noise-free accelerations is shown in Fig. 3-25. Only the

reconstruction results obtained by the FFIR filter with the standard filter size are

79



presented because differences between those with the long filter size and standard
filter size are hardly noticeable for the scale of the figure. Although the details of
the reconstructed velocity are not shown, the FFIR filter reconstructs the velocity at

the same level of accuracy as the displacement.
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Figure 3-24. Effect of measurement noise on reconstructed displacement during the
forced vibration with the standard filter size.

80



60

Velocity (mm/sec)

Forced vibration

<—|—>

— FFIR with standard window size

----- Exact velocity

Free vibration

6

Time(sec)

Figure 3-25. Reconstructed velocity by the FFIR filter with noise-free data

Table 3-1. RMS errors in measured accelerations and reconstructed displacements

of example 1

Type of vibration

Acceleration

Reconstructed

displacement(FFIR)

Reconstructed

displacement(CFIR)

Noise free | 5% Noise

Noise free | 5% Noise | Noise free | 5% Noise

Forced vibration

0.00 % 2.90 %

1.73 % 3.98%

1.79 % 4.02 %

Free vibration

0.00 % 2.85%

1.75 % 1.93 %

1.51 % 1.72 %
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3.2.2 A Cantilever Beam subject to Base Motions

This experimental example is presented for the purpose of verification of the
proposed method in the small scale laboratory setting, in which the measurement
noise is relatively small but multiple frequency contents are contained in the dy-
namic responses. The displacement is also reconstructed by the FDIA and CFIR
method but omitted for the simplicity of the presentation.

One end of a small steel beam of 32.9cmx7.1cmx0.12cm is mounted on a vi-
bration exciter to form a cantilever beam. The vibration of the beam is induced
by base motions generated by the exciter. The overall setup for this experiment is

illustrated in Fig. 3-26.

Figure 3-26. Experimental setup for the cantilever beam subject to base motions
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Figure 3-27. FFT with measured accelerations of the cantilever beam subject to
dual frequency base motions

10

5

Displacement (mm)

RN

----- Measured displacement

— FFIR filter with the standart filter size
-10 T T T
0 1 2
Time (sec)

Figure 3-28. Reconstructed displacement of the cantilever beam subject to the dual
frequency base motions
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The acceleration and displacement are measured at the free end of the beam at
a sampling rate of 200Hz. The displacement is measured at the identical location
of the accelerometer by a laser displacement transducer. The model is excited by
the base motion with dual frequency contents of 6Hz and 8Hz. The dominant
fundamental frequency is about 10Hz identified from the random excitation.

The results of the FFT with the measured accelerations are shown in Fig. 3-27.
Three dominant frequencies of 6 Hz, 8 Hz and 9.96 Hz are identified. The first
two frequencies are the excitation frequencies, and the third minor frequency is the
fundamental frequency of the cantilever beam. From the result of FFT the lowest
frequency, 6 Hz, are selected for the target frequency of dual frequency base mo-
tion test and the standard filter size is used for the FFIR filter.

The reconstructed displacements by FFIR filter with standard window size are
compared with the measured displacements in Fig. 3-28. In the figures, the phas-
es and the amplitude of the vibrations are reconstructed accurately and the general
history of the reconstructed displacement agrees well with that of the measured

displacement in the overall sense.

3.2.3 Forced Vibration of a Stay Cable

A forced vibration test of a stay cable was performed at Structural Laboratory
of Hyundai Institute of Construction, Kyungki-do, Korea. The material properties

of the stay cable are given in Table 3-2, and experimental setups, the geometry and
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the boundary conditions of the cable are shown in Fig. 3-29. Tension of approxi-
mately 300 kN is applied to the cable, and the fundamental frequency is calculated
about as 1.5Hz. The forced vibration of the cable is introduced with the cable
exciter developed by Hyundai Institute of Construction at the center of the cable.
The exciter generates vertical exciting forces by two rotating masses in the oppo-
site direction. The total mass of the exciter and the rotating mass are 14.58 kg and
0.46 kg, respectively. The cable is excited by its fundamental frequency, i.e.
1.5Hz to induce the resonance of the cable for 40 sec. An accelerometer is in-
stalled at the center of the stay cable and the vertical acceleration is measured at the
sampling rate of 100 Hz. A linear variable differential transformer (LVDT) is in-
stalled at 20cm away from the accelerometer to avoid interference between the ex-
citer and the LVDT. The LVDT measures vertical displacement at the same
sampling rate as the accelerometer. The FFT of the measured acceleration yields
the dominant frequency of 1.48 Hz, which is slightly smaller than the excitation
frequency. The standard window size is used for the displacement reconstruction

with the FFIR filter.

Table 3-2. Material properties of the stay cable

Young’s Modulus Area Weight Fundamental Unstrained length Sag
(KN/mm?) (mm?) (N/m) Frequency (Hz) (Lo) (m) Ratio
200 2.348 199.075 1.52 44.304 1/310.8
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Figure 3-29. Forced vibration experiment of a stay cable: (a) Experimental setup.
(b) Dimensions and the boundary condition of a stay cable
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The reconstructed results are shown in Fig. 3-20 for the two periods around
the beginning of the excitation and the end of the excitation. In the figure, the re-
constructed displacement agrees with the measured displacement from the LVDT
well except for a small, constant phase difference. It is believed that the phase
difference is caused by the difference in positions between the accelerometer and
the LVDT. In Fig. 3-30 (a), the displacement reconstructed by the Newmark’s
method is drawn together with the others. The Newmark’s method yields diverg-

ing displacement after 2 sec even though the exact initial conditions are specified.
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Figure 3-30. The reconstructed displacement of the stay cable by FFIR filter with
strandard window size : (a) Near the beginning of the excitation. (b) Near the end
of the excitation
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Figure 3-31. Measurement of the simply-supported span of in a KTX railway
bridge: (a) Installation of sensors. (b) Typical section and location of sensors. (¢)
Simply-supported span
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3.2.4 Field Test on a Simply supported Railway Bridge under a Moving Train

The acceleration and the displacement are measured at the center of a 40m
simply-supported span of a railway bridge on the Gyeongbu line of the Korea Train
Express (KTX). The measurement is taken at a sampling frequency of 1,000 Hz
while an actual train passes the bridge during commercial operation. A linear varia-
ble differential transformer (LVDT) is used to measure displacement. The overall
instrumentation for the measurement, a typical cross-section and the measurement
location are illustrated in Fig. 3-31. The experiment is conducted by Steel Struc-
ture Research Laboratory of Research Institute of Industrial Science and Technolo-
gy, Kyungki-do, Korea. Three dominant frequencies of the bridge are found at
2.86 Hz 3.86 Hz and 5.79 Hz by the FFT of the measured accelerations. The first
dominant frequency corresponds to the excitation frequency of the moving train,
and the second one is the first natural frequency of the bridge. The standard win-
dow size is used for the displacement reconstruction with the CFIR and FFIR filter.

Unlike the previous examples, the pseudo-static displacement is included in
the measured displacement due to the moving train. Here, the pseudo-static dis-
placement denotes the displacement obtained by neglecting the dynamic effect of
the moving train on the bridge. Because the pseudo-static displacement has noth-
ing to do with the measured acceleration, the purely dynamic displacement can be
reconstructed by the proposed method. Therefore, to compare the reconstructed
displacement by the proposed method to the measured displacement, the pseudo-

static component in measured displacement should be eliminated. As the bridge
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vibrates around the pseudo-static displacement, the moving average of the meas-
ured displacement [Montgomery 2005] over the longest dominant period is consid-
ered to be the pseudo-static displacement, and the dynamic displacement is

estimated as follows.

t+T/2

u, () =u (1) —% jum (1)dt (3-38)

t-T/2

where u,(t), u,(t) and T are the extracted dynamic displacement, the meas-

ured displacement at time ¢ and the longest period, respectively. The integral term
in Eq. (3-38), which is evaluated by the trapezoidal rule, represents the estimated
pseudo-static displacement. The numerically integrated extraction scheme forms
a FIR filter as well.  As like to the displacement reconstruction scheme, the trans-
fer function of this FIR filter is derived by applying the Fourier transform to the
numerically integrated expression of Eq. (3-38). The transfer function of the dy-
namic displacement extraction reveals the accuracy of the extracted dynamic dis-
placements in the frequency domain compared to the measured displacements.
The transfer function of this extraction is shown in Fig. 3-32, and its values at the
three dominant frequencies are found as 1.001, 1.210 and 0.987 in the ascending
order of the frequencies. The dynamic displacements corresponding to the first
and third dominant frequency are extracted accurately, but those corresponding to

the second dominant frequency are overestimated by 21% during the extraction.
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Figure 3-32. Transfer function of the dynamic displacement extraction scheme
The measured displacement and the estimated pseudo-static displacement are pre-
sented in Fig. 3-33. As formulated, the measured displacement oscillates around
the pseudo-static displacement. The difference between the two displacements
becomes the extracted dynamic displacement. Fig. 3-34 compares the extracted
dynamic displacement with the reconstructed displacement using the FFIR, and Fig.
3-35 shows the details of Fig. 3-34 during the period when the train is completely
on the span. The train enters the bridge at 0.5 seconds, begins to exit the bridge
from 7.7 seconds and completely leaves the bridge at 8.4 seconds. The aforemen-
tioned instants are not measured values but estimated ones based on the measured

displacements in Fig 3-34.
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Figure 3-33. Measured and pseudo static displacement of the simply-supported
railway bridge
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Figure 3-34. Reconstructed and extracted dynamic displacement of the simply-
supported railway bridge with standard filter size
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Figure 3-35. Details of reconstructed and extracted dynamic displacement

Figure 3-34 shows the extracted dynamic displacement by Eq. (3-38) and the
reconstructed displacement by the FFIR filter. Results by the CFIR appear to be
almost identical to those of the FFIR filter, and are not presented in the figure.
When the train is on the bridge, the forced vibration is dominant. After the train
leaves the bridge, the free vibration governs the responses of the bridge. The
maximum differences between the reconstructed and extracted dynamic displace-
ment at peaks are found as about 10% during the forced vibration, and those during
the free vibration as about 25%. The details of reconstructed displacements by
the CFIR filter, FFIR filter and the FDM-FIR filter are compared with the extracted
dynamic displacement in Fig. 3-35. The three FIR filters yield almost identical

results, and no noticeable difference is found in either the amplitude or the phase.
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The discrepancies between the extracted and reconstructed displacements are
strongly caused by the dynamic displacement extraction scheme in Eq. (3-38). As
illustrated above, the displacement component corresponding to the second domi-
nant frequency is overestimated by 21% during the extraction. Since the accuracy
bound of the proposed filter is set to be 3% with the target accuracy of 0.97, the
discrepancy of 25% in the free-vibration region is in an acceptable range regarding
to 21% error of the dynamic displacement extraction scheme. Hence, the recon-
structed displacements represent actual dynamic displacements better than the ex-

tracted displacements.
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4. Special Application of the Reconstruction for the Iden-

tification of Flutter Derivatives.

The flutter derivatives identified from wind tunnel tests are indispensable pa-
rameters for the analyses of dynamic behaviors of long-span bridges induced by
wind. The interaction between a fluid flow and an embedded elastic structure is
extremely complex especially for the bluff body section. Different response
modes and flow phenomena exist depending on the flow characteristics, the body
geometry and the structural properties like stiffness and damping. This poses a
particular challenge to the development of analytical and numerical models and
renders experimental methods still the most reliable tool.

The mutual influence of structural dynamics and fluid flow in regions of mov-
ing boundaries makes this particularly challenging and the corresponding subject is
termed aeroelasticity. The aero-dynamic force acts as an outer force for the struc-
tural system, and the motion of structure recursively influence to boundary condi-
tions of the aero-dynamic force. This moving boundary problem has several non-
linearity regard to the amplitude, the vibrational mode shape and etc. [Falco 1992,
Matsumoto 1993 and Morgenthal 2000] caused by the interaction and the flutter
derivatives should be determined by proper experimental procedures which can
consider this nonlinear effect of the original problem.

Although the aeroelastic system is nonlinear, the flutter analysis and the iden-
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tification of the flutter derivatives are commonly based on the assumption of linear
elastic system behavior [Simiu 1996]. A popular set of expressions for the aero-
dynamic forces on a cross section in motion is the one proposed for bridge deck
analysis by Scanlan and Tomko (1971), which is based on the assumption that the
self-excited lift and moment on an elastic section model are treated as linear in the
structural vertical and rotational displacement and their first derivatives.

The flutter derivatives can be identified with different experimental proce-
dures from an idealized 2-DOF section model, i.e. forced-vibration test and free-
vibration test. The most widely adopted technique is the free-vibration method.
The original concept of the flutter derivatives was proposed by Scanlan and Tomko
(1971) with a primitive experimental procedure consisted of three separate wind
tunnel tests; two 1-DOF free-vibration tests for the vertical and the rotational direc-
tions, and one single frequency free-vibration 2-DOF test. To circumvent com-
plexity of the experimental procedure proposed by Scanlan and Tomko (1971), a
great deal of effort has been made for decades to identify all the flutter derivatives
from a single 2-DOF free-oscillation test [Bartoli 2009, Chen 2004, Chowdhury
2003, Gu 2000, Iwamoto 1995, Li 2003, Matsumoto 1993, Sarkar 1992 and Sarkar
1994]. In these procedures, a 2-DOF section model is elastically suspended in a
given initial condition and suddenly released from the imposed initial position, and
then the flutter derivatives are extracted from the history of the free-decaying mo-
tions in vertical and rotational direction. Although free-vibration technique re-

quires relatively complicated procedure to identify the flutter derivatives and need
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additional assumption because of the uncertainty of frequency similarity, but it is
appealing for the simple setup and the possibility for the realization of interaction
between the structure and the wind.

A more reliable procedure is forced-vibration method [Diana 2004, Falco
1992, Kim 2007 and Matsumoto 1993] in the sense of the law of similarity. Alt-
hough this method requires a sophisticated driving instrument, it yields the steady
state response in a single frequency, which exactly coincides with the fundamental
assumption of the aero-dynamic force proposed by Scanlan and Tomko (1971).
The forced-vibration test can be controlled by two different methods, a displace-
ment-control technique and a force-control technique.

Generally, the forced-vibration test is conducted by imposing a sinusoidal dis-
placement to the section model without the elastic suspension of the springs, name-
ly by the displacement-control method. However, if the body is controlled to
oscillate in a prescribed motion, the nonlinearity of the original aeroelastic system
may be not fully considered in the experimental procedure because of the prede-
fined boundary condition. On the other hand, the force-control method dose not
imposes the motion itself, but just excites the section model with an outer force to
yield a steady state motion after the end of full interaction.

As the selection of the experimental procedure, different numerical algorithms
are employed for the extraction of the flutter derivatives. Numerous SI algo-
rithms used for the free-vibration technique is inappropriate for the steady state

response of the forced-vibration test and vice versa. As far as the author knows of,
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the general algorithm that can be employed for extraction of flutter derivatives re-
gardless of the testing procedures has not been proposed yet. Moreover the state
variables such as the displacement, velocity and acceleration are not fully measured
in the experimental procedures, i.e. the displacement is the only kind of the meas-
ured data. By the absence of full measurement of the state variables, the SI algo-
rithm, which is based on the output error estimation (OEE) [Hjelmstad 1995] with
the state-space model, is inevitable for the extraction of the flutter derivatives in the
free-vibration test. In the OEE scheme, if the analytic solution is nonlinear with
respect to the unknown system parameters, it can not yield a quadratic minimiza-
tion problem; hence it requires a complicated sensitivity analysis or a complex eig-
en-value analysis to identify the unknown system parameters.

This thesis proposes a new approach to identify the flutter derivatives by min-
imizing an equation error estimator (EEE) [Hjelmstad 1995] which is defined as
the least-square errors between structural resistance forces and aeroelastic forces
induced by wind. Dissimilar to the other SI algorithm, the proposed method can
successfully employed for the identification of flutter derivatives regardless of the
experimental procedure and do not require any complicated sensitivity analysis or
complex eigen-value analysis to identify the unknown system parameters.

The EEE requires complete information on the state variables at all time steps.
In the proposed method, accelerations of a section model are measured with accel-
erometers in wind tunnel tests while the velocities and displacements correspond-

ing to the measured accelerations are reconstructed by the FFIR filter in chapter 3.
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Hence, the EEE method in this thesis is solely based on the measured acceleration.
Measurement of acceleration has certain advantages over measurement of dis-
placement in various engineering applications. The most distinctive advantage in
the measurement of acceleration over that of displacement is that acceleration is
measured without any fixed reference point, which opens a possibility to identify
flutter derivatives of real long-span bridges in service. Moreover, various types of
accelerometers are commercially available at relatively low costs.

The validity of the proposed method in the free-vibration test is demonstrated
for two types of bridge sections; a thin rectangular section and a bluff H-type sec-
tion. The former section represents a streamlined section used in relatively long-
span bridges, and the latter simulates a slab-on-stringer type section often applied
to medium-span cable-stayed bridges. It is shown that the flutter derivatives iden-
tified by the proposed method agree well with those by the MITD method and/or
those by the Theodorsen function [Simiu 1996]. The forced-vibration tests are
not implemented yet in our wind tunnel, but by the virtue of the analytic solution of
the force-control test proposed by Jung et al. (2011) the validity of the proposed

method to the force-control test is verified by the numerically simulated example.
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4.1 System identification with OEE and EEE for general dynamic system

In this section the two concepts of the system identification for the linear-time in-
variant system are summarized. If the responses are fully measured for all de-
grees of freedom, it will be referred to the full measurement in space, while if the
responses for all state, such as a displacement, a velocity and an acceleration, are
fully measured for a fixed material point, it will be referred to the full measurement
in state.

Generally the dynamic responses are not fully measured in both space and
state. The system identification for partially measured responses can not be di-
rectly solved from the force equilibrium equation but should be solved by minimiz-
ing error between the analytic solution responses of the problem and the limited
measurement responses. These kinds of the system identification methods are
called by the output error estimation method (OEE). In the OEE scheme, if the
analytic solution is nonlinear with respect to the unknown system parameters, it
can not yield a quadratic minimization problem. Hence it requires a complicated
sensitivity analysis or a complex eigen-value analysis to identify the unknown sys-
tem parameters [Hjelmstad 1995, Park 2008 and Sarkar 1992].

By the virtue of the FFIR filter in the previous section, if the only acceleration
is fully measured in space, the displacement and velocity can be reconstructed and
complete measurement in both space and state is possible. The full measurement

data can be successively employed for the system identification directly using the
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force equilibrium equation. This system identification method is called by the
equation error estimation method (EEE). In the EEE, the minimization problem
yields the quadratic problem with respect to the unknown system parameters;
hence, the unknown system parameters can be identified from the first order neces-
sary condition without the complicated sensitivity analysis or the complex eigen-
value analysis.

Though the general concept of the OEE and the EEE in following section is
valid for the dynamic system regardless of the number of DOFs, but for the con-
venience of the presentation, 2-DOFs system is selected for the description. In SI
procedure, it is supposed that the mass matrix and the excitation force is given and

known in priori and the responses are fully measure in space.

4.1.1 System identification based on output error estimation method (OEE)
The second order differential equation for the general dynamic system in Eq.
(2-1) is described by following equation in state-space model to acquire the analyt-

ic solution from the first order differential equation.
X(t) = AX(t) +B,p(?) (4-1)

where X(t) = [u(t) v(t)]T is the state variable for a given time, while A and

B, are system matrix and the input influence matrix which are defined as follows:
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0 | 0
A = _MK —Mic! B, = M (4-2)

here the subscript ‘s’ denotes the state-space model.
The analytic solution for the general dynamic system in Eq. (2-1) is described

by following equation in state-space model.
t
x(t) = e™"x(t,) +I e™"IB p(r)de (4-3)
ty

where X(t,) = [u(to) v(to)]T is the initial condition at time £, .
The system identification with OEE is based on the assumption of the partial

measurement of the state variable, X.

where Y(t) is observable or output variable, C, and D, are the output influ-

ence matrix and the direct transmission term, respectively. Substitution of Eq. (4-
3) to Eq. (4-4) yields following equation for the analytic solution of the observable

variable.
y(t) =C e™x(r,) +C, f "B p(r)dr + D, p(t) (4-5)

Supposing the state variable is fully measured in space but is partially meas-
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ured in state, i.e. the state variable is fully measured for all degree of freedoms in
space domain but just one of state variables such as the displacement, the velocity
and the acceleration is measured, the output influence matrix and the direct trans-
mission term are represented by the following equations for three individual state

measurements.

For displacement

(4-6)
C,=[I 0]and D,=0
For velocity
(4-7)
C,=[0 1]and D, =0
For acceleration
(4-8)

C.=[-M*k -m*c|] D =Mm"

The purpose of OEE methods is to minimize the relative error between meas-
ured response and output response which is calculated from the mathematical mod-

el in Eq. (4-5) respect to the unknown system parameters of the dynamic system.
) I &G 2
MinT1(X) = > [y(t,) - y(X.1,), (4-9)
i=1

where Y(#,) and Y(¢,) are output (or calculated) response and measured re-
sponse vector at time 7,, and nf and || . ||2 are the number of time steps used in the

identification and the 2-norm of a vector, respectively, while X is unknown sys-
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tem parameter vector. Supposing the mass matrix is known in prior and the com-
ponents of the damping matrix and the stiffness matrix are the unknown system

parameters, X can be written as following equation for 2-DOF system.
X= [Cll Cp kyp Ky ¢y ey ky k21]T (4-10)

where ¢; and kij are the individual components of the damping and stiffness

matrix, respectively. Note that the sequence of each component has no physical
meaning but the components are aliened in Eq. (4-10) for the convenience of ap-

plying to the flutter derivatives example in the next section.

C=|:C“ Clz:| K=|:k” k|2:| (4-11)
Cy Cp ky  ky

The system parameters can be successively identified by OEE methods to
minimize relative errors in responses.  Since, however, the solution of the dynam-
ic system in Eq. (4-5) are not linear with respect to the unknown parameters in Eq.
(4-10), the minimization problem in Eq. (4-9) can not yield the quadratic problem
with respect to the unknown parameters. Hence, as mentioned in the beginning of
this section, the complicated sensitivity analysis or complex eigen-value analysis
with the iterative procedure should be employed to identify the system parameters.
4.1.2 System identification based on equation error estimation method (EEE)

In case the complete time history of displacement, velocity and acceleration
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are available, the unknown system parameters can be identified by the minimiza-
tion procedure based on the EEE.
For convenience of formulation, the known parts and unknown parts of Eq.

(2-1), are represented as following separated functions defined in discrete time step,

l.

F.(2,) = Ma(t;) —p(;) (4-12)

Fun (X, ti) = _Cv(ti)_ Ku(ti) = S(ti)x (4-13)

where subscripts ‘kn’ and ‘un’ represent the known and unknown force, while S
sensitivity matrix which is composed of displacement and velocity at time step f;,

which can be expressed as following equation.

V) V) W) u'@) 0 0 00

0 0 0 0 V') Vi) ui@t) u'(,) (4-14)

S(ti):_

The purpose of EEE methods is to minimize the equation error of the force
equilibrium equation in Eq. (4-5) with respect to the unknown system parameters

of the dynamic system.

nt

. 1
MinT1(X) =3 [F,, (1) = F,, (X1, | (4-15)
i=1

In case the excitation force, the acceleration, velocity and displacement histo-

ry is given a priori, the known force and sensitivity matrix in Eq. (4-12) and (4-14)
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can be determined from the known dynamic responses and material properties.
Therefore, the system parameter X is the only unknown and can be uniquely
identified by solving Eq. (4-15).

Substitution of equation Eq. (4-13) into Eq. (4-15) leads to the following ma-

trix form of minimization problem.

MInTIO0 =23 (F, ()~ Fu 04100 Fy (1)~ Fy O61,)0)

1 1 nt (4_16)
= X'sX-X"G +EZ F. (t)F,, ()

i=l1
where S and G are global sensitivity matrix and gradient vector expressed as

following equation, respectively.

S=3'sT(1s() . G=35"(1)F,. () @17)

Since the unknown force in Eq. (4-13) is linear with respect to the system pa-
rameter, X, the minimization problem in Eq. (4-16) forms a quadratic problem
with respect to the system parameter. Hence, the solution of Eq. (4-16) is simply
obtained by solving the first-order necessary condition for the quadratic problem,

which is linear algebraic equation.

OII(X)
OX

=SX-G=0->X=S"G (4-18)
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As no iterative solution scheme, or complicated sensitivity analysis are re-
quired to solve the minimization problem, a unique solution is always determined
by Eq. (4-18) as long as a sufficient amount of measured dynamic responses of a
section model are provided.

It is customary in the SI procedures to carry out multiple measurements for a
dynamic system to reduce the effect of noise in measurements on the identified
system parameters. In most of the OEE methods, the system parameters are iden-
tified for each measurement independently, and then are averaged to obtain repre-
sentative values. The EEE scheme is capable of identifying the system
parameters with a single minimization process using all measurements obtained in
each measurement together without critical consideration of the initial conditions.

The minimization problem in Eq. (4-15) is modified to accommodate data

measured in each measurement within one optimization statement.
. . N . 1 N nt . . 2
MinTI0) = Min > T (X) = 3 3 [R5, (1) = Fi, (K1) (4-18)
k=1 k=1 i=l

Here, N denotes the number of measurements for a structural system, and the vari-
ables with superscript & represent those for the A-th measurement. The solution of

Eq. (4-18) is given as follows:

xz(ﬁs")‘lie" (4-20)
k=1 k=1
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4.2 Free vibration test for the flutter derivatives

Various SI algorithms have been proposed to extract the flutter derivatives
form the free-vibration teat of the 2-DOF sectional model. The Ibrahim time do-
main (ITD) method [Ibrahim 1977] and the unifying least-square (ULS) method
[Gu 2000] are representative and most widely used algorithms among them.
Sarkar et al. (1992) proposed the modified ITD (MITD) method by employing an
instrumental variable (IV) in the least-square process to enhance the accuracy and
stability of the ITD method. Bartoli et al. (2009) also proposed the modified ULS
(MULS) method by improving the solution algorithm of the ULS method. The
(M)ITD method identifies the system matrix in the state-space form of the equation
of motion by the complex eigenvalue analysis of the shift operator formed from the
measured displacement. The (M)ULS method are based on a nonlinear optimiza-
tion problem on the least square errors between the measured and the predicted
displacements using the eigenvalues and eigenvectors of the system matrix of the
state-space form. Both the (M)ITD and the (M)ULS methods require the complex
eigenvalue analysis.

Identification schemes that utilize complete information about the state varia-
ble have been proposed for the free-vibration test. The iterative least square (ILS)
method proposed by Chowdhury and Sarkar (2003) utilizes velocity and accelera-
tion reconstructed from measured displacement using digital filters. Although the
ILS method utilizes information on acceleration, the reconstruction is based on the

measured displacement. Since, moreover, it requires the IV procedure with the
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state-space model to minimize the relative error between calculated and measured
response, the ILS is a kind of the OEE using the measured displacement.

Most of previously proposed identification schemes for free-vibration test are
based on the minimization of errors between measured and calculated displace-
ments using the state-space form of the equation of motion and requires an com-
plex eigen-value analysis and iterative solution procedures. Moreover these
methods can not be directly employed for the SI procedure of the forced-vibration
test, which contains solely steady-state response.

In this chapter, the EEE method in the previous section is adopted for the SI
procedure of the flutter derivatives. As the aeroelastic forces are assumed to be
linear with respect to the flutter derivative, the minimization of the EEE is ex-
pressed as a quadratic problem, and thus neither iterative solution scheme nor
complex eigen-value analysis is required. Because of the aforementioned lineari-
ty of the EEE, the proposed method is able to identify representative flutter deriva-
tives corresponding to multiple measurements for a wind velocity in one
optimization process. Since, moreover, both the free-vibration test and forced-
vibration test are governed by the same equation; the EEE method can be em-

ployed for the forced-vibration test also.

4.2.1 Dynamic equation for the aeroelastic motion of 2-DOFs system
In this chapter, the dynamic equation for flutter derivatives and the fundamen-

tal assumption for identification of flutter derivatives from the free vibration test
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are presented. The flutter derivatives of a bridge deck are usually identified
through wind tunnel tests on a section model.

An elastically supported section model with 2-DOF in the vertical (%) and the
rotational (o) directions is illustrated in Fig. 4-1. The equation of motion for the

section model per unit length is defined as follows:

MU(z)+ CU(z)+ KU(t) = F,, (U(X,£), U(U, X, 1)) (4-21)

where M,C,K and F_ are the mass, damping, stiffness matrix of the structural

system and the aeroelastic force vector, respectively, while U, U and X are the
displacement vector containing 4 and a, the flow field and the vector of the flutter
derivatives which will be defined in next section. The overhead dot denotes dif-

ferentiation with respect to time.

ha Lae
- a, Mae
V, — . 7
w 7
- é
i

Figure 4-1. 2-DOF section model
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The aero-dynamic force in the right side of the Eq. (4-21) acts as an outer
force for the structural system, and the motion of structure recursively influence to
boundary conditions of the aero-dynamic force. This moving boundary problem
has several nonlinearity regard to the amplitude, the vibrational mode shape and etc.
[Falco 1992, Matsumoto 1993 and Morgenthal 2000] caused by the interaction and
the flutter derivatives should be determined by proper experimental procedures
which can consider this nonlinear effect of the original problem.

The mechanical properties of the structural system represented by M, C and

K are generally assumed to be uncoupled. Hence, there is no off-diagonal term
in the matrices and the section model behaves as separated 1 DOF systems in the

vertical and rotational direction as following equation.

m, ¢, k),
M = _}c= K= L (4-22)

The aeroelastic force acting on a sinusoidal oscillating section model in a sin-
gle mode is assumed as a linear function to the motion of the section and its first

order derivative [Iwamoto 1995 and Scanlan 1971]:

M, (t)
S Wi ot ]
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where L, and M, are the aeroelastic lift force and moment, respectively,

while ® is the circular frequency of the oscillation, and /, and A4,

(m=1, 2, 3, 4) are the flutter derivatives. It is customary to use normalized ex-

pressions of the flutter derivatives [Scanlan 1971]. For the simplicity of presenta-
tion, however, this thesis presents discussions with the un-normalized forms of the

flutter derivatives.

The aeroelastic force, F_, in Eq. (4-23) are assumed to be linear function to

the displacement and velocity response, and the flutter derivatives are the function
of the modal frequency. Matsumoto et al. (1993) have tried to clarify the depend-
ency of the flutter derivatives to the vibrational mode shape. From their discus-
sion, the flutter derivatives have closely related to both the modal frequency and
the modal shape of the vibration especially for a bluff body. Besides the depend-
ency to the mode shape, the original aeroelastic system in Eq. (4-21) contains vari-
ous factor of nonlinearity caused by the interaction between the structure and wind.
Though the assumptions of linear and mode shape independency in Eq. (4-23) have
a significance for simplicity of the identification of flutter derivatives and an analy-
sis of the aeroelastic system. But the experiment should be performed to consider
the nonlinearity and the dependency to the modal shape.

Since the section model always vibrates in two distinct modes for the free-
oscillation test, the total aeroelastic force acting on the section model is obtained by

summing up the aeroelastic forces induced by each mode [Chen 2004 and Iwamoto
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1995].

& H (@) Hy)| () |Hi() H(o) hi(r)J
F“(I)NE{AI (@) Az(w»}(ai(t)HAM) A3<mi)}(ai(t) (429

where variables with subscript i denote those corresponding to the i-th mode, and
h=h+h,, a=a,+0a,. Since sixteen flutter derivatives appear in Eq. (4-24)
for a 2-DOF system, a free-oscillation test should provide at least sixteen pieces of
information on dynamic behaviors of a section model. Unfortunately, however,
the responses of a section model measured from a free-oscillation test contain only
eight pieces of information on modal frequencies, modal damping ratios, ampli-
tudes and phases, and thus the sixteen flutter derivatives can not be uniquely de-
termined [Iwamoto 1995]. Because it is impossible to increase an amount of
information in measurements, a certain type of approximation should be introduced
to reduce the number of unknowns.

Most of previous works based on the state-space form express Eq. (4-24) in

terms of the total responses of the section model as follows:

H, H,|h@)) |H, H,| hl

Fae(t)z 1 2 ( ) + 4 3 ( ) (4_25)
A A, oc(t) A, A, oc(t)

Eight flutter derivatives appear in Eq. (4-23), and thus are identifiable with the ILS,

(M)ITD or (M)ULS methods using measured data. Since, however, no clear defi-
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nition on the frequency appearing in each flutter derivative is given in the afore-
mentioned works; the frequency dependency of each flutter derivative is unidenti-
fiable.

Iwamoto and Fujino (1995) and Chen and Kareem (2004) reduce the number
of the flutter derivatives by eight based on an assumption that the vertical motion
strongly defends on the first mode and the rotational motion is dominant to the se-

cond mode, respectively. That is, ~#~h, and o ~a, because %, << h, and
o, << a,. With this assumption the aeroelastic forces are defined with eight

flutter derivatives, which can be identified through a single free-oscillation test.

Fae(t)z[Hl (@) Hz(co»}(k(r)HHmal) H3<w2>}(h(t)J w26

4 (@) 4,) al)) | 4,@) 4, \al)

In contrast to Eq. (4-25), the dependency of each flutter derivative on the fre-
quency is clearly defined in Eq. (4-26).

It is worthwhile to investigate the validity of the aforementioned assumption
on the relative dependency. The degree of dependency in each DOF between two
modes is represented by the following ratios of the fast Fourier transform (FFT) on

measured displacements at the modal frequencies.

C, = |Fh(032)| , C, = |Fa(0)1)|
|Fa(('02)|

|, (o) 2
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Figure 4-2. Dependency ratios of section models: (a) a thin rectangular section and
(b) a bluff H-type section
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Here, F), and F, denote the FFT of measured vertical displacements and rotational
angles, respectively. C, and C, are referred to as the vertical and the rotational
dependency ratios, respectively. The ratios defined in Eq. (4-27) stay near zero if
the dependency effect follows the assumption of Iwamoto and Fujino (1995),

h, << h, and a, << a,. But the motion of the section model dose not meet

these conditions, the ratios significantly deviate from zero.

The two dependency ratios are drawn in Fig. 4-2 for a thin rectangular section
model and a bluff H-type section model. These section models are utilized in the
verification examples of this study. Both the ratios for the thin rectangular section
are relatively small for all wind velocity, and thus the assumption of dominant de-
pendency seems to be reasonable in case the motions of the thin rectangular section
model. In case of the bluff H-type section model, however, the rotational depend-
ency ratio becomes large for intermediate wind velocities, while the vertical de-
pendency ratio increases rapidly at high wind velocities. This fact implies that the
assumption is no longer appropriate for a bluff section. In case that the mechani-
cal properties of the structural system are not diagonal, the motions of the section
model have dependency to both modes even for the windless condition, and the
dependency ratios seriously deviate from zero in low wind velocities. The as-
sumption of dominant dependency is, therefore, not valid in a general sense.

This thesis proposes a new interpretation on the flutter derivatives identified
from free-oscillation tests that the aeroelastic forces are expressed through eight

flutter derivatives using the total responses of a section model rather than the mod-
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al responses of a section:

Zl (0,,0,) Z2 (0,,0,)

. {E (©,.0,) (o ,mz)}(h(r)]

Z4 (,,0,) Zs (0,,,)

Fae@){ﬁl (0 17, «om»}({é@))]

(4-28)

The variables with overbar in Eq. (4-28) represent flutter derivatives for the total
responses of a section model. Egs. (4-26) and (4-28) seem to be identical, but
they are based on quite different concepts. Eq. (4-26) is an approximation of Eq.
(4-24) with respect to the responses of a section model, while Eq. (4-28) is an ap-
proximation of the flutter derivatives defined in Eq. (4-24). As far as the deriva-
tives themselves are concerned, of course, Egs. (4-26) and (4-28) should yield
identical results for the same measurements. Physically, however, the flutter de-
rivatives in Eq. (4-26) are considered as functions of the individual frequency or
the modal responses, and those in Eq. (4-28) should be interpreted as functions of
both frequencies, i.c., the total responses. Consequently, a crucial question arises
on the similitude law to be applied for the analysis of a real bridge deck corre-
sponding to the section model. The assumption for Eq. (4-26) is not valid for all
cases, but it is easy to apply a frequency-based similitude law as it is a modal re-
sponse-based approximation. It is believed that further investigations should be
followed on the physical significance of the flutter derivatives identified from free-

oscillation tests.
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4.1.2 Identification of flutter derivatives from the free vibration test based on the
EEE

In case the complete time history of displacement, velocity and acceleration
are available, the flutter derivatives are identified by employing the EEE proposed

in section 4.1 as follows:

) 1 nt
Min 100 =2 3 [F, (6) = F, OG0
i=1

| o (4-29)
2
= _z Fst (tz) - Fae (X7 ti )”2
2 i=1
here, X is the vector of the flutter derivatives to be identified.
X:(ﬁ1 172 ﬁ} 174 Z1 Z2 Z} 24)T (4-30)

F, () and F_(X,t,) are the structural resistance force and the aeroelastic

force at time ¢;, respectively.

F, (1) =MU(,) + CU(z,) + KU(z,) (4-31)

The aeroelastic force given in (4-28) is rewritten in terms of the vector of

the flutter derivatives.
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Fae (Xa ti) = S(ti)x
A at) o) k(@) 0 0 0 0 |y (4-32)
Lo 0 0 0 A ) o) k)

Following the solution procedure of the EEE method in Eq. (4-16) ~ Eq. (4-
18), a unique solution is always determined by Eq. (4-18) as long as a sufficient
amount of measured dynamic responses of a section model are provided.

It is customary in wind tunnel tests to carry out multiple measurements for a
wind velocity to reduce the effect of noise in measurements on the identified flutter
derivatives. In most of the previously proposed schemes the flutter derivatives
are identified for each measurement independently, and then are averaged to obtain
representative values. The EEE is capable of identifying the flutter derivatives
with a single minimization process using all measurements obtained in each meas-
urement together as defined in Eq. (4-18). Li et al. (2003) proposed a similar ap-
proach for the calculation of complex eigenvalues in the ULS method, but the
corresponding eigenvectors are evaluated for an individual measurement and the
representative eigenvectors are obtained by averaging them.

Complete dynamic responses, i.e., displacement, velocity and acceleration,
should be measured simultaneously to identify the flutter derivatives based on the
EEE. Although displacement and acceleration may be measured together in wind
tunnel tests, it is troublesome to install several different types of transducers on the
same locations of a section model. Furthermore, direct measurement of velocity

is almost impossible due to the very limited availability of transducers. To cir-
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cumvent the difficulty in the complete measurement of the dynamic responses, this
study utilizes reconstructed displacement and velocity from measured acceleration
by the FFIR filter, which is presented in the chapter 3.

As pointed out by Bartoli et al. (2009), extraction schemes that use variables
reconstructed by digital filters suffer from the loss of measured data, which may
lead to inaccurate or unstable identification of the flutter derivatives especially for
high wind velocities. This drawback can be overcome in the proposed scheme by
the simultaneous use of data measured from each measurement as formulated in Eq.
(4-18) because the accuracy and stability of the identification are quickly improved
as the amount of data used in the estimation increases.

The FFIR filter in the section 3.1.3 is employed to reconstruct displacement
and velocity simultaneously from the measured acceleration. As discussed in the
section 3.1.3, the FFIR filter is capable of reconstructing displacement and velocity
components for the frequency range between the target frequency and 10% of the
sampling frequency, f, < f <0.1f,, within a 3% error for o, =0.97.

Therefore, the sampling frequency of measurement should be larger than the
highest frequency of interest at least by 10 times, which is easily achieved with
modern accelerometers and A/D converters.

Since the FFIR filter is a finite and discrete filter, the Gibbs phenomenon,
which is the rippling characteristics of a truncated Fourier series, is inevitably ob-

served in the accuracy function of the FEM-FIR filter.
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Figure 4-3. Typical accuracy functions of the FEM-FIR filter and the definitions of
correction factors: (a) Displacement and (b) Velocity
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By virtue of the accuracy functions of the FFIR filter, errors in reconstructed
displacement and velocity are easily estimated. The typical accuracy functions of
displacement and velocity are drawn in Fig. 4-3. Assuming that the reconstructed
errors in the vertical and rotational motion are mainly caused by the errors in the
first and second mode, respectively, the reconstructed responses are modified to
compensate the errors in the FEM-FIR filter for more accurate extraction of the

flutter derivatives as follows:

h(t) 6,.() @) (1),

(— ; (4-33)
7 Y Y5 vy

where subscript 7 indicates the reconstructed responses, while correction factors,
yf and vy;, are the values of the accuracy functions for the displacement and

velocity at the i-th mode, respectively, as shown in Fig. 4-3.
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4.3 Forced vibration test for the flutter derivatives

Dissimilar to the free vibration test, the forced vibration test includes the ex-

ternal forcing term in the equation of motion as flowing equation.

MU(z)+CU(¢t)+ KU(¢)=F, () +F..(z) (4-34)

where F, is external force. Note that the external force is the reaction force in

the displacement controlled test, which should be measured for the identification.
Substitution of the matrix form of aero-elastic force in Eq. (4-23) to Eq. (4-34)

yields following form of equation of motion with excitation force.

MU(s)+C,, U(r)+ K, U(t)=F..(¢) (4-35)

where C,, and K, are effective damping and stiffness matrixes of aero-

elastic system as follows.

Ceﬁ =C-C, Keff =K-K (4-36)

>

Since the 2-DOF section model is excited to damp out the transient response
and the only steady-state response in a single frequency is adopted for the identifi-
cation procedure in the forced-vibration test, the flutter derivatives in Eq. (4-36)
imply the linear force weighting corresponding to the single excitation frequency
and is appropriate for the conventional law of similitude which is discussed in the

previous section.
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4.3.1 Forced vibration test controlled by prescribed displacement
The displacement controlled forced vibration test is implemented by imposing
the predefined sinusoidal displacement to the section model without the elastic

suspension of springs.

Jsin(coext) (4-37)

where ®,  is the angular frequency of the excitation motion.

The absence of spring makes the mechanical damping and stiffness matrix in
Eq. (4-19) zero, and the effective damping and stiffness matrix only contain

aeroelastic terms as following equation.

off ae o = K (4-38)

After the transient component damped out, the reaction in Eq. (4-34) also

yields to sinusoidal motion.

L L
F. )= = [si 1)+ = t -
0[5 Janto)s[ 3 oo -

c

where L., L,, M, and M, are the measured amplitudes of sinusoidal reac-

tion. Because the aero-elastic system has both amplitude and phase response in

the transfer function, the reaction in Eq. (4-39) should contain not only sine term
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but also cosine term.
Substitution of Eq. (4-37) and Eq. (4-39) to Eq. (4-35) yields following alge-

braic equations.

L, [ M+ K o L. C o 4-40
o=l o . ‘=z . a
M, “ Mo, ) \M,) = a, (40

Since only four algebraic relations given in Eq. (4-40) but there is eight un-
known flutter derivatives, the solution of the equation can not be determined from a
single experimental test. To acquire sufficient information for eight unknowns, at
least two separated experiments with the independent excitation conditions should

be tested.

L h L h
_S’l = [_ (’oixM + Keff " —L’l = (’Oexceff o
MSJ ‘ O(‘0,1 ’ Mc,l ‘ O(‘O,l
L h L h
12 _ [_ C‘)ixM n Ke/f' 0,2 _c,2 _ (Oexceff 0,2
M., S\ G )0 (M, Gy

where the additional subscript ‘1’ and ‘2’ denote the number of test. If the ampli-
tudes of reaction in Eq. (4-41) are exactly given for the two tests, the flutter deriva-
tives can be identified by solving the simultaneous equation in Eq. (4-41).

Since the displacement is predefined as Eq. (4-37) in the displacement con-
trolled forced vibration test, the velocity and the acceleration also can be calculated

by the definition and regarded as the measured responses; hence the displacement
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control test supply full-measurement condition in both state and space. The con-
cept of SI in equation (4-41) exactly matches with the concept of the EEE for the
multiple trials in Eq. (4-18) except that the least squared scheme is employed in the

EEE procedure.

The measured amplitude for the reaction, L, L., M

o L, , and Z\7c,are not
free from various sources of noise, the direct solution of Eq. (4-41) yields errone-
ous results as the fundamental property of the inverse problem. Moreover best-fit
curves in sinusoidal form should be calculated for each excitation. The optimiza-
tion method using the EEE can be directly employed to yield accurate and reliable
results without any additional calculations.

2 2 nt
MinTI(X) = Min )" IT*(X) %ZZ Fie)-FLoxn), @)
k=1

k=1 i=1

Here, the structural resistance force includes the measured reaction force as

following equation:
F, (¢,)=MU0@,) +CU(,) +KU(,) - F,.(t,) (4-43)

By the virtue of the selection of the conventional displacement set as follow-
ing equation, Eq. (4-41) is represented by separated eight equations, in which con-

tains just one unknown respectively.
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h 0
U,(e)=| " [sin(o.r)  U,le)=| — |sin(o,1) (4-44)
0 ’ Oy,
Substituting Eq. (4-44) to Eq. (4-41), the flutter derivatives are acquired as

follows:

H, (o) Zc,1 [ Dy,
A (o M. /o, h
1 ( ex) - c,l ex 20,1 (4-45-3)
H4 ((’oex) Ls,l /hO,l +(Dexmh
4, (o) M, /h,
H2 (mm) l_‘S,Z /(’Oexa‘O,Z
A, (o M, /o,
2 ( ex) - _ ;2 2 0,2 (4—45—b)
H3 ((’Oex) LS,2 /(X'O,z
A3 (wex) MS,,Z /a0,2 + wixma

The displacement set in Eq. (4-44) is conventionally used to extract the flutter
derivatives for the convenience of experimental implementation and the simplicity
of identification procedure. Since it is insufficient set to investigate the depend-
ency of the flutter derivatives to the vibrational mode shape, the EEE method with
the arbitrary displacement set in Eq (4-41) can be more generally employed for the
identification.

Though the displacement control method in this section can successively iden-
tify the flutter derivatives from the experimental responses, but it divides the origi-

nal problem in Eq. (4-21) into separated structural system and aero-dynamic
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system by imposing the prescribed boundary condition, then author believe that
this experimental procedure can not fully implement nonlinearity caused by the

interaction of the original aeroelastic system.

4.3.2 Forced vibration test controlled by prescribed excitation force

The overall procedure of the force control test is very similar to the displace-
ment control except a change of displacement from input to output, but the force-
control test does not restrict the motion itself, the nonlinearity caused by the inter-
action can be fully considered in this method. The force controlled forced vibra-
tion test is implemented by imposing the prescribed sinusoidal excitation force to

the section model supported by the elastic springs.

F..(c)= (L”‘ (t))] R @Jm 1 (4-46)

MEX (t

The excitation force in Eq. (4-46) can be implemented by the four rotating mass

subjected to the guide frame as Fig 4-4.

S

Figure 4-4. Conceptual figure for the force controlled vibration test
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The analytic solution for the forced vibration test in the steady-state response
is presented by Jung et al. (2011). The steady-state response to the force control
test, which means the particular solution to the excitation forces of Eq. (4-35), is

obtained by getting the particular solution of equation of motion in Eq. (4-35).

u<t>=[’ﬁjsm<wexz>+[hcJcos(%f) (47

Substitution of Eq. (4-46) and Eq. (4-47) to Eq. (4-35) yields following equa-

tions.

(hc J: _[(_ o,M+K,, X“);Cezf'fl X‘ 0, M+K,, )+ ((D‘“"C‘ﬁ )]71 (JLV;oJ

c

(4-48)

=

(065]4(— o.M+ Keff)+ mnggﬁ,(— > M + Keff)fl ©.C., 1(1];/30]

As like to the displacement control test, the flutter derivatives can not be de-
termined from a single experimental test in Eq. (4-48) for the limited information.
To acquire sufficient information for eight unknowns, at least two separated exper-
iments with the independent excitation conditions should be tested and be treated in
a single optimization process. Unlike to the displacement control test, however,
the full-measurement in state is impossible unless the help of the reconstruction
scheme and should be solved by the SI methods based on the OEE. Since the

analytic solution for the force control test in Eq. (4-48) is nonlinear function with
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respect to the unknown flutter derivative but contains several matrix inversions, the
sensitivity analysis for the OEE yields severely complex problem.

By the virtue of the FFIR filter, from two or more tests with different inde-
pendent excitation forces, the flutter derivatives can be identified by employing the
proposed EEE method in Eq. (4-42) and Eq. (4-43) with simplicity of the quadratic

problems.
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4.4 Numerical and Experimental Verification for the EEE method

As commented in the previous section, the forced-vibration tests are not im-
plemented in the Seoul National University yet. Hence, the experimental verifica-
tion is confined to the free-vibration test.

For the verification of the proposed method for the free-vibration test, the flut-
ter derivatives are identified using measurements taken from a series of free-
oscillation tests for the two types of representative sections of bridge decks; a thin
rectangular plate with the width-to-depth (B/D) ratio of 20 and a bluff H-type
section. Fig. 4 shows the dimensions of the sections. A series of push-back and
sudden release tests were repeated with the change of wind velocity. Four accel-
erometers as well as four noncontact displacement transducers were installed to
measure 2-DOF motions of the section models. The reconstruction of the dis-
placement and velocity is carried out by employing the FFIR filter and all the re-
constructed responses are modified with the correction factors in Eq. (4-33). The
instant when the actual reconstruction begins is set to # =0 throughout the exam-
ples.

The flutter derivatives are identified by the proposed method using the meas-
ured accelerations and by the MITD method using the measured displacements for
comparison. The identified results from both of the methods presented here are
the representative values for multiple measurements. The flutter derivatives iden-
tified for each measurement are averaged for the MITD method, while multiple

measurements are considered together in optimization for the proposed method.
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| 46.0 cm ——— |

Figure 4-5. Dimension of cross-section considered: (a) a thin rectangular section
(b) a bluff H-type section

The initial conditions required in the MITD method are taken from the recon-
structed displacement and velocity time histories. As recommended by Sarkar et

al. (1994), the nearest integer smaller than the ratio of 1/(4Atf,) is used for the
first shift coefficient, N,, and the second shift coefficient N, 1is set to the same
value as N,. Here, At and f, denote the time increment and highest modal

frequency, respectively.
To present the identified flutter derivatives as functions of the reduced wind
velocity in a conventional fashion, the following normalization is applied to the

flutter derivatives defined in Eq. (4-26).
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.~ .~ —H, (0,,® —H, (0,0
{HI(VI) HZ(VZ)}_ 2 | o, 1 (©1,0,) Bo, 2 (@1, ,)
A4 A40) pB — A4, (0,,0,) Z—AZ((DH(O2)
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(4-49)
Lﬁ (0,,0,) Lﬁ (0,,0,)
{H;‘(Vl) Hi7)|_ 2 op 00 Boy U
L7 A7) B L g 6 e) T (0.0
B0)12 4( 12 2) Bzo)§ 3( 1° 2)_
~ V
w m=1,2 (4-50)

Vo =——,
B(w,, /2m)

where H; and A; (i=1~4) are the normalized flutter derivatives, V, is the

actual wind velocity, V, is the reduced wind velocity, p is the air density and

m

B is the width of section model.

4.4.1 Free-vibration test of a thin rectangular section of B/D=20 — case of a stream-
lined section

The wind-tunnel tests for this example are preformed in the wind tunnel of
Mokpo National University, Mokpo, Korea. Fig. 4-6 shows the experimental set-
ups for this example. The transverse movement is restrained with piano wires to
simulate 2-DOF motions. A 2-DOF free oscillation is introduced to the model by
suddenly releasing two pneumatic pistons that push the section to induce initial

displacements of 2cm in the vertical direction and 0.05 radians in the rotational
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direction. The free-oscillation test was performed for 20 wind velocities at an
almost equal interval from 0 m/sec to 12.8 m/sec and repeated 10 times consecu-
tively for each wind velocity. Standard time duration for the identification is set
to 10 sec. In case one of the 2-DOF responses is damped out before 10 sec,
measurements taken up to the instant when one of the responses disappears is uti-
lized. The shortest time duration of 1.31 sec is adopted at the maximum wind
velocity of 12.8m/s.

The two dominant frequencies identified at each wind velocity through the
FFT of the measured accelerations are shown in Fig. 4-7. The lower frequencies,
which correspond to the 1% modal frequency, are adopted as the target frequencies

of the FEM-FIR filter for the reconstruction of displacements and velocities.

Mass per unit length: 4.69 (kg/m)
Mass moment of inertia per unit length: 0.14 (kg-mz/m)
Air density: 1.25 (kg/ m°)
Figure 4-6. Experimental setup for the thin rectangular section
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Figure 4-8. Correction factors applied for the thin rectangular section
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Figure 4-9. Measured and reconstructed displacements at the wind velocity of
5.86m/s for the thin rectangular section: (a) vertical displacement and (b) rotational
angle
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The correction factors of reconstructed responses determined for each wind
velocity are given in Fig. 4-8. The reconstructed displacements of the section at
the wind velocity of 5.86m/s are compared with the measured displacements in Fig.
4-9. The two displacements appear almost identical in the figure, and the recon-
structed responses for the other wind velocities maintain the same levels of accura-

cy as shown in Fig. 8. The mechanical frequencies and the damping ratios of the
model are identified as f,=2.72Hz, f,=3.98Hz, §,=0.274% and &,=0.124%

using the reconstructed displacements for the windless condition.
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Figure 4-10. Identified flutter derivatives for the thin rectangular section - H " com-

ponents: (a) Hl* , (b) H;,(c) H : and (d) H:
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Figure 4-11. Identified flutter derivatives for the thin rectangular section - 4" com-

ponents: (a) 4, ,(b) A4,,(c) A, and(d) A,

Figs. 4-10 and 4-11 show the flutter derivatives for the lift force and moment,

respectively, identified by the proposed and MITD method as well as predicted by

the Theodorsen function for an ideally thin plate. The H : and A; components

by the Theodorsen function in the figures do not include added mass terms
(Scanlan and Tomko, 1971), because their contributions to the identified results are
eliminated in the identification process. The proposed method yields well-

matched results compared to the MITD method for all eight of the flutter deriva-
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tives in an overall sense even though slight differences in the H 1* component are

found between the two methods. As the identification of the flutter derivatives is
a type of ill-posed inverse problem, the results may depend on numerical schemes

to some extent (Scanlan and Tomko, 1971), and the differences seem to be within

an acceptable range. The Al.* components by both the proposed method and the

MITD method are almost identical to those predicted by the Theodorsen function.
As compared to the Al.* components, the H [.* components identified by both

the proposed and MITD method, somewhat deviate from the theoretical values
predicted by the Theodorsen function. This kind of phenomenon also has been

reported by Scanlan and Tomko (1971).
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Figure 4-12. Identified damping ratios for the thin rectangular section
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The frequencies and the damping ratios of the section are calculated through
the complex eigenvalue analysis of Eq. (4-1) with the identified flutter derivatives,
and are presented in Fig. 4-7 and Fig. 4-12, respectively. The calculated frequen-
cies show good agreements with those identified by the FFT of the measured accel-
erations. The MITD method yields slightly larger damping ratios for the 1* mode
and a smaller damping ratio for the 2™ mode than the proposed method.

As the last step of the verification, the displacement time history is calculated
by solving Eq. (4-1) in the time domain with the Newmark’s method. The aver-
age acceleration assumption and the time increment of 0.001 sec are utilized for the
numerical integration. The initial conditions are taken from the reconstructed dis-
placement and velocity. Fig. 4-13 compares the measured displacements with the
calculated ones for a wind velocity of 5.86 m/sec. Virtually no phase error is
found in either the vertical displacement or rotational angle. The amplitude of the
calculated rotational angle is almost identical to the measurement. However, the
flutter derivatives identified by the proposed method result in slightly larger ampli-
tude in the vertical displacement than in the measurement. It seems that the pro-

posed method somewhat underestimates the damping for the vertical motion.
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Figure 4-13. Calculated displacements with extracted flutter derivatives for the thin
rectangular section at the wind velocity of 5.86m/s: (a) vertical displacement and
(b) rotational angle
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4.4.2 Free-vibration test of an H-type section — case of a bluff section

A bluff H-type section of B/D=9.6 shown in Fig. 4-5(b) is tested in this exam-
ple. The dimensions of the section and the locations of sensors are illustrated in
Fig. 4-14. These types of sections are widely used in medium-span cable-stayed
bridges. The wind tunnel tests were performed at the Boundary Layer Wind Tun-
nel Laboratory at the University of Western Ontario in Ontario, Canada (Kim and
King, 2007). This example is adopted from the work by Hong et al. (2010), in
which the details on the experimental setups and reconstruction parameters are pre-
sented. Sudden release tests were carried out for 16 different wind velocities, and

20 measurements were taken for each wind velocity.

‘ Accelerometer ’ Laser displacement transducer
1

Mass per unit length: 3.64 (kg/m)
Mass moment of inertia per unit length: 0.102 (kg-m*/m)
Air density: 1.25 (kg/ m’)

Figure 4-14. Experimental setup for the bluff H-type section
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The correction factors used for the reconstruction are shown in Fig. 4-15.
The displacements for all wind velocity are successfully reconstructed, and the
same levels of accuracy as shown in Fig. 4-9 are obtained but are not presented

here. The frequencies and damping ratios for the windless condition are identi-
fied as f,=3.05Hz, f,=5.13Hz, & =0.671% and ¢&,=0.316% with the recon-
structed displacement and velocity.

Figs. 4-16 and 4-17 show the identified H l.* components and A,.* compo-
nents, respectively. The flutter derivatives of the bluff section exhibit much more
complicated variations with wind velocities than the thin rectangular section.

This is because flow fields around bluff sections are severely perturbed, and thus

strong turbulence is developed.
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Figure 4-15. Correction factors applied for the bluff H-type section
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The cubic spline fits of the identified results by the proposed method are also
drawn in the figures. Most of the flutter derivatives by the proposed method show

good agreements with those by the MITD method. Although some differences
are observed for H 1* for higher wind velocities as in the thin rectangular section,

the overall consistency between the proposed method and the MITD method is

confirmed for the bluff section.

Figs. 4-16 and 4-17 show the identified H l.* components and A,.* compo-

nents, respectively.
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Figure 4-16. Identified flutter derivatives for the bluff H-type section - H ~ compo-
nents: (a) H,,(b) H,,(c) H, and(d) H,
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Figure 4-17. Identified flutter derivatives for the bluff H-type section - 4~ compo-
nents: (a) A4, ,(b) A,,(c) A, and(d) A,
The flutter derivatives of the bluff section exhibit much more complicated varia-
tions with wind velocities than the thin rectangular section. This is because flow
fields around bluff sections are severely perturbed, and thus strong turbulence is
developed. The cubic spline fits of the identified results by the proposed method
are also drawn in the figures. Most of the flutter derivatives by the proposed

method show good agreements with those by the MITD method. Although some
differences are observed for H 1* for higher wind velocities as in the thin rectangu-

lar section, the overall consistency between the proposed method and the MITD
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method is confirmed for the bluff section.

Figs. 4-18 and 4-19 show the modal frequencies and the damping ratios calcu-
lated with identified flutter derivatives, respectively. The calculated modal frequen-
cies agree well with those identified by the FFT of the measured accelerations.
The damping ratios for the 1 and 2™ mode are identified as being slightly lower
and higher, respectively, by the proposed method than by the MITD method.
Near zero damping ratios are predicted for the 1** and 2™ mode at_wind velocities
of around 5 m/sec and 3.6 m/sec, respectively. Fig. 4-20 compares the calculated
displacements by Eq. (4-1) to the measured displacements at a wind velocity of
4.27m/s. The same numerical integration scheme used in example 1 is employed.
Both the phase and amplitude of the rotational angle are predicted accurately with
the identified results, while the amplitude of the vertical displacement is calculated

somewhat larger than the measurement as in the previous example.
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Figure 4-19. Identified damping ratios for the bluff H-type section
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Figure 4-20. Calculated displacements with extracted flutter derivatives for the
bluff H-type section at the wind velocity of 4.27m/s: (a) vertical displacement and
(b) rotational angle
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4.4.3 Numerical simulation of forced-vibration test controlled by a prescribed force

The proposed EEE method is applied to an extraction of the flutter derivatives
for the numerically simulated force-control test of the thin rectangular section in
the section 4.4.1. To simulate the analytic motion response, the optimized flutter
derivatives of the section presented by Jung et al. (2011), which is modified to sat-
isfy causality condition through proper optimization, are adopted for the exact flut-
ter derivatives of the numerical analysis.

Two forced vibration tests of the section model are conducted by applying fol-

lowing excitation forces for 10 seconds, respectively.

1
Fex,l (t) = (Oj Sin (’Oext s Fex,2 (t) = (?j Sin (’Oext (4_5 1)

The analytic solution for the force-control test in Eq. (4-31) and (4-32) is derived
from the Scanlan’s equation, the linearity and vibrational mode shape independen-
cy are satisfied. Hence any sets of two excitation forces with different ratios of
amplitudes in the vertical and rotational direction can be properly employed for the
force-control test. The analytic acceleration is obtained from the second order
differentiation of Eq. (4-31).

. (h h.
U,(t)=-o’ [ ol jsin(mext)J{ ol Jcos(wext)]
s,1 c,l

a p

Q

. h
U,(t)=-o2 ( 2 Jsin(mext)+{ 2 ]cos(mext):l
G‘S,Z ac,z

(4-52)

Ry
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The acceleration is calculated for the several reduced frequencies from 2 to 20
with constant increment and measured at the sampling of 100 Hz. Though the
analytic displacement and velocity can be possibly calculated, to simulate the actu-
al situation, the displacement and velocity are reconstructed by the FFIR filter in
the section 3. To alleviate the rippling error of the FFIR filter the reconstructed
responses are modified with the same procedure in Eq. (4-33) which is used for the
modification of the response in the free-vibration test. Since the analytic accel-
eration of the forced-vibration test is solely single frequency components without

noise, near exact displacement and velocity are reconstructed by this modification

procedure.
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Figure 4-21. Identified flutter derivatives for the numerically simulated force con-
trol test - H~ components: (a) H 1* ,(b) H ; ,() H : and (d) H ;
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Figure 4-22. Identified flutter derivatives for the numerically simulated force con-
trol test - A components: (a) Al* , (b) A; ,(©) A: and (d) 4,

Figs. 4-21 and 4-22 show the identified H l.* components and Ai* compo-

nents with the exact value of flutter derivatives, respectively. The identified flut-

ter derivatives perfectly agree with the exact values in this numerical study.
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5. Conclusion and further study

Conclusions

This study proposes three types of FIR filters, the CFIR FDM-FIR filter and
FFIR filter, to reconstruct displacement from measured accelerations. The BEF
transfer function is derived by taking the variation of the minimization problem
that defines an inverse problem for the reconstruction of displacement. The regu-
larization factor in the inverse problem is determined with the desired accuracy at
the target frequency. The CFIR filter directly approximates the BEF transfer
function in the frequency domain by the truncated Fourier series, while FDM-FIR
filter and the FFIR filter are obtained by discretizing the minimization problem
itself with FDM and the variational statement of the minimization problem with the
standard FEM, respectively. The second order central difference method is uti-
lized to discretize the second order differentiator and the Hermitian shape function
is utilized to interpolate displacement in each finite element. By the virtue of the
FFIR filter, velocity as well as displacement can be reconstructed simultaneously
from the same measurement.

The proposed filters are capable of suppressing the low frequency noises be-
low the target frequency, and reconstructing displacement accurately above the tar-
get frequency. The longer filter size results in smaller rippling amplitude in three
filters. The CFIR filter exhibits a uniform frequency response from the target fre-

quency to the Nyquist Frequency in case the filter size is set to either the standard
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or long filter size. The filter sizes other than the two filter sizes cause diverging
rippling amplitudes in the transfer function of the CFIR filter, which may be con-
sidered to be the one shortcoming of the CFIR filter. On the other hand, the size
of the FDM-FIR filter and FFIR filter size can be adjusted freely as needed in ap-
plications and the rippling amplitude of them damps out quickly for all filter sizes.
Although the accuracy of the FDM-FIR filter and FFIR filter deteriorates in higher
frequency ranges, the overall performance is not affected seriously because the
high frequency contents in measured accelerations contribute little to the recon-
structed displacement. From the aforementioned facts, it may be concluded that
the CFIR filter is a good choice for the reconstruction in systems with a wide fre-
quency spectrum while the FDM-FIR filter and FFIR filter are suitable for low-
frequency dominant systems. To reconstruct velocity as well as displacement,
however, the FFIR filter should be employed.

Four examples are presented to verify the proposed FIR filters. In the nu-
merical simulation study and field experiment, the proposed FIR filters yield very
accurate displacement, and exhibit robust behaviors against measurement noises.

In the last example, the flutter derivatives for the section model of a bridge
deck system with plate girders are identified by the reconstructed displacement,
and are compared with those by measured displacement. Both the identified de-
rivatives show good agreement with each other. Therefore, the proposed FFIR
filters can be applied to the identification of the flutter derivatives of long-span ca-

ble-supported bridges in service, in which the measurements of displacement are
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considered to be one of the major obstacles. It is believed that the proposed FFIR
filters provide accurate and reliable alternatives to direct measurement of dynamic
displacements, which is costly, difficult and almost impossible, especially for large-

manifest scale structures.

Further study
Scope of the proposed reconstruction scheme

In the near-field of an earthquake the effects of the rotational components of
ground motion may not be negligible compared to the effects of translational mo-
tions. Several analyses of the equations of motion of horizontal and vertical pen-
dulum show that horizontal sensors are sensitive not only to translational motion
but also to tilts. In this reasons, different groups of researchers in earthquake field
have tried to measure the displacement responses in the longitudinal, transverse
and vertical directions with consideration of the tilts components [Graizer 2005 and
Graizer 2006].

The scope of the reconstruction scheme in this study, however, is to recon-
struct the tangential displacement and velocity which correspond to the measured
tangential acceleration rather than the horizontal and vertical responses. Under
the small deformation assumption in serviceability state, these tangential responses
can be regarded as the vertical or horizontal responses.

Since the accelerometers commonly have an accurate high-frequency resolu-

tion but it is insensitive to near-zero frequency responses like pseudo-static compo-
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nents. This study has mainly investigated the displacement and velocity recon-
struction for the pure dynamic responses which are defined with harmonic func-

tions through the Duhamel integral.

Expansion of the scope of the proposed reconstruction scheme

In civil structure accelerometers are most often used, however displacement
sensors, such as non-contact optical techniques as well as GPS-based methods are
becoming more common. The accelerometers commonly have an accurate high-
frequency resolution but it is insensitive to near-zero frequency responses like
pseudo-static components. On the other hand, displacement-based sensors can
measure the pseudo-static components and the permanent displacement while the
high-frequency resolution limited, and often relatively low sampling rates are used.
It is suggested, if possible, to exploit the redundancy in the sensors and combine
the acceleration and displacement measurements in a manner which yields highly
accurate motion data. Though this study mainly investigates the displacement
reconstruction for the pure dynamic responses by setting the static equilibrium po-
sition to be zero, the proposed method has possibilities to be expended for the re-
sponses from different types of sensor by imposing non-zero static equilibrium
position to the regularity condition. Continuous researches on these fields should
be intensively performed to apply the displacement reconstruction to more general

monitoring of the civil structures.
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Investigation of the similitude law for the flutter derivatives identified from the
free-vibration test and implementation of the force-control test in the wind tunnel

for the estimation of flutter derivatives

There is apparent uncertainty in frequency dependency for the flutter deriva-
tives identified from the 2-DOF free-vibration test and the frequency similarity in
Eq. (4-49) is hardly applied for the flutter derivatives of the bluff body section.
As far as the frequency dependency of the flutter derivatives is concerned, the dis-
placement-control test can be best solution. However, the displacement-control
test is not free from the limitation that the mutual influence of structural dynamics
and fluid flow in regions of moving boundaries are not fully considered. In this
reason, the force-control test should be implemented and further research on the
relationship and relative differences among three tests should be intensively veri-
fied from the result of experiments.

One of the alternative methods to extract the flutter derivatives rather than the
wind tunnel test is the computerized fluid dynamic (CFD) analysis. After the im-
plementation of the force-control test, continuous researches about the relation be-
tween the wind tunnel tests and the CFD method and limitation of each

experimental method should be performed.
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