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Abstract 

 

A new class of displacement reconstruction scheme is presented using only 

acceleration measured from a structure.  For a given set of acceleration data, the 

reconstruction problem is formulated as a boundary value problem in which the 

acceleration is defined by the second-order ordinary differentiation of displacement.  

The displacement is reconstructed by minimizing the least squared errors between 

measured and approximated acceleration within a finite time interval.  The dis-

placement reconstruction problem becomes ill-posed because the boundary condi-

tions at both ends of each time window are not known a priori.  Furthermore, 

random noise in measured acceleration causes physically inadmissible errors in the 

reconstructed displacement.  A Tikhonov regularization scheme is adopted to al-

leviate the ill-posedness.  The governing equation for the reconstruction is derived 

by taking the variation to the regularized minimization problem, which yield beam 

on the elastic foundation problem.  The conventional FIR (CFIR) filter directly 

approximates the transfer function of the governing equation, while the FDM-

based FIR (FDM-FIR) and FEM-based FIR (FFIR) filter are formulated by the dis-

cretization of the minimization problem with the finite difference method and the 

finite element method, respectively.  The FFIR filter is capable of reconstructing 

displacement and velocity simultaneously.  The fundamental characteristics of the 

proposed filters are investigated in the frequency domain using the transfer and 
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accuracy functions.  It is shown that the proposed FIR filters suppress low fre-

quency noise components in measured accelerations effectively, and reconstruct 

physically meaningful displacement accurately.  The validity of the proposed fil-

ters is demonstrated through several examples.   

In the final example, a force-acceleration-based identification of the flutter de-

rivatives of bridge decks in a wind tunnel is presented.  An equation error estima-

tor (EEE), which is the least square residual errors of the equation of motion, is 

employed to formulate the force-based identification scheme.  Unlike most of 

previously proposed methods, the acceleration of an oscillating section model is 

measured in wind tunnel tests.  The velocity and the displacement required in the 

EEE are reconstructed from the measured acceleration using the FFIR filter.  As 

the EEE is expressed as a quadratic form with respect to flutter derivatives, neither 

an iterative solution scheme nor a complex eigenvalue analysis is required for op-

timization.  The EEE method is capable of identifying the representative values of 

the flutter derivatives by one optimization process using multiple measurements for 

a wind velocity in wind tunnel tests and can be generally employed for the extrac-

tion of the flutter derivatives regardless of the testing procedures.   
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1. Introduction 

 

Dynamic responses of structural systems are frequently measured for the purpose 

of structural health monitoring (SHM) and structural control (SC) [Sohn 2004 and 

Housner 1997].  Among the dynamic responses, the time history of the dynamic 

displacement may contain precious information on structural behaviors that can be 

utilized in various SHM and SC applications.  For example, in case a structure 

experiences severe events such as a strong earthquake or a typhoon, a quick deci-

sion on the possibility of structural damage could be made based on the maximum 

displacement of the structure [Gupta 2001, Park 1984 and Smyth 2007].  The dis-

placements measured under normal operational conditions are utilized to identify 

nonlinear dynamic characteristics of a structure and to monitor abnormal changes 

in structural behaviors.  For SC applications [Housner 1997], information on dis-

placement should be provided in real-time or at least in near real-time to identify 

the states of a structure.  Unfortunately, it is very difficult to measure displace-

ment directly in large-scale structures such as bridges and buildings because fixed 

reference points are rarely found to install displacement transducers [Gavin 1998].  

Moreover, the reference points as well as a structure move together during severe 

events, and thus the direct measurement of displacement becomes almost impossi-

ble. 

Acceleration is easily measured without a fixed reference point unlike dis-
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placement, and various types of accelerometers are commercially available for a 

wide range of dynamic frequency.  Consequently, acceleration has been common-

ly measured for various engineering applications in real situations.  From this 

point of view, the reconstruction of displacement from measured acceleration 

seems an attractive alternative to the direct measurement of displacement.   

Various digital filters may be considered for the purpose of displacement re-

construction from measured accelerations.  Among them, infinite impulse re-

sponse filters (IIR filters) and finite impulse response filters (FIR filters) are widely 

employed in various applications [Bardella 2003, Boore 1997, Hamming 1989, 

Kumar 1996, Rabiner 1975 and Smyth 2007].  However, conventional digital fil-

ters have several drawbacks in the displacement reconstruction for low-frequency 

dominant structures.  The IIR filters usually require initial conditions on dis-

placement and velocity, which are generally unavailable.  Low-frequency noise 

components in measured accelerations are amplified and propagate through time.  

Although some remedies have been proposed to suppress low-frequency noise, 

they either cause nonlinear phase errors [Hamming 1989, Kumar 1996 and Rabiner 

1975], or require additional pieces of information [Smyth 2007].  In the case of 

FIR filters, it is difficult to approximate the analytic transfer function in a low-

frequency range accurately by a finite Fourier series due to the singularity of the 

analytic transfer function at the zero frequency [Hamming 1989 and Kumar 1996]. 

The frequency domain integration approach (FDIA) is a possible alternative to 

digital filters for the displacement reconstruction [Lee 2010].  The time-history of 
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displacement is obtained using the inverse Fourier transform on the discrete Fouri-

er transform (DFT) of measured accelerations multiplied by the analytic transfer 

function which will be defined in chapter 2.  This approach, however, suffers from 

severe discretization errors if the DFT of the measured acceleration is performed 

on relatively a short time interval [Hamming 1989].  This is a major drawback for 

the real-time or near real-time reconstruction required in the SHM or the SC. 

The current study formulates a new class of the displacement reconstruction 

scheme, which is suitable to low-frequency dominant structures, as a boundary 

value problem using measured acceleration without any information on initial 

conditions.  The displacement is reconstructed through an inverse problem de-

fined as the minimization of the least squared errors between measured accelera-

tion and the second-order time derivative of displacement within a time interval, 

referred to as a time window.  An overlapping time-window concept proposed 

by Park et al. [2008] is adopted to enhance the accuracy of reconstructed dis-

placement.  

Two major difficulties should be properly addressed to reconstruct displace-

ment from acceleration based on the inverse problem.  First, the reconstruction 

problem becomes rank-deficient because the boundary conditions at both ends of 

each time window are not known a priori.  Furthermore, a small amount of low-

frequency spectral noise in measured accelerations may significantly pollute the 

reconstructed displacement with physically inadmissible components, which is 

known as the ill-posedness of inverse problems.  The Tikhonov regularization 
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scheme, which has been widely used in various types of inverse problems [Hansen 

1988 and Park 2001], is utilized to overcome these difficulties.  

The governing equation of the inverse problem is obtained by taking variation 

of the regularized minimization problem, which leads to the same type of differen-

tial equation as that of a beam on an elastic foundation (BEF) [Hetenyi 1946].  

The transfer function of the inverse problem is hereafter referred to as the BEF 

transfer function.  The exact relation between the regularization factor and the 

accuracy of the proposed filter is established through the desired accuracy at the 

target frequency which is the lowest frequency in physically meaningful frequency 

contents in measured acceleration. 

The current thesis proposes three types of FIR filter, the CFIR filter, the FDM-

FIR filter and the FEM-FIR (FFIR) filter based on the inverse problem formulated 

with a form of the BEF function.  Two filter sizes are proposed for the CFIR filter 

from the viewpoint of the stability independently to the regularization factor.  As 

the BEF transfer function is capable of suppressing noise components below the 

target frequency, the FDIA using the BEF transfer function dose not require low-

cut filter or and band-pass filter.  

The coefficients of the CFIR filter is obtained by approximating the BEF-

transfer function with the Fourier series in the frequency domain, while the coeffi-

cients of the FDM-FIR and the FFIR filters are obtained by discretizing the inverse 

problem with the standard finite difference method and finite element method in 

the time domain, respectively.  The proposed filters have their own merits and 
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disadvantages in relation to each other.  The filter size can be selected arbitrarily 

for the FDM-FIR filter and the FFIR filter, while the uniform frequency responses 

are expected in the CFIR filter for the proposed filter sizes.  The FDM-FIR filter 

needs relatively small computational time than other filters.  A great advantage of 

the FFIR filter over the FDM-FIR filter and the CFIR filter is that velocity as well 

as displacement can be reconstructed simultaneously as the velocity field is em-

bedded in the finite element model of the FFIR filter.  The characteristics of the 

proposed FIR filters are presented and discussed in detail by investigating the 

transfer function and accuracy function. 

Five examples are presented for demonstrating the validity of the proposed fil-

ters.  Various characteristics of the FDIA, CFIR filter and FFIR filter are verified 

with reconstructed displacement and velocity from numerically simulated accelera-

tions in the first example.  Displacements are reconstructed from the accelerations 

measured from the small cantilever beam and the real-scale stay cable in laboratory, 

and are compared with the measured displacement in the second and third exam-

ples, respectively.  In the forth example, the displacement reconstruction is em-

ployed for the accelerations measured in a simply supported railroad bridge during 

commercial operation, and is compared with the measured one.   

The last example presents the evaluation of the flutter derivatives using the re-

constructed responses together with the measured acceleration, this example is not 

just the verification of the reconstruction itself but the further application of the 

reconstructed responses to the other SI scheme.  Moreover, it contains new SI al-



 

 

 

6

gorithms for the identification of the flutter derivatives and the valuable discussion 

about the aeroelastic phenomena and the experimental procedure for the extraction 

of flutter derivatives.  Hence, the last example organizes the separated chapter of 

4. 
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2. Displacement Reconstruction for Dynamic Accelera-

tion 

 

Numerous attempts have been made to reconstruct displacement with meas-

ured acceleration based on the definition of acceleration, i.e., the second-order de-

rivative of displacement in a time domain.  Time integration schemes based on 

time-marching algorithms such as a Newmark’s method and a third-order corrector 

are probably the most straightforward and easiest way to obtain displacement from 

measured acceleration.  However, the time-marching algorithms yield erroneous 

displacement [Boore 1997 and Smyth 2007] caused by the following facts.  First 

of all, initial conditions on velocity and displacement required in the time-marching 

algorithms are usually unavailable or inaccurate in real situations.  Moreover, ran-

dom noise in measured acceleration data causes physically inadmissible errors in 

the reconstructed displacement.  Particularly, low-frequency spectral components 

in random noise are amplified during time-marching procedures, which severely 

deteriorate the accuracy of the reconstructed displacement [Hong 2010 and Lee 

2010].  This undesirable effect becomes a critical issue in the displacement recon-

struction for large-scale civil infrastructures, which usually exhibit very low fun-

damental frequencies [Smyth 2007]. 

Several remedies to overcome the drawbacks of the time-marching algorithms 

have been proposed for the displacement reconstruction with measured accelera-
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tion.  A baseline correction technique used in seismology applications is a well-

known approach for eliminating the erroneous components in the reconstructed 

displacement by the time-marching algorithms [Boore 1997, Chiu 1997, Iwan 1985 

and Stephens 1985].  In this approach, polynomial functions approximately repre-

senting the inadmissible errors are constructed, and are subtracted from the recon-

structed displacement.  However, the baseline correction depends on an engineer’s 

decision, and thus is inadequate to SHM and SC applications [Sohn 2004 and 

Housner 1997] in which measured acceleration should be automatically processed 

in real time or pseudo-real time.  Moreover, this approach corrects erroneous re-

sults obtained by the time-marching algorithms, and is not completely free of the 

aforementioned drawbacks.  For SHM applications, Smyth and Wu (2007) com-

bine displacement data from a global positioning system (GPS) with measured ac-

celeration, and reconstruct displacement through the multi-rate Kalman filter 

approach [Smyth 2007].  However, their approach is not applicable for the dis-

placement reconstruction at positions where the GPS signals are unable to reach.  

In addition, the low accuracy in the vertical positioning capability of the GPS may 

act as an additional source of noise in the reconstruction of vertical displacement. 
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2.1 The Exact Governing Equation and Transfer Function 

 

This thesis formulates a new class of the displacement reconstruction scheme 

as a boundary value problem rather than an initial value problem using measured 

acceleration without any information on initial conditions.  In case measured ac-

celerations are given over a finite time interval referred to as a time window [Park 

2008 and Lee 2010], the relation between the measured acceleration and the defini-

tion of acceleration forms a boundary value problem.  As the second-order time 

derivative of displacement is acceleration, the displacement is reconstructed 

through the minimization of the least squared errors between measured acceleration 

and the second-order time derivative of displacement in a time window. 

As the reconstruction problem of displacement is defined as a boundary value 

problem in a time window, boundary conditions at both ends of the domain should 

be specified to solve the minimization problem, but neither displacement nor veloc-

ity is known at the boundaries.  Therefore, the minimization problem for the re-

construction of displacement becomes ill-posed or rank-deficient, and cannot be 

solved for unknown displacement in a time window.  Furthermore, a small 

amount of low-frequency spectral noise in measured acceleration data may signifi-

cantly pollute the reconstructed displacement as like to the reconstruction with the 

time-marching algorithm.  To overcome these two difficulties, the Tikhonov regu-

larization scheme [Hansen 1988 and Park 2001], which has been widely employed 

to alleviate the ill-posedness of inverse problems, is adopted. 
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2.1.1 Displacement Reconstruction Scheme as an Initial Value Problem 

Dynamic structural responses such as acceleration, velocity and displacement 

are calculated by solving the following equation of motion of a structure with 

proper initial conditions [Chopra 2000]. 

 

)()()()( tttt pKuCvMa =++ , 0)0( vv =  and 0)0( uu =  (2-1)
 

where M, C, K, and p represent the mass, damping, stiffness matrix of a structure 

and a load vector imposed on the structure, respectively, while a, v and u denote 

the acceleration, velocity and displacement of the structure, respectively.  The 

prescribed initial conditions for velocity and displacement are given as 0v  and 

0u , respectively.  The equation of motion given in Eq. (2-1) is the system of an 

initial value problem in time domain, and represents a physical phenomenon that 

the specified initial conditions propagate through time. 

To solve Eq. (2-1) numerically, a time integration scheme based on a time-

marching algorithm is employed to express displacement and velocity in terms of 

acceleration.  The propagating characteristics of Eq. (2-1) should be properly con-

sidered in a time integration scheme.  Several well-formulated time-integration 

schemes have been proposed and successfully applied to various types of dynamic 

problems.   

Backward difference: (2-2-a)
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Newmark’s method: 
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where subscript i denotes a discrete time step, )( tkaak Δ= , )( tkvvk Δ=  and 

)( tkuuk Δ=  represent the acceleration, velocity and displacement of the structure, 

tΔ  is a step length for the time-marching algorithm, which is often referred to as a 

time increment or a sampling size, while Nβ  and Nγ  represent numerical pa-

rameters for Newmark’s method [Chopra 2000], which define the variation of ac-
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celeration over a time step, respectively.  

Once displacement and velocity are expressed in terms of acceleration using 

the time-marching algorithms in Eq. (2-2) for current and previous time steps, Eq. 

(2-1) is solved for acceleration.  As the above procedure is applied stepwise, the 

entire histories of dynamic responses of a structure are calculated. 

In case the initial conditions are known in previous and acceleration at a fixed 

material point is measured at every discrete time step with the time increment of Δt, 

the displacement at the point is calculated by use of Eq. (2-2) in theory.  As one of 

the dynamic responses, the acceleration, is measured and thus known, the system 

information in Eq. (2-1) is not required, but only the relationship between dis-

placement and acceleration, i.e., Eq. (2-2) is utilized to calculate displacement. 

As mentioned at the beginning of this chapter, there exist two major draw-

backs in the application of Eq. (2-2) for reconstructing displacement with measured 

acceleration.  First of all, the initial conditions are generally not given, especially, 

for large-scale structures such as bridges and buildings.  The second drawback is 

that noise in the initial conditions and measured accelerations not only propagate 

through time but also are severely amplified.  This is because the time integration 

scheme given in Eq. (2-2) is developed to describe the propagating characteristics 

of the initial value problems accurately, and thus noise in measurement as well as 

true information on a dynamic system propagates [Hong 2010 and Lee 2010]. 

Among the algorithms in Eq. (2-2), the most popular one in the civil engineer-

ing field may be the Newmark’s method, hence, all discussions about time-
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marching algorithms are represented by Newmark’s method in equation (2-2-e) 

hereafter. 

To investigate propagating characteristics of Eq. (2-2-e), the velocity is elimi-

nated from the equations, and the displacement is expressed in terms of the initial 

conditions and measured acceleration. 
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.  From Eq. (2-3), it is clearly seen that noise in the initial dis-

placement propagates though time while noise in the initial velocity and accelera-

tion are amplified linearly and quadratically, respectively.   

In case noise components in measured acceleration are random with zero 

mean, noise in term 1−kS  may vanish.  However, the last term in Eq. (2-3) causes 

the accumulation of noise, which is explained by expressing the term for measured 

accelerations. 

 

∑

∑
−

=
−

−

−

=
−

−ΔΔ=

+++++++Δ=Δ

1

1
1

2210100
2

1

1
1

2

)(

))()(()()(

k

p
i

k

k

p
p

apktt

aaaaaaatSt LL

 (2-4)

 



 

 

 

14

 

 

 

 

 

 

Figure 2-1. A single DOF system 
 

Obviously, noise in accelerations measured in the past becomes larger rather 

than canceling out as time passes by.  It may be concluded that the application of 

a time integration scheme for the initial value problem to the displacement recon-

struction yields noise-polluted, meaningless results.  More precise and accurate 

discussion about noise amplification will be discussed in the Chapter 3 with fre-

quency domain analysis. 

The aforementioned characteristics of the Newmark’s method are demonstrat-

ed through a simple numerical simulation study on a single DOF system shown in 

Fig. 2-1.  The integration constant for the Newmark’s method, 4/1β =N , 

2/1γ =N , are used [Chopra 2000].  The natural frequency of the system is about 

1Hz, and the exact initial condition for displacement and velocity are 1.0 m and 0.0 

m/sec, respectively.  The reconstructed displacement for the initial displacement 

of 1.2 m by Newmark’s method is compared with the exact displacement in Fig. 2-

2(a), which shows that the noise in the initial displacement propagates through time.   
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Figure 2-2. Reconstructed displacement by Newmark’s method : (a) Noise in the 
initial displacement. (b) Noise in the initial velocity. (c) 5% random proportional 

noise in measured acceleration 
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The noise of 0.2 m/sec in the initial velocity causes linearly increasing dis-

placement in the Newmark’s method as illustrated in Fig. 2-2(b).  Finally, Fig. 2-

2(c) shows that the Newmark’s method yields almost meaningless displacement in 

case the measured acceleration is polluted by 5% random proportional noise. 

 
2.1.2 Displacement Reconstruction Scheme as a Boundary Value Problem 

In this section, a new approach to reconstruct displacement with measured ac-

celeration is presented as a boundary value problem.  Suppose acceleration at a 

fixed material point is completely measured during a time interval (or a time win-

dow), 21 TtT << , and thus known.  By definition, the acceleration of a fixed 

material point, )(ta , is expressed in terms of displacement through a second order 

ordinary differential equation. 

 

212

2

)()()( TtTta
dt

tudta <<≈≡   (2-5)

 

where )(tu and )(ta are and displacement and measured acceleration, respective-

ly.  As only the dynamic information is utilized for the displacement reconstruc-

tion in this thesis, the displacement in Eq. (2-5) represents the dynamic component 

measured from the static equilibrium position of a structure. 

Provided that proper boundary conditions on displacement or velocity at 

1Tt =  and 2Tt =  are given, the displacement is easily obtained by integrating 

Eq. (2-5) twice and applying two boundary conditions.  This study utilizes the 
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following minimization problem rather than attempts to solve Eq. (2-5) directly. 

 

∫ −=Π
2

1

2)))(((
2
1)(Min

T

T
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dtatuau   (2-6)

 

where EΠ  is error function of acceleration, and subscript ‘E’ denotes ‘error’.  

Since, however, the boundary conditions for Eq. (2-5) are generally not known, the 

displacement field cannot be determined by integrating Eq. (2-5) twice.  Further-

more, random noise components included in the measurement should be properly 

taken care of in the displacement reconstruction with Eq. (2-5). 

The homogenous solution of Eq. (2-5) is given as a linear function in time.  

Since, however, the real dynamic displacement induced by structural vibration is 

defined with harmonic functions through the Duhamel integral [Chopra 2000], a 

linear function is not an adequate basis for the dynamic displacement induced by 

structural vibration.  Therefore, the homogeneous solution should vanish, and the 

solution of Eq. (2-5) is expressed solely by the particular solution.  Note that the 

displacements at the boundaries of a time window are determined by the particular 

solution rather than specified as boundary conditions.   

The particular solution of Eq. (2-5) can be found through the Fourier trans-

form [Rabiner 1975].  The transfer function of Eq. (2-5) is also derived by this 

transform procedure. 
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))((1))(()())(( 2 taFtaFHtuF E ω
−=ω=   (2-7)

 

where F and 2/1 ω−=EH  denote the Fourier transform and the exact transfer 

function of the second order ordinary differential equation in Eq. (2-5), respectively, 

while ω is the angular frequency.  Here, the exact transfer function implies the 

transfer function of the exact governing differential equation between displacement 

and acceleration.   

Theoretically, the time history of displacement is obtained by applying the in-

verse Fourier transform to Eq. (2-7).  

 

)))((1()( 2
1 taFFtu

ω
−= −   (2-8)

 

where F-1 represents the inverse Fourier transform.  The displacement reconstruc-

tion scheme defined in (2-8) is referred to as the frequency domain integration ap-

proach (FDIA) [Hong 2010 and Lee 2010] hereafter. 

In case the measured acceleration contains random noise, pure noise frequen-

cy contents in measured accelerations below the target frequency [Lee 2010 and 

Hong 2010], which is the lowest frequency in physically meaningful frequency 

contents in measured acceleration, are severely amplified by the exact transfer 

function in the frequency domain.  Consequently, the reconstructed displacement 

in the time domain is polluted with the amplified noise components.  Here, the 
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target frequency is easily determined by investigating the Fourier transform of 

measured accelerations or just by the engineer’s decision in practical problems. 

Even if measured accelerations are noise-free, the FDIA defined in Eq. (2-8) 

can not be directly applied to reconstruct displacement.  Since the Fourier trans-

form of measured accelerations in Eq. (2-8) is performed on the finite time interval 

and the acceleration is measured in discretized sense, the Fourier transform (dis-

crete Fourier transform, more precisely) contains frequency responses below the 

target frequency [Rabiner 1975 and Hamming 1989], which should not exist, by 

truncation and discretization errors.  These errors act as an additional source of 

noise, and thus pollute the reconstructed displacement in the time domain similar to 

the random measurement noise.  To suppress the measurement noise and the trun-

cation error below the target frequency, low cut filters or band pass filters are usu-

ally applied to Eq. (2-8) before performing the inverse Fourier transform. 

 

)))(()(1()( 2
1 taFFtu ωφ

ω
−= −   (2-9)

 

where φ  is a proper weighting function for a low cut filter or a band pass filter.  

The Fourier transform in Eq. (2-9) holds for infinite and continuously measured 

acceleration.  Since, however, the finite and discretized acceleration with the con-

stant time step, tΔ , is measured in real situation, the Fourier transform in Eq. (2-

9) should be implemented by the discrete Fourier transform (DFT) which inevita-

bly contains the truncation and discretization errors.  If the measured acceleration 



 

 

 

20

is long enough to ignore these errors, the displacement can be reconstructed by the 

FDIA with proper weighted transfer function. 
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2.2 The Governing Equation and Transfer function of an Regularized In-

verse Problem 

As proper boundary conditions are not specified for Eq. (2-5), the minimiza-

tion problem in Eq. (2-6) becomes ill-posed and unable to yield a unique displace-

ment for given measured acceleration due to rank-deficiency.  To solve ill-posed 

problems, the regularization techniques, in which a priori estimates of solutions are 

defined by a regularity condition as additional information, are widely adopted 

[Hansen 1988 and Park 2001].  The reconstructed displacement should stay 

around the static displacement of a given system, stu , which is expressed by the 

following equation. 

 

∞<≤−=Π ∫ 22
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1

))()((
2
1)( rdttutuu

T

T
stR  (2-10)

 

where RΠ  is a regularization function, and r defines a solution bound.   

As the static displacement has no effect on the acceleration defined in Eq. (2-

5), only the dynamic component in the total displacement can be reconstructed.  

Therefore, the displacements in Eq. (2-6) and (2-10) represent the dynamic dis-

placement measured from the static equilibrium position of a structural system, and 

the static displacement in Eq. (2-10) should be set to zero, which leads to the fol-

lowing expression  
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Since the solution bound is not known a priori, the regularity condition Eq. (2-

11) is enforced as a penalty function to the original minimization problem in Eq. 

(2-6) [Kang 2005]. 
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The above minimization problem is generally known as the Tikhonov regular-

ization scheme [Hansen 1988 and Park 2001].  The penalty number β in Eq. (2-

12) is usually referred to as the regularization factor that adjusts the degree of the 

regularization in the minimization problem.  As the regularization factor becomes 

larger, the solution bound approaches zero, and zero displacements are reconstruct-

ed.  Meanwhile, a small regularization factor yields an ill-conditioned problem for 

Eq. (2-12), which may result in a meaningless and/or unstable solution.  Therefore, 

a well-balanced regularization factor should be selected to obtain physically mean-

ingful and accurate displacements [Park 2001]. 

The governing equation and the boundary conditions associated with the min-

imization problem is obtained by taking the variation to the object function in Eq. 

(2-12) 
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The integration of the first term of Eq. (2-13) by parts twice leads to the fol-

lowing equation. 
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Based on the above variational statement, the governing equation and the boundary 

conditions of the minimization problem are defined as follows 
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Since the displacements and the velocity are unknown at the boundaries, the 

Neumann type boundary conditions [Cheng 2005] are adopted.  The governing 

equation in Eq. (2-15) is the same as that of a beam on an elastic foundation (BEF) 

[Hetenyi 1946].  Hence the problem in Eq. (2-15) is referred to as the BEF prob-

lem hereafter.  The existence and uniqueness of the solution can be guaranteed 

with only the Neumann type boundary conditions by virtue of the second term of 

the left-hand side of the governing equation, which comes from the regularization 

function. 
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The transfer function of the governing equation in Eq. (2-15), which is abbre-

viated to the BEF transfer function, is derived by applying the Fourier transform. 
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where f is the frequency and BH  denotes the BEF transfer function.  The time-

history of displacement can be reconstructed by the FDIA with the BEF transfer 

function. 
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Since the BEF transfer function by itself is capable of suppressing noise com-

ponents below the target frequency, it is not necessary to apply an additional band 

filter to the FDIA defined in Eq. (2-17). 

It is rather convenient to express the exact transfer function and the BEF 

transfer function in terms of the dimensionless frequency normalized to the target 

frequency.  For example, the exact transfer function defined in Eq. (2-7) is nor-

malized as follows. 
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where EH~ , Tf  and Tfff /~

=  are the normalized exact transfer function, the 

target frequency and the dimensionless frequency normalized to the target frequen-
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cy, respectively.  The normalized exact transfer function yields 1 at 1~
=f , where 

frequency is equal to the target frequency, while the un-normalized exact transfer 

function becomes 1 at π= 2/1f .  Since the performance of proposed recon-

struction scheme is focused on the frequency region near the target frequency, the 

normalization presented in Eq. (2-18) is a very convenient tool for representation 

and comparisons for the transfer functions. 

The normalized BEF transfer function is derived by applying the same nor-

malization scheme to the BEF transfer function in Eq. (2-17)   
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where BH~  is the normalized BEF transfer function.  The term “normalized” is 

hereafter omitted for brevity of explanation, unless otherwise stated. 

The accuracy of the reconstructed displacement is defined with the accuracy 

function [Hamming 1989 and Smyth 2007], which is the ratio of the transfer func-

tion used in the displacement reconstruction to the exact transfer function [Hong 

2010 and Lee 2010].  The accuracy function of the exact transfer function, 

)(ωacc
EH , and the BEF transfer function, )(ωacc

BH , are defined as follows. 
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The exact accuracy function in Eq. (2-20) always yields 1 regardless of the 

frequency.  On the other hand, the BEF accuracy function in Eq. (2-21) becomes 0 

at 0~
=f , and rapidly converges to 1 as the frequency approaches to the target 

frequency.  The transition characteristics of the BEF transfer function in 

1~0 ≤≤ f  are governed by the magnitude of the regularization factor.  The accu-

racy at the target frequency is obtained by setting 1~
=f  in Eq. (2-21). 

 

42 )2/(1
1

T
T fπβ+

=α  (2-22)

 

where Tα  is the target accuracy, i.e., the desired accuracy for the reconstructed 

displacement of the frequency component corresponding to the target frequency.  

If the target accuracy is pre-selected based on an engineering sense, the regulariza-

tion factor is determined by the following equation. 

 
222 )2)(()2(1

TTT
T

T ff παλ=π
α

α−
=β   10 ≤α≤ T  (2-23)

 

where TTT αα−=αλ /)1()(4 .  Substitution of Eq. (2-23) into Eq. (2-19) and Eq. 

(2-21) leads to the following expressions, respectively. 
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Figure 2-3. BEF transfer functions for various levels of the target accuracy: (a) 

Log-log scale. (b) Detail in a linear scale 
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Figure 2-4. Accuracy functions for various levels of the target accuracy  
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The BEF transfer functions and the accuracy functions for various levels of 

target accuracy are drawn in Fig. 2-3 and Fig. 2-4, respectively, along with the ex-

act transfer function.  The BEF transfer function begins to decrease quickly below 

the target frequency while the exact transfer function keeps increasing as the fre-

quency approaches to zero.  For frequency ranges larger than the target frequency, 
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the BEF transfer function and the exact transfer function are almost identical re-

gardless of the target accuracy.  Therefore, the FDIA with the BEF transfer func-

tion is able to reconstruct the displacement components for 1~
≥f .  Meanwhile, 

the BEF transfer function suppresses the acceleration components below the target 

frequency, which are merely measurement noises, in the displacement reconstruc-

tion.  The degree of the noise suppression becomes stronger as the frequency ap-

proaches zero.  Higher target accuracy yields weaker noise-suppression capability 

of the BEF transfer function, and vice versa as shown in Fig. 2-3 and 2-4.  As an 

apparent trade-off between the accuracy at the target frequency and the noise-

suppression exists in the selection of the target accuracy, the optimal target accura-

cy depends on a specific problem.  For example, in case the noise level of meas-

ured accelerations is expected to be high, lower target accuracy may be adequate to 

provide strong noise suppression capability to the BEF transfer function.  The tar-

get accuracy of 0.97 is selected for all forthcoming discussions in this study. 
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3. Design of FIR FILTERS  

As acceleration is measured discretely by a uniform time interval Δt in actual 

situations as illustrated in Fig. 3-1, the reconstruction should be implemented in 

discretized form.  In the digital filter field, the discretized relationship between 

input acceleration and output displacement has a meaning of the digital filter.  In 

this chapter, the displacement reconstruction defined with the BEF problem in the 

previous section is designed by the finite impulse response (FIR) filter for the prac-

tical real-time or near real-time processing.   

The digital filters define the relationships between discrete input values and a 

discrete output values.  In the context of this thesis, the input values and output 

values refer to the measured accelerations and the reconstructed displacements, 

respectively.  From the filter theory, displacements could be reconstructed from 

measured accelerations using various types of digital filters. 

 

 

 

 

 

 

 

 

Figure 3-1. Definition of measured accelerations at discrete time steps 
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Among them, infinite impulse response (IIR) filters and FIR filters have been 

successfully applied in numerous fields [Kumer 1996, Boore 1997 and Smyth 

2007].  An IIR filter and an FIR filter are often referred to as a recursive filter and 

a non-recursive filter, respectively.  An IIR filter utilizes output values (displace-

ments) as well as input values (accelerations) to define output values while an FIR 

filter expresses output values in terms of input values only.  Unfortunately, how-

ever, it is difficult to reconstruct displacements from measured accelerations with 

the conventional digital filters for various reasons in low-frequency dominant 

structures. 

Numerical integration schemes in Eq. (2-2) are a type of IIR filter [Boore 

1997].  Namely, these time marching algorithms adopted in structural dynamics 

require the output of the previous steps to define the output of the present step.  

As mentioned in section 2.1.1 the IIR filters have several shortcomings when a dis-

placement is reconstructed from a measured accelerations.  First of all, initial 

conditions on velocity and displacement, which are usually unavailable in real situ-

ations, are required.  Moreover, low-frequency components in random noise are 

amplified in the IIR filters, and thus severely deteriorate the accuracy of the recon-

structed displacement [Rabiner 1975] as discussed in the previous chapter.  This 

undesirable effect becomes a critical issue in the displacement reconstruction for a 

low-frequency dominant structure.  In case noise-suppressing algorithms are in-

troduced in the IIR filters, nonlinear phase errors are inevitably included in the re-

constructed displacements [Bardella 2003, Boore 1997, Kumer 1996 and Smyth 
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2007].  Several remedies to overcome the drawbacks of the IIR filters with the 

time-marching algorithm have been proposed for the displacement reconstruction 

[Boore 1997, Chiu 1997, Iwan 1985 and Stephens].  However, since the remedies 

try to correct erroneous results obtained by the IIR filters with additional pieces of 

information on displacement or filtering operations, they are not completely free of 

the drawbacks of the IIR filters.  To date, a reliable IIR filter for the reconstruc-

tion of displacement with measured acceleration alone has rarely been reported. 

The FIR filters approximate displacement as a linear combination of measured 

accelerations.  The coefficients of the FIR filters are usually defined as the coeffi-

cients of the finite Fourier series of transfer functions in the frequency domain 

[Hamming 1989, Oppenheim 1999 and Rabiner 1975].  Due to the singularity of 

the exact transfer function in Eq. (2.8) at the zero frequency, the maximum flatness 

criterion, rather than the standard least square approach is employed to calculate 

the coefficients of the FIR filters [Kumar 1996].  The maximum flatness criterion 

yields inaccurate approximation of the transfer function in the low-frequency range 

[Kumar 1996], which is a critical drawback of the FIR filter for the displacement 

reconstruction in low-frequency dominant structures.  Moreover, as the order of 

the FIR filter is increased beyond a certain limit to improve the accuracy of the fil-

ter, the system matrix derived by the maximum flatness criterion tends to be singu-

lar. 
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3.1 FIR filter design and accuracy analysis 

In this section, the displacement reconstruction defined with the BEF problem 

in the previous section is designed to become filters using one frequency-domain 

theory and two time-domain theories.  These filters, which will be designed in this 

chapter, have a form of FIR filter consequently.  The general performances of 

three FIR filters are verified with the transfer function and the accuracy function 

presented in the previous section.  

 

3.1.1 Conventional FIR Filter 

A conventional finite impulse response (CFIR) filter based on the BEF trans-

fer function is designed in this section.  A CFIR filter approximates a given trans-

fer function in the frequency domain.  Fig. 3-2 illustrates the basic setups for the 

formulation of the CFIR filter.  In case accelerations are measured discretely by a 

uniform time increment, Δt, the CFIR filter expresses the displacement at the center 

of the time interval, 1+ku , as a linear combination (or a time convolution) of 

measured accelerations in a time window. 
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where c

pc  is the coefficient of the CFIR filter.  Here superscript ‘c’ implies ‘con-

ventional’. 
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Figure 3-2. A time window and measured accelerations for FIR filters 
 

The square of the time increment is introduced in Eq. (3-1) to make the coefficients 

of the CFIR filter dimensionless.   

The size of the time window is referred to as the filter size in the digital filter 

field.  Once the displacement is computed for time t, the time window moves for-

ward by Δt to reconstruct the displacement at t+Δt.  This procedure is identical to 

the overlapping time-window technique proposed by Park et al. [Park 2008] for the 

structural damage detection.  
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where )( fHC  is the transfer function of the CFIR filter, and i is the imaginary 

unit.  The transfer function of the CFIR filter is supposed to approximate the BEF 

transfer function given in Eq. (2-16). 
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Eq. (3-4) represents the truncated Fourier series of the BEF transfer function, 

and the coefficients of the CFIR filter are determined as following equation by the 

theory. 
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where tf s Δ= /1  denotes the sampling frequency of measurement. 

Since the BEF transfer function in Eq. (3-5), )( fH B , is an even function, the 

imaginary term inside the integration is zero by Euler’s identity and thus there is no 
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phase response in the CFIR filter.  
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where sTT fff /~

=  denotes the target frequency to the sampling frequency (TSF) 

ratio.  The coefficient of the CFIR filter approximating the exact transfer function 

cannot be evaluated like Eq. (3-6) due to the singularity at the zero frequency. 

The coefficients in Eq. (3-6) are always real and symmetric with respect to 

0=p , since the BEF transfer function is an even function in the frequency do-

main.  As the BEF transfer function decreases rapidly for larger f~ as shown in 

Fig. 2-3, the integral in Eq. (3-6) is nearly independent of the upper limit for a 

small TSF ratio of 1.0~
≤Tf , and thus becomes a function of Tfpp ~~ = .  Conse-

quently, the relation between Tkpkp fcc ~~
11 ++++ =  and p~  is TSF-ratio independent 

as shown in Fig. 3-3 (a).  The trapezoidal rule is employed to evaluate the integral.  

Although the number of terms included in the CFIR filter varies with filter sizes, 

the coefficients for the same p are always identical for all filter sizes at a fixed TSF 

ratio. 
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Figure 3-3. Coefficients of the CFIR filters for two different TSF ratios: (a) Small 

scale. (b) Detail in a large scale. 
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The Gibbs phenomenon, which is the rippling characteristics of a truncated 

Fourier series, occurs in the CFIR transfer function.  To reduce the rippling ampli-

tude, the filter size should be selected so that the coefficients smoothly converge to 

zero as p approaches to k [Rabiner 1975, Hamming 1989].  Therefore the last term 

of the CFIR filter should correspond to zero-crossing points, 0
~p , in Fig. 3-3.  

 

0
~~ pfk T =  or 

Tf
p

k ~
~

0=  (3-7)

 

When the calculated value for k with Eq. (3-7) is not an integer, the closest integer 

to the calculated k is employed.  The filter size is defined using k in Eq. (3-7) 
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where wd  and 0
~2 pNw =  are the filter size expressed in terms of time and the 

target period, respectively.  The target period denotes the reciprocal of the target 

frequency. 

The zero-crossing points appear periodically from 0.421 by a constant interval 

of 1.687 such as 0.421, 2.108, 3.794, etc in Fig. 3-3.  The filter sizes correspond-

ing to the three zero crossing points become 0.842, 4.215 and 7.588 times the target 

period. 

As the coefficient of the CFIR filter does not converge to zero near the first 
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zero-crossing point as shown in Fig. 3-3 (a), the filter size of 842.0=wN  yields 

a large rippling amplitude in the transfer function (it will be illustrated in later in 

this chapter), and is not an adequate size.  The filter sizes of =wN  4.215 and 

7.588 result in the acceptable rippling amplitudes in the transfer and accuracy func-

tions, and therefore are selected as the standard filter size and the long filter size, 

respectively.  The long filter size yields smaller rippling amplitude but requires 

more computational effort than the standard one.  The selection of the filter size 

between the standard and long filter size depends on specific applications.  Of 

course, a filter size longer than the long filter size may be utilized, but it is believed 

that the long filter size gives sufficiently accurate results in an engineering sense. 

Because of the symmetry of the coefficients, the transfer function of the pro-

posed CFIR filter has no phase differences and becomes as follows. 
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The normalized transfer function and accuracy function of the CFIR filter are 

derived as following equations:  
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where CH~  and acc
CH  are the normalized transfer function and accuracy function 

of the CFIR filter, respectively. 

The transfer functions of the CFIR filter are shown Fig. 3-4 for the standard 

and long filter sizes at the TSF ratio of 1/1000, while the transfer function for 

5=wN  is added to Fig 3-4 (a) to verify the rippling characteristic of the CFIR 

filter with other filter size.  The CFIR filters for both standard and long filter sizes 

approximate the BEF transfer function very well for 1~
≥f . 

As shown in Fig. 3-4 (a), the transfer function for 5=wN  oscillates severe-

ly, and tends to diverge as the frequency increases.  These severe oscillations in 

the transfer function are always observed for filter sizes other than the standard and 

long filter sizes.  The smaller filter size except the two filter sizes not only causes 

the larger oscillation amplitude, but also triggers the oscillation at the smaller fre-

quency.  The transfer function of the CFIR filter with the standard filter size de-

creases faster than that with the long filter size for 1.0~
≤f , and becomes negative 

when 043.0~
≤f .  The negative transfer function causes the phase error of π in 

the reconstructed displacement.  Since, however, only noise components exist in 

the frequency range, the negative transfer function would not cause any phase error 

for physically meaningful displacement components.   
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Figure 3-4. Transfer functions for the CFIR filters for various filter sizes: (a) Log-

log scale. (b) Detail in a linear scale. 
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Figure 3-5. Accuracy functions of the CFIR filter for the standard and the long fil-

ter sizes: (a) Small scale. (b) Detail in a large scale. 
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Figure 3-6. Accuracy functions of the CFIR filter for two different TSF ratios: (a) 

Small scale. (b) Detail in a large scale. 
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As shown in detailed graph with the linear scale in Fig. 3-4 (b), the transfer 

functions for the standard and long filter sizes converge to –0.079 and 0.004 at 

0~
=f , respectively.  This fact implies that the long filter size provides stronger 

noise suppression capability in the extremely low frequency range than the stand-

ard filter size to the CFIR filter.  

The Gibbs phenomenon is clearly observed in the plot of the accuracy func-

tion in Fig. 3-5.  The rippling amplitudes for the standard and long filter sizes are 

1.4% and 0.06%, respectively.  The rippling of the accuracy function is hardly 

noticeable for the long filter size even in the plot with a large scale in Fig. 3-5 (b). 

The accuracy functions for the standard filter size at two different TSF ratios 

of 1/1000 and 10/1000 are presented in Fig. 3-6, and are almost identical up to the 

corresponding Nyquist frequencies.  The enlarged plot of the accuracy functions 

near the target frequency is also presented in Fig. 3-6 (b).  This figure verifies the 

TSF ratio independence of the transfer function.  The rippling amplitude of the 

accuracy function for the TSF ratio of 10/1000 increases slightly near the Nyquist 

frequency.  The accuracy at the target frequency is evaluated as 0.984 for the both 

TSF ratios. 

The proposed CFIR filter exhibits uniform frequency responses from the tar-

get frequency to the Nyquist frequency, and is able to reconstruct displacement 

with the same level of accuracy independent of the TSF ratio for the frequency 

range.  Noise components below the target frequency are effectively suppressed in 

the CFIR filter.  The only restriction of the proposed CFIR filter is that the filter 
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size should be fixed at either the standard or long filter size, and cannot be adjusted 

freely as needed in actual applications. 

 

3.1.2 FDM-FIR filter 

The direct discretization of the minimization problem in Eq. (2-12) with the 

finite difference method leads to a new class of FIR filter, which is referred to as 

the FDM-FIR filter.  The FDM-FIR filter is formulated purely in the time domain 

unlike FDIA and CFIR in previous chapter, and is able to reconstruct displacement 

history. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-7. Definition of the displacements at discrete time steps and the fictitious 

nodes for FDM-FIR filter. 
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As the CFIR filter, the FDM-FIR filter reconstructs displacement using the moving 

time-window technique, the standard and long filter sizes defined for the CFIR fil-

ter in the previous section are adopted for the FDM-FIR filter. 

The first term of Eq. (2-12), )(uEΠ , is discretized by the trapezoidal rule 

with an odd number of time step, 2k+1, as shown in Fig. 3-7. 
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where 2k+1, pa , pa  and 
2

  ⋅ are the number of data points in period 

21 TtT ≤≤ , the calculated acceleration, the measured acceleration at the p-th time 

step and the 2-norm of a vector, respectively, while the bold-faced variables denote 

the corresponding vectors.  aL  is a diagonal weighting matrix of order (2k+1) 

with all diagonal entries of 1 except the first and last entry, which are equal to 

2/1 .  The calculated acceleration, pa , is discretized by the central finite dif-

ference of Eq. (2-12), which is the proper approximation of the second-order 

boundary value problems [Lapidus 1982]. 
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where pu is the displacement at the p-th time step as illustrated in Fig 3-7.  Eq. 
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(3-13) is rewritten in a matrix form for all time steps. 
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1  (3-14)

 

where cL and u denote the linear algebraic operator matrix of order 

)32()12( +×+ kk  and the vector of displacements at the discrete time steps, re-

spectively, and are defined as follows. 
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Substitution of Eq. (3-14) into Eq. (3-12) leads to the following discretized mini-

mization problem of Eq. (2-6). 
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where caLLL = .   

As discussed in Chapter 2, the minimization problem of Eq. (3-16) is unable 

to yield a unique displacement for given measured acceleration due to the rank-
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deficiency in linear algebraic operator, L . The rank-deficiency is caused by the 

fact that only )12( +k  finite difference equations are defined in Eq. (3-13) for 

)32( +k unknown displacement.  The two additional displacements at time step 0 

and )22( +k outside the time window are included in Eq. (3-15) to define the se-

cond-order central finite difference at the two boundaries as illustrated in Fig. 3-7.  

The time steps denoted by 0 and )22( +k  play the same role as fictitious nodes 

[Lapidus 1982], which are usually employed to solve partial differential equations 

by the finite difference method.  Should two boundary conditions be supplied to 

Eq. (3-16) as in well-posed boundary value problems, two additional equations are 

defined with boundary conditions, and the sufficient rank of (2k + 3) is provided to 

solve the minimization problem given in Eq. (3-16). 

Because of the fictitious nodes, the domain of regularization function should 

be extended to contain this outside displacement at the time steps 0 and )22( +k .  

Hence the original minimization problem should be changed by following equation. 
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By this extension of domain, the second term of Eq. (3-17), )(uRΠ , is dis-

cretized by the same procedure used in Eq. (3-12) with trapezoidal rule. 
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where uL  is a diagonal weighting matrix of order (2k+3) with all diagonal entries 

of 1 except the first and last entry, which are equal to 2/1 . 

Substitution of Eq. (3-16) and (3-18) into Eq. (3-17) leads to the following 

discretized minimization problem,  
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As the time increment is considered to be a constant in this study, the term on 

the time increment that appears outside the 2-norm has no effect on the solution of 

the minimization problem, and thus is omitted from the objective function in Eq. 

(3-19). 

The minimization problem in Eq. (3-19) forms a quadratic problem with re-

spect to the unknown displacement vector, and thus the solution of Eq. (3-19) is 

given analytically as  
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where u
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uu LLI =  is the near identity matrix of order )32( +k  with all diago-
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nal entries of 1 except the first and last entry, which are equal to 2/1 , and DC  is 

the coefficient matrix for the displacement reconstruction of order 

)12()32( +×+ kk .  Here superscript ‘D’ denotes the FDM-FIR filter. 

The displacement at the center of a time window is the )2( +k -th component 

of u vector, 1+ku , in Eq. (3-15).  Without the loss of generality, 1+ku  of a time 

window is considered as the reconstructed displacement at time t. 
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where Dc denotes the )2( +k -th row vector or the center row of the DC  matrix.  

The displacement reconstruction scheme defined in Eq. (3-21) represents an FIR 

filter that requires no initial condition.  

The FDM-FIR filter of Eq. (3-21) is formulated completely in the time-

domain rather than the frequency-domain.  The transfer function and the trans-

formations of measured accelerations to and/or from the frequency domain, which 

are required in the CFIR and FDIA, are not included at all in the whole reconstruc-

tion procedure of the proposed method. 

The FDM-FIR in Eq. (3-21) have the identical expression with the CFIR filter 

in Eq. (3-1) except for the coefficient array.  Hence, the only difference between 

the two filters is the method for determining the coefficients.  The transfer func-
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tion and accuracy function of the FDM-FIR filter in Eq. (3-21) are derived and 

normalized with the same method used in the CFIR filter as following equations. 
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where DH~  and acc
DH  are the normalized transfer function and accuracy function 

of the FDM-FIR filter, respectively. 

The coefficients of the FDM-FIR filter, D
kpc 1++ , for various window sizes are 

plotted against kp /  for the TSF ratio of 1/1000 in Fig. 3-8 together with those of 

the CFIR filter with the standard and long filter size.  The coefficients are sym-

metric with respect to 0=p  and converge smoothly to zero regardless of filter 

sizes dissimilar to the CFIR filter.  Therefore, as far as the rippling amplitude in 

the transfer function is concerned, the filter size can be selected freely as needed in 

specific problems.  The convergence to zero becomes smoother for a longer filter 

size than other smaller filter size, which yields the smaller rippling amplitude 

[Rabiner 1975 and Hamming 1989]. 

The imaginary parts of the displacement transfer function vanish due to the 

s1ymmetry of the coefficients, and thus no phase error occurs in the reconstructed 

displacement with the FDM-FIR filter like the CFIR filter.  The coefficients of the 
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FDM-FIR and the CFIR filter appear to be almost identical in the figure, and the 

differences in the coefficients between the two filters seem negligible.  However, 

the differences cause considerable effect on behaviors of the two filters. 

The transfer functions of the FDM-FIR filters with various filter sizes for the 

TSF ratio of 1/1000 are presented in Fig. 3-9.  The transfer functions appear al-

most identical above the target frequency regardless of the filter size in the figure, 

but the longer filter size the better approximation result of the BEF transfer func-

tion in the frequency region under target frequency.  The transfer function of the 

FDM-FIR filter approximates the BEF transfer function better than that of the 

CFIR filter shown in Fig. 3-4 below the target frequency for the same filter size.  

The severe oscillations in the transfer function of the CFIR filter found for 

5=wN  do not occur in the FDM-FIR at all.  The Gibbs phenomenon is clearly 

seen in the accuracy functions plotted for various filter sizes in Fig. 3-10 (a), and 

more precisely in Fig. 3-10 (b).   
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Figure 3-8. Coefficients of the FDM-FIR filter for various filter sizes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9. Transfer functions of the FDM-FIR filter for various filter sizes 
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Figure 3-10. Accuracy functions of the FDM-FIR filter for various filter sizes: (a) 
Small scale. (b) Detail in a large scale 
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Figure 3-11. Accuracy functions of the FDM-FIR filter with the standard filter size 
for two different TSF ratios: (a) Against the normalized frequency. (b) Against the 

frequency normalized to the sampling frequency. 
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The larger filter size yields the smaller rippling amplitude of the accuracy 

function, and virtually no rippling in the accuracy function is observed for filter 

sizes larger than 5=wN  as shown in Fig. 3-10 (b). 

Unlike the CFIR filter, the rippling amplitude damps out quickly for all filter 

sizes as the frequency increases.  The accuracy at the target frequency varies 

slightly with the filter size, which is caused by the rippling of the accuracy function.  

The standard and long filter sizes yield an accuracy of 0.98 and 0.97 at the target 

frequency, respectively.   

Fig. 3-11 (a) presents the accuracy functions of the FDM-FIR filters with the 

standard filter size for two different TSF ratios of 1/1000 and 10/1000.  In Fig. 3-

11 (b), the accuracy functions plotted against the frequency normalized to the sam-

pling frequency are also presented.  The FDM-FIR filter yields identical accuracy 

functions independent of the TSF ratios near the target frequency as shown in Fig. 

3-11 (a). Fig. 3-11 (b) reveals that the accuracy functions begin to deviate from the 

exact value 1 at 4% of the sampling rate, and become greater than 1.03, which 

means 3% amplitude amplification, after 12 % of the sampling rate regardless of 

TSF ratios.  The FDM-FIR filter yields less accurate transfer functions for high 

frequencies over sf1.0  than for frequencies near the target frequency.  Never-

theless, overall accuracy of the reconstructed displacement would not deteriorate 

much due to the aforementioned inaccuracy because the transfer function decreases 

rapidly in proportion to 2~/1 f , and the contribution of high frequency contents in 
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measured acceleration to the reconstructed displacement becomes negligible.  To 

ensure the accuracy of the reconstructed displacement, all dominant frequencies in 

measured accelerations should be smaller than sf1.0 .  The frequency range to 

achieve the accuracy level of 0.97, which means 3% error in amplitude, is given as 

sT fff 1.0≤≤ . 

 

3.1.3 FEM-FIR filter 

The discretization of the variation statement in Eq. (2-14) with the finite ele-

ment method yields a FIR filter, which is referred to as the FEM-FIR filter (FFIR 

filter).  Like the FDM-FIR filter in section 3.1.2, the FFIR filter is also formulated 

purely in the time domain for the purpose of the displacement reconstruction; it is 

able to reconstruct velocity as well as displacement at the same time.  The FDM-

FIR filter proposed in the previous section can successively reconstruct displace-

ment history from measured acceleration, but the reconstruction of velocity is not 

considered. 

The FFIR filter reconstructs displacement and velocity using the moving time-

window technique as like other FIR filters in previous chapter.  Even though the 

FFIR filter has no limitation about the filter size similar with the FDM-FIR filter, 

the standard and long filter sizes defined for the CFIR filter are also adopted for the 

FFIR filter for proper comparisons.  Eq. (2-14) is discretized in time with 2k ele-

ments representing the time increments. 
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Figure 3-12. Finite element model for the FFIR filter 
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Here, eu  and ea  denote the displacement and acceleration in element, e, respec-

tively.  The displacement is interpolated with the Hermitian shape function, NH, 

and the measured acceleration is interpolated with the linear shape function, NL, in 

an element [Hughes 1987]. 

 
e

H
eu uN ⋅= ,  e

L
ea aN ⋅=  (3-25)

 

where ue and ea  are the nodal unknown vector and measured nodal acceleration 

in element e, respectively, and are defined as follows. 
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Teeeee vuvu ),,,( 2211=u ,  Teee aa ),( 21=a  (3-26)
 

where e
1)(⋅  and e

2)(⋅  indicate nodal unknowns at the left and the right node of 

element e, respectively, and v is the velocity.  The definitions of the nodal varia-

bles are illustrated in Fig. 3-12.  Notice that the measured acceleration may be 

modeled as a constant in an element by averaging the two nodal accelerations if 

necessary. 

The standard FEM formulation for a beam on an elastic foundation [Hetenyi 

1946] is adopted to derive the following matrix expression of Eq. (3-24). 

 
aQuMK 242 )())(( tt Δ=Δβ+  (3-27)

 

where u and a  denote the nodal unknown vector and the measured acceleration 

vector associated with all sampling points of measurement.  The nodal unknown 

vector consists of the nodal displacements and the nodal velocities.  The matrixes 

in Eq. (3-27) are defined as 
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where ∑
e

is the assembly operator of the FEM, and ξ is the natural coordinate 

[Hughes 1987] for the time variable ranging from 0 to 1.  The nodal unknown 

vector is obtained by solving Eq. (3-28). 
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aCaQMKu Fttt 21422 )())(()( Δ=Δβ+Δ= −  (3-29)

 

where FC  is the coefficient matrix of order )12()12(2 +×+ kk .  Here, super-

script ‘F’ denotes the FFIR-filter. 

Since the Neumann type boundary conditions are enforced in a weak sense for 

Eq. (3-24), the reconstructed variables are inevitably affected by errors in the 

boundary conditions.  However, the errors rapidly decrease inside of the domain 

away from the boundary due to the diffusive characteristics of the FEM for elliptic 

boundary value problems.  The displacement and velocity at the center of a time 

window are least affected by the errors induced by the weak enforcement of the 

boundary conditions, and are taken as the reconstructed solution in a time window.  

Assuming the time step at the center of a time window represents time t as in the 

CFIR and FDM-filter, the reconstructed displacement is expressed as  
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where 
Fc  denotes the )12( +k -th row of the FC  matrix.  As shown in Eq. (3-

30), not only FDM-FIR filter and CFIR filter but also FFIR filter has the identical 

expression.  The transfer function and accuracy function of the FFIR filter in Eq. 

(3-30) are derived and normalized with the same method used in the CFIR filter as 
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following equations. 
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where FH~  and acc
FH  are the normalized transfer function and accuracy function 

of the FFIR filter, respectively. 

Since the coefficients of the FFIR filter and the transfer function and accuracy 

function of it are nearly identical to the results of FDM-FIR filter, the detailed dis-

cussion is omitted and substituted by the Fig. 3-13~3-16.  The frequency range to 

achieve the accuracy level of 0.97 is given as sT fff 1.0≤≤  by Fig 3-16 (b). 

The velocity at the center of a time window is reconstructed using the (2k+2)-

th row of the coefficient matrix in Eq. (3-30). 
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where F
kpk

F
kp tCc 1,221ˆ +++++ Δ= .  The coefficients for the velocity reconstruction 

are shown in Fig. 3-17 for various filter sizes at the TSF ratio of 1/1000, and al-

ways maintain anti-symmetry with respect to 0=p .  The anti-symmetry of the 

coefficients is also held for different TSF ratios because the compositions of the 

system matrices in Eq. (3-28) are independent of the TSF ratios. 
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Figure 3-13. Coefficients of the FFIR filter for various filter sizes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-14. Transfer functions of the FFIR filter for various filter sizes
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Figure 3-15. Accuracy functions of the FFIR filter for various filter sizes: (a) Small 
scale. (b) Detail in a large scale 
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Figure 3-16. Accuracy functions of the FFIR filter with the standard filter size for 
two different TSF ratios: (a) Against the normalized frequency. (b) Against the fre-

quency normalized to the sampling frequency. 
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  The velocity transfer function of the FFIR filter is obtained by applying the Fou-

rier transformation of Eq. (3-33).  All real parts of the velocity transfer function 

vanish due to the anti-symmetry of the coefficients. 
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where FV  is the velocity transfer function of the FFIR.  As the exact transfer 

function for velocity is ωi/1 , the normalized transfer function FV~  and the accu-

racy function acc
FV  of velocity are defined as follows. 

 

)~~2sin(ˆ2~2
/1

)(
)~(~

1
1∑

=
++ ππ−=

ω
=

k

p
T

F
kpT

T

F
F ffpcf

i
fV

fV  (3-35)

 

)~~2sin(ˆ2~~2
/1

)(
)~(

1
1∑

=
++ ππ−=

ω
=

k

p
T

F
kpT

Facc
F ffpcff

i
fV

fV  (3-36)

 

The accuracy function of velocity is presented in Fig. 3-17 for two TSF ratios.  

As in the displacement reconstruction, most of the frequency contents smaller than 

the target frequency in measured accelerations are suppressed in the velocity recon-

struction.  The accuracy of the velocity reconstruction reaches 0.982 at the target 

frequency, and 0.97 at sf1.0 .  The accuracy decreases rapidly after sf1.0 , and 

becomes zero at the Nyquist frequency. 
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Figure 3-17. Coefficients of the velocity FFIR filter for various filter sizes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-18. Velocity accuracy functions of the FFIR filter for various TSF ratios 
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An advantage of the FDM-FIR filter and FFIR filter over the CFIR filter is 

that the filter size can be flexibly selected as needed in actual applications.  For 

example, a filter size shorter than the standard filter size may be employed to re-

duce computational effort for the real-time or near real-time reconstruction of dis-

placement and/or velocity.  However, shorter filter sizes lead to a less accurate 

transfer function at the target frequency and a larger rippling magnitude of the ac-

curacy function. 
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3.2 Numerical and Experimental Verification for the FIR filters 

The validity of the proposed FIR filters is demonstrated through a numerical 

simulation study, two laboratory experiments in different scales and a field test of a 

real railway bridge.  The numerical study is presented to compare results by the 

proposed method with exact solutions quantitatively.  Displacements as well as 

accelerations are measured in all cases, and the reconstructed displacements are 

compared with measured displacements.  The fast Fourier transform (FFT) is uti-

lized for the DFT.  All calculations for the results presented here are performed 

after the completion of actual measurements.  The instant when the displacement 

reconstruction begins is set to 0=t  throughout all the examples.  The standard 

and long window sizes defined for CFIR filter are adopted for the filter size and 

0.97 is used for the target accuracy.  The results by the FDIA based on the BEF 

transfer function are also presented.  For the real-time or near real-time processing, 

the overlapping time window technique, which is employed for FIR filters, is used 

for the FDIA. 

As demonstrated in previous section with the transfer function and accuracy 

function of the FDM-FIR filter has nearly identical performance with the FFIR fil-

ter for the displacement reconstruction.  Hence the results of the displacement 

reconstruction by the FDM-FIR filter are omitted in the forthcoming examples. 

 

3.2.1 Numerical Simulation Study 

The accelerations at the center of a simple beam with the span length of 40m 
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are measured.  The excitation force is applied at the location 12m right of the left 

support of the beam, and is defined as follows. 

 
tttt π+π+π=Φ 56sin3.2931sin9.354.15sin9.8)(  (3-37)

 

The forcing function given in Eq. (3-37) generates the maximum displacement of 

1mm at the center of the beam during the force vibration.  The free vibration of 

the beam is introduced by withdrawing the excitation force at 6 second.  To obtain 

measured accelerations and displacements at the center of the beam, the dynamic 

analysis of the beam is performed by the finite element method using 10 elements 

with the Hermitian shape function [Hughes 1987].  The fundamental frequency of 

the beam is found as 6.22 Hz, and the frequencies of the excitation force are 7.70 

Hz, 15.50 Hz and 28.00 Hz.   

 

 

 

 

 

 

 
 

Figure 3-19. A simply supported beam for the numerical simulation study 
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The excitation force is withdrawn after 6 seconds to induce the free vibration of the 

beam.  The Rayleigh damping model is adopted for the structural damping of the 

beam.  The coefficients of the damping model are determined so that the modal 

damping ratios of the first and second mode are equal to 0.1%.  The Newmark’s 

method is employed for the dynamic analysis with a time increment of 0.001 se-

cond.  Accelerations and displacements are measured at the sampling frequency 

of 1000 Hz. 

The result of the FFT with the calculated accelerations is shown in Fig. 3-20, 

in which the normalization with respect to the maximum value is employed.  Four 

dominant frequencies are identified at 6.17 Hz, 7.67 Hz, 15.5 Hz and 28.0 Hz.  

 
 
 

 

 

 

 

 

 
 

 
 
 
 
 
 

Figure 3-20. FFT of measured accelerations for the numerical simulation study 
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The lowest dominant frequency corresponds to the fundamental frequency of 

the beam, and the other three frequencies are the forcing frequencies.  The minor 

peak at 24.80 Hz is the second natural frequency of the beam.  The differences 

between the actual frequencies and identified frequencies are caused by the trunca-

tion and discretization errors that occur during the FFT. 

From the lowest dominant frequency of the FFT result in the figure 3-20, 

6.17Hz is selected for the target frequency of the reconstruction and 0.97 is used 

for the target accuracy.  The standard and long window sizes corresponding to the 

target frequency are 0.684 second and 1.230 second, respectively 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

Figure 3-21. Exact displacement for the numerical simulation study 
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Figure 3-22. Details of the reconstructed displacement by FDIA with noise-free 

data : (a) During the forced vibration. (b) During the free vibration. 
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Fig. 3-21 shows the exact displacement from 5 to 8 seconds.  Since it is hard-

ly to figure out the differences between reconstructed displacement and exact dis-

placement in large scaled graph in Fig. 3-21, the details at the two peaks marked 

with circles in Fig. 3-21 are presented in following discussion for more accurate 

comparisons.  Not only FDIA but also CFIR and FFIR yield almost same accura-

cy in the result of reconstruction, therefore the large scale graphs are skipped and 

just the details are illustrated hereafter. 

Fig. 3-22 (a) and (b) show the details of the displacement reconstruction by 

FDIA during the forced vibration and free vibration for different window sizes to-

gether with the exact displacement, respectively.  The overlapping window tech-

nique is employed for standard and long time-window sizes for the FDIA, and the 

FDIA with whole acceleration measurement without time window technique is 

tested for comparison.  

The FDIA using the long window size yields almost same result with the 

FDIA without time window.  It means that the long filter size is long enough to 

ignore the errors caused by the truncation and discretization of DFT which is dis-

cussed in section 2.1.2.  The amplitudes of the reconstructed displacements by 

FDIA are slightly smaller than the exact displacement.  Theoretically, if the input 

acceleration is single frequency component which only contains the target frequen-

cy component, the accuracy of reconstructed displacement should be 0.97 because 

the target accuracy is fixed to 0.97.  However, in forced vibration region the dy-

namic responses contain multiple frequency components, the target accuracy not 
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hold for other frequency components except for the target frequency component. 

This is more clearly seen in free vibration which contains nearly single domi-

nant frequency component.  The details of reconstructed displacements by the 

FDIA during the free vibration are drawn in Fig. 3-22 (b) for the standard window 

size and the long window size.  As expected by previous discussion, the recon-

structed displacement by FDIA with the long window size and without time win-

dow yield around 3 % error at the peaks, while the standard window size 

reconstructs slightly greater result at the peaks than other reconstructed displace-

ment.  No phase error is found in both the forced vibration and the free vibration.  

The FDIA reconstructs displacement by applying the inverse Fourier trans-

form to the Fourier transform of measured accelerations multiplied by the BEF 

transfer function.  Though he FDIA yields very accurate result for the reconstruc-

tion but it requires a rather large computational effort, and may be inadequate for 

real-time or near real-time processing because the Fourier transform and the in-

verse Fourier transform should be performed for every reconstruction step. 

The details of the reconstructed displacements by CFIR and FFIR are present-

ed in Fig. 3-23 with the standard and long filter sizes, and compared with the exact 

displacement.  No phase error is found in the reconstructed displacement by both 

filters.  The reconstruction errors at the peak shown in Fig. 3-23 (a) by the FFIR 

filter for the standard and long filter sizes are evaluated as 0.8 % and 0.6%, respec-

tively, and those by the CFIR filter for the two filter sizes as 1.3% and 0.5%, re-

spectively.
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Figure 3-23. Details of the reconstructed displacement by CFIR and FFIR filter 
with noise-free data : (a) During the forced vibration. (b) During the free vibration. 

0.45

0.46

0.47

0.48

0.49

0.50

0.51

5.146 5.148 5.150 5.152 5.154 5.156

FFIR  with standard window size
FFIR  with long window size
CFIR with standard window size
CFIR with long window size
Exact displacement

D
is

pl
ac

em
en

t (
m

m
)

Time(sec)

a 

0.22

0.23

0.24

0.25

0.26

7.54 7.55 7.56 7.57

FFIR  with standard window size
FFIR  with long window size
CFIR with standard window size
CFIR with long window size
Exact displacement

D
is

pl
ac

em
en

t (
m

m
)

Time(sec)

b 



 

 

 

79

The FFIR filter yields 1.8% and 2.9 % error for the standard and long filter sizes at 

the peak shown in Fig. 3-23 (b), respectively, and the CFIR filter yields 1.6% and 

3.0 % errors for the two filter sizes.   

The accuracy of the reconstructed displacement by the CIFR and FFIR filters 

at the peak shown in Fig. 3-23 (b) almost coincides with the accuracy of the BEF 

transfer functions corresponding to the filter sizes at the target frequency.  This is 

because the displacement components corresponding to the excitation frequencies 

have damped out, and only the displacement component corresponding to the fun-

damental frequency of the beam remains around the second peak.   

To investigate the effect of noise on reconstruction results, displacement is re-

constructed from noise-polluted accelerations and plotted in Fig. 3-24 together with 

those from noise-free accelerations.  The noise-polluted accelerations are simulat-

ed by adding 5% random proportional noise generated with the uniform probability 

function to the accelerations calculated by the finite element analysis.  The root 

mean square (RMS) errors in the measured accelerations and the displacement re-

constructed by the proposed FIR filter with the standard filter size are shown in Tab. 

3-1.  The 5% random proportional noise causes around 2.90 % RMS errors in the 

accelerations.  The RMS errors in the reconstructed displacements are around 4% 

for the forced vibration, and less than 2% for the free vibration, which demon-

strates the robustness of the proposed filters against noise.  The reconstructed ve-

locity from the noise-free accelerations is shown in Fig. 3-25.  Only the 

reconstruction results obtained by the FFIR filter with the standard filter size are 
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presented because differences between those with the long filter size and standard 

filter size are hardly noticeable for the scale of the figure.  Although the details of 

the reconstructed velocity are not shown, the FFIR filter reconstructs the velocity at 

the same level of accuracy as the displacement. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3-24. Effect of measurement noise on reconstructed displacement during the 

forced vibration with the standard filter size.
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Figure 3-25. Reconstructed velocity by the FFIR filter with noise-free data 
 
 
 
 
 
 
Table 3-1. RMS errors in measured accelerations and reconstructed displacements 
of example 1 

Type of vibration 

Acceleration 
Reconstructed 

displacement(FFIR) 

Reconstructed 

displacement(CFIR) 

Noise free 5% Noise Noise free 5% Noise Noise free 5% Noise  

Forced vibration 0.00 % 2.90 % 1.73 % 3.98 % 1.79 % 4.02 % 

Free vibration 0.00 % 2.85 % 1.75 % 1.93 % 1.51 % 1.72 % 
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3.2.2 A Cantilever Beam subject to Base Motions 

This experimental example is presented for the purpose of verification of the 

proposed method in the small scale laboratory setting, in which the measurement 

noise is relatively small but multiple frequency contents are contained in the dy-

namic responses.  The displacement is also reconstructed by the FDIA and CFIR 

method but omitted for the simplicity of the presentation.  

One end of a small steel beam of 32.9cm×7.1cm×0.12cm is mounted on a vi-

bration exciter to form a cantilever beam.  The vibration of the beam is induced 

by base motions generated by the exciter.  The overall setup for this experiment is 

illustrated in Fig. 3-26.  

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 

Figure 3-26. Experimental setup for the cantilever beam subject to base motions 
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Figure 3-27. FFT with measured accelerations of the cantilever beam subject to 
dual frequency base motions 

 

 

 

 

 

 

 

 
 

 
 
 
 
Figure 3-28. Reconstructed displacement of the cantilever beam subject to the dual 

frequency base motions 
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The acceleration and displacement are measured at the free end of the beam at 

a sampling rate of 200Hz.  The displacement is measured at the identical location 

of the accelerometer by a laser displacement transducer.  The model is excited by 

the base motion with dual frequency contents of 6Hz and 8Hz.  The dominant 

fundamental frequency is about 10Hz identified from the random excitation. 

The results of the FFT with the measured accelerations are shown in Fig. 3-27.  

Three dominant frequencies of 6 Hz, 8 Hz and 9.96 Hz are identified.  The first 

two frequencies are the excitation frequencies, and the third minor frequency is the 

fundamental frequency of the cantilever beam.  From the result of FFT the lowest 

frequency, 6 Hz, are selected for the target frequency of dual frequency base mo-

tion test and the standard filter size is used for the FFIR filter.   

The reconstructed displacements by FFIR filter with standard window size are 

compared with the measured displacements in Fig. 3-28.  In the figures, the phas-

es and the amplitude of the vibrations are reconstructed accurately and the general 

history of the reconstructed displacement agrees well with that of the measured 

displacement in the overall sense. 

 

3.2.3 Forced Vibration of a Stay Cable 

 
A forced vibration test of a stay cable was performed at Structural Laboratory 

of Hyundai Institute of Construction, Kyungki-do, Korea.  The material properties 

of the stay cable are given in Table 3-2, and experimental setups, the geometry and 
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the boundary conditions of the cable are shown in Fig. 3-29.  Tension of approxi-

mately 300 kN is applied to the cable, and the fundamental frequency is calculated 

about as 1.5Hz.  The forced vibration of the cable is introduced with the cable 

exciter developed by Hyundai Institute of Construction at the center of the cable.  

The exciter generates vertical exciting forces by two rotating masses in the oppo-

site direction.  The total mass of the exciter and the rotating mass are 14.58 kg and 

0.46 kg, respectively.  The cable is excited by its fundamental frequency, i.e. 

1.5Hz to induce the resonance of the cable for 40 sec.  An accelerometer is in-

stalled at the center of the stay cable and the vertical acceleration is measured at the 

sampling rate of 100 Hz.  A linear variable differential transformer (LVDT) is in-

stalled at 20cm away from the accelerometer to avoid interference between the ex-

citer and the LVDT.  The LVDT measures vertical displacement at the same 

sampling rate as the accelerometer.  The FFT of the measured acceleration yields 

the dominant frequency of 1.48 Hz, which is slightly smaller than the excitation 

frequency.  The standard window size is used for the displacement reconstruction 

with the FFIR filter.  

 

Table 3-2. Material properties of the stay cable 
Young’s Modulus

(KN/mm2) 

Area 

 (mm2) 

Weight 

(N/m) 

Fundamental 

Frequency (Hz)

Unstrained length  

(L0) (m) 

Sag  

Ratio 

200 2.348 199.075 1.52 44.304 1/310.8 
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Figure 3-29. Forced vibration experiment of a stay cable: (a) Experimental setup. 
(b) Dimensions and the boundary condition of a stay cable 
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The reconstructed results are shown in Fig. 3-20 for the two periods around 

the beginning of the excitation and the end of the excitation. In the figure, the re-

constructed displacement agrees with the measured displacement from the LVDT 

well except for a small, constant phase difference.  It is believed that the phase 

difference is caused by the difference in positions between the accelerometer and 

the LVDT.  In Fig. 3-30 (a), the displacement reconstructed by the Newmark’s 

method is drawn together with the others.  The Newmark’s method yields diverg-

ing displacement after 2 sec even though the exact initial conditions are specified. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3-30. The reconstructed displacement of the stay cable by FFIR filter with 
strandard window size : (a) Near the beginning of the excitation. (b) Near the end 

of the excitation 
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Figure 3-31. Measurement of the simply-supported span of in a KTX railway 
bridge: (a) Installation of sensors. (b) Typical section and location of sensors. (c) 
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3.2.4 Field Test on a Simply supported Railway Bridge under a Moving Train 

The acceleration and the displacement are measured at the center of a 40m 

simply-supported span of a railway bridge on the Gyeongbu line of the Korea Train 

Express (KTX).  The measurement is taken at a sampling frequency of 1,000 Hz 

while an actual train passes the bridge during commercial operation. A linear varia-

ble differential transformer (LVDT) is used to measure displacement.  The overall 

instrumentation for the measurement, a typical cross-section and the measurement 

location are illustrated in Fig. 3-31.  The experiment is conducted by Steel Struc-

ture Research Laboratory of Research Institute of Industrial Science and Technolo-

gy, Kyungki-do, Korea.  Three dominant frequencies of the bridge are found at 

2.86 Hz 3.86 Hz and 5.79 Hz by the FFT of the measured accelerations.  The first 

dominant frequency corresponds to the excitation frequency of the moving train, 

and the second one is the first natural frequency of the bridge.  The standard win-

dow size is used for the displacement reconstruction with the CFIR and FFIR filter. 

Unlike the previous examples, the pseudo-static displacement is included in 

the measured displacement due to the moving train.  Here, the pseudo-static dis-

placement denotes the displacement obtained by neglecting the dynamic effect of 

the moving train on the bridge.  Because the pseudo-static displacement has noth-

ing to do with the measured acceleration, the purely dynamic displacement can be 

reconstructed by the proposed method.  Therefore, to compare the reconstructed 

displacement by the proposed method to the measured displacement, the pseudo-

static component in measured displacement should be eliminated.  As the bridge 
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vibrates around the pseudo-static displacement, the moving average of the meas-

ured displacement [Montgomery 2005] over the longest dominant period is consid-

ered to be the pseudo-static displacement, and the dynamic displacement is 

estimated as follows. 

 

∫
+

−

ττ−=
2/

2/

)(1)()(
Tt

Tt
mmd du

T
tutu  (3-38)

 

where )(tud , )(tum  and T are the extracted dynamic displacement, the meas-

ured displacement at time t and the longest period, respectively.  The integral term 

in Eq. (3-38), which is evaluated by the trapezoidal rule, represents the estimated 

pseudo-static displacement.  The numerically integrated extraction scheme forms 

a FIR filter as well.  As like to the displacement reconstruction scheme, the trans-

fer function of this FIR filter is derived by applying the Fourier transform to the 

numerically integrated expression of Eq. (3-38).  The transfer function of the dy-

namic displacement extraction reveals the accuracy of the extracted dynamic dis-

placements in the frequency domain compared to the measured displacements.  

The transfer function of this extraction is shown in Fig. 3-32, and its values at the 

three dominant frequencies are found as 1.001, 1.210 and 0.987 in the ascending 

order of the frequencies.  The dynamic displacements corresponding to the first 

and third dominant frequency are extracted accurately, but those corresponding to 

the second dominant frequency are overestimated by 21% during the extraction. 
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Figure 3-32. Transfer function of the dynamic displacement extraction scheme 

The measured displacement and the estimated pseudo-static displacement are pre-

sented in Fig. 3-33.  As formulated, the measured displacement oscillates around 

the pseudo-static displacement.  The difference between the two displacements 

becomes the extracted dynamic displacement.  Fig. 3-34 compares the extracted 

dynamic displacement with the reconstructed displacement using the FFIR, and Fig. 

3-35 shows the details of Fig. 3-34 during the period when the train is completely 

on the span.  The train enters the bridge at 0.5 seconds, begins to exit the bridge 

from 7.7 seconds and completely leaves the bridge at 8.4 seconds.  The aforemen-

tioned instants are not measured values but estimated ones based on the measured 

displacements in Fig 3-34. 
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Figure 3-33. Measured and pseudo static displacement of the simply-supported  
railway bridge 

 
 

 

 

 

 

 
 

 
 
 
 
 
 
 

Figure 3-34. Reconstructed and extracted dynamic displacement of the simply-
supported railway bridge with standard filter size 
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Figure 3-35. Details of reconstructed and extracted dynamic displacement 
 

Figure 3-34 shows the extracted dynamic displacement by Eq. (3-38) and the 

reconstructed displacement by the FFIR filter.  Results by the CFIR appear to be 

almost identical to those of the FFIR filter, and are not presented in the figure.  

When the train is on the bridge, the forced vibration is dominant.  After the train 

leaves the bridge, the free vibration governs the responses of the bridge.  The 

maximum differences between the reconstructed and extracted dynamic displace-

ment at peaks are found as about 10% during the forced vibration, and those during 

the free vibration as about 25%.  The details of reconstructed displacements by 

the CFIR filter, FFIR filter and the FDM-FIR filter are compared with the extracted 

dynamic displacement in Fig. 3-35.  The three FIR filters yield almost identical 

results, and no noticeable difference is found in either the amplitude or the phase. 
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The discrepancies between the extracted and reconstructed displacements are 

strongly caused by the dynamic displacement extraction scheme in Eq. (3-38).  As 

illustrated above, the displacement component corresponding to the second domi-

nant frequency is overestimated by 21% during the extraction.  Since the accuracy 

bound of the proposed filter is set to be 3% with the target accuracy of 0.97, the 

discrepancy of 25% in the free-vibration region is in an acceptable range regarding 

to 21% error of the dynamic displacement extraction scheme.  Hence, the recon-

structed displacements represent actual dynamic displacements better than the ex-

tracted displacements. 
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4. Special Application of the Reconstruction for the Iden-

tification of Flutter Derivatives. 

 

The flutter derivatives identified from wind tunnel tests are indispensable pa-

rameters for the analyses of dynamic behaviors of long-span bridges induced by 

wind.  The interaction between a fluid flow and an embedded elastic structure is 

extremely complex especially for the bluff body section.  Different response 

modes and flow phenomena exist depending on the flow characteristics, the body 

geometry and the structural properties like stiffness and damping.  This poses a 

particular challenge to the development of analytical and numerical models and 

renders experimental methods still the most reliable tool. 

The mutual influence of structural dynamics and fluid flow in regions of mov-

ing boundaries makes this particularly challenging and the corresponding subject is 

termed aeroelasticity.  The aero-dynamic force acts as an outer force for the struc-

tural system, and the motion of structure recursively influence to boundary condi-

tions of the aero-dynamic force.  This moving boundary problem has several non-

linearity regard to the amplitude, the vibrational mode shape and etc. [Falco 1992, 

Matsumoto 1993 and Morgenthal 2000] caused by the interaction and the flutter 

derivatives should be determined by proper experimental procedures which can 

consider this nonlinear effect of the original problem. 

Although the aeroelastic system is nonlinear, the flutter analysis and the iden-
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tification of the flutter derivatives are commonly based on the assumption of linear 

elastic system behavior [Simiu 1996].  A popular set of expressions for the aero-

dynamic forces on a cross section in motion is the one proposed for bridge deck 

analysis by Scanlan and Tomko (1971), which is based on the assumption that the 

self-excited lift and moment on an elastic section model are treated as linear in the 

structural vertical and rotational displacement and their first derivatives. 

The flutter derivatives can be identified with different experimental proce-

dures from an idealized 2-DOF section model, i.e. forced-vibration test and free-

vibration test.  The most widely adopted technique is the free-vibration method.  

The original concept of the flutter derivatives was proposed by Scanlan and Tomko 

(1971) with a primitive experimental procedure consisted of three separate wind 

tunnel tests; two 1-DOF free-vibration tests for the vertical and the rotational direc-

tions, and one single frequency free-vibration 2-DOF test.  To circumvent com-

plexity of the experimental procedure proposed by Scanlan and Tomko (1971), a 

great deal of effort has been made for decades to identify all the flutter derivatives 

from a single 2-DOF free-oscillation test [Bartoli 2009, Chen 2004, Chowdhury 

2003, Gu 2000, Iwamoto 1995, Li 2003, Matsumoto 1993, Sarkar 1992 and Sarkar 

1994].  In these procedures, a 2-DOF section model is elastically suspended in a 

given initial condition and suddenly released from the imposed initial position, and 

then the flutter derivatives are extracted from the history of the free-decaying mo-

tions in vertical and rotational direction.  Although free-vibration technique re-

quires relatively complicated procedure to identify the flutter derivatives and need 
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additional assumption because of the uncertainty of frequency similarity, but it is 

appealing for the simple setup and the possibility for the realization of interaction 

between the structure and the wind. 

A more reliable procedure is forced-vibration method [Diana 2004, Falco 

1992, Kim 2007 and Matsumoto 1993] in the sense of the law of similarity.  Alt-

hough this method requires a sophisticated driving instrument, it yields the steady 

state response in a single frequency, which exactly coincides with the fundamental 

assumption of the aero-dynamic force proposed by Scanlan and Tomko (1971).  

The forced-vibration test can be controlled by two different methods, a displace-

ment-control technique and a force-control technique.   

Generally, the forced-vibration test is conducted by imposing a sinusoidal dis-

placement to the section model without the elastic suspension of the springs, name-

ly by the displacement-control method.  However, if the body is controlled to 

oscillate in a prescribed motion, the nonlinearity of the original aeroelastic system 

may be not fully considered in the experimental procedure because of the prede-

fined boundary condition.  On the other hand, the force-control method dose not 

imposes the motion itself, but just excites the section model with an outer force to 

yield a steady state motion after the end of full interaction. 

As the selection of the experimental procedure, different numerical algorithms 

are employed for the extraction of the flutter derivatives.  Numerous SI algo-

rithms used for the free-vibration technique is inappropriate for the steady state 

response of the forced-vibration test and vice versa.  As far as the author knows of, 
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the general algorithm that can be employed for extraction of flutter derivatives re-

gardless of the testing procedures has not been proposed yet.  Moreover the state 

variables such as the displacement, velocity and acceleration are not fully measured 

in the experimental procedures, i.e. the displacement is the only kind of the meas-

ured data.  By the absence of full measurement of the state variables, the SI algo-

rithm, which is based on the output error estimation (OEE) [Hjelmstad 1995] with 

the state-space model, is inevitable for the extraction of the flutter derivatives in the 

free-vibration test. In the OEE scheme, if the analytic solution is nonlinear with 

respect to the unknown system parameters, it can not yield a quadratic minimiza-

tion problem; hence it requires a complicated sensitivity analysis or a complex eig-

en-value analysis to identify the unknown system parameters. 

This thesis proposes a new approach to identify the flutter derivatives by min-

imizing an equation error estimator (EEE) [Hjelmstad 1995] which is defined as 

the least-square errors between structural resistance forces and aeroelastic forces 

induced by wind.  Dissimilar to the other SI algorithm, the proposed method can 

successfully employed for the identification of flutter derivatives regardless of the 

experimental procedure and do not require any complicated sensitivity analysis or 

complex eigen-value analysis to identify the unknown system parameters. 

The EEE requires complete information on the state variables at all time steps.  

In the proposed method, accelerations of a section model are measured with accel-

erometers in wind tunnel tests while the velocities and displacements correspond-

ing to the measured accelerations are reconstructed by the FFIR filter in chapter 3.  
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Hence, the EEE method in this thesis is solely based on the measured acceleration.  

Measurement of acceleration has certain advantages over measurement of dis-

placement in various engineering applications.  The most distinctive advantage in 

the measurement of acceleration over that of displacement is that acceleration is 

measured without any fixed reference point, which opens a possibility to identify 

flutter derivatives of real long-span bridges in service.  Moreover, various types of 

accelerometers are commercially available at relatively low costs.  

The validity of the proposed method in the free-vibration test is demonstrated 

for two types of bridge sections; a thin rectangular section and a bluff H-type sec-

tion.  The former section represents a streamlined section used in relatively long-

span bridges, and the latter simulates a slab-on-stringer type section often applied 

to medium-span cable-stayed bridges.  It is shown that the flutter derivatives iden-

tified by the proposed method agree well with those by the MITD method and/or 

those by the Theodorsen function [Simiu 1996].  The forced-vibration tests are 

not implemented yet in our wind tunnel, but by the virtue of the analytic solution of 

the force-control test proposed by Jung et al. (2011) the validity of the proposed 

method to the force-control test is verified by the numerically simulated example. 
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4.1 System identification with OEE and EEE for general dynamic system 

 

In this section the two concepts of the system identification for the linear-time in-

variant system are summarized.  If the responses are fully measured for all de-

grees of freedom, it will be referred to the full measurement in space, while if the 

responses for all state, such as a displacement, a velocity and an acceleration, are 

fully measured for a fixed material point, it will be referred to the full measurement 

in state. 

Generally the dynamic responses are not fully measured in both space and 

state.  The system identification for partially measured responses can not be di-

rectly solved from the force equilibrium equation but should be solved by minimiz-

ing error between the analytic solution responses of the problem and the limited 

measurement responses.  These kinds of the system identification methods are 

called by the output error estimation method (OEE).  In the OEE scheme, if the 

analytic solution is nonlinear with respect to the unknown system parameters, it 

can not yield a quadratic minimization problem.  Hence it requires a complicated 

sensitivity analysis or a complex eigen-value analysis to identify the unknown sys-

tem parameters [Hjelmstad 1995, Park 2008 and Sarkar 1992]. 

By the virtue of the FFIR filter in the previous section, if the only acceleration 

is fully measured in space, the displacement and velocity can be reconstructed and 

complete measurement in both space and state is possible.  The full measurement 

data can be successively employed for the system identification directly using the 
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force equilibrium equation.  This system identification method is called by the 

equation error estimation method (EEE).  In the EEE, the minimization problem 

yields the quadratic problem with respect to the unknown system parameters; 

hence, the unknown system parameters can be identified from the first order neces-

sary condition without the complicated sensitivity analysis or the complex eigen-

value analysis. 

Though the general concept of the OEE and the EEE in following section is 

valid for the dynamic system regardless of the number of DOFs, but for the con-

venience of the presentation, 2-DOFs system is selected for the description.  In SI 

procedure, it is supposed that the mass matrix and the excitation force is given and 

known in priori and the responses are fully measure in space. 

 

4.1.1 System identification based on output error estimation method (OEE) 

The second order differential equation for the general dynamic system in Eq. 

(2-1) is described by following equation in state-space model to acquire the analyt-

ic solution from the first order differential equation. 

 
)()()( ttt ss pBxAx +=&  (4-1)

 

where [ ]Ttvtut )()(=)x(  is the state variable for a given time, while sA  and 

sB are system matrix and the input influence matrix which are defined as follows: 
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here the subscript ‘s’ denotes the state-space model. 

The analytic solution for the general dynamic system in Eq. (2-1) is described 

by following equation in state-space model. 

 

dττetet
t

t s
τt

0
tt

0

s0s ∫ −− += )p(B)x()x( )(A)(A  (4-3)

 

where [ ]T
0 tvtut )()( 00=)x(  is the initial condition at time 0t .  

The system identification with OEE is based on the assumption of the partial 

measurement of the state variable, x . 

 
)()( ttt ss pDxC)y( +=  (4-4)

 

where )y(t  is observable or output variable, sC  and sD  are the output influ-

ence matrix and the direct transmission term, respectively.  Substitution of Eq. (4-

3) to Eq. (4-4) yields following equation for the analytic solution of the observable 

variable. 

 

∫ ++= −− t
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s0s tdττetet )() pDp(BC)x(C)y( )(A)(A  (4-5)

 

Supposing the state variable is fully measured in space but is partially meas-
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ured in state, i.e. the state variable is fully measured for all degree of freedoms in 

space domain but just one of state variables such as the displacement, the velocity 

and the acceleration is measured, the output influence matrix and the direct trans-

mission term are represented by the following equations for three individual state 

measurements. 

 
For displacement 

[ ] 0D0IC == ss and  
(4-6)

 
For velocity 

[ ] 0DI0C == ss and  
(4-7)

 
For acceleration 

[ ] 111 MDCMKMC −−− =−−= ss  
(4-8)

 

The purpose of OEE methods is to minimize the relative error between meas-

ured response and output response which is calculated from the mathematical mod-

el in Eq. (4-5) respect to the unknown system parameters of the dynamic system. 
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where )( ity  and )( ity are output (or calculated) response and measured re-

sponse vector at time it , and nt and 
2

  ⋅  are the number of time steps used in the 

identification and the 2-norm of a vector, respectively, while X  is unknown sys-
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tem parameter vector.  Supposing the mass matrix is known in prior and the com-

ponents of the damping matrix and the stiffness matrix are the unknown system 

parameters, X  can be written as following equation for 2-DOF system.   

 
[ ]T

2122222111121211 kkcckkcc=X  (4-10)
 

where ijc  and ijk  are the individual components of the damping and stiffness 

matrix, respectively.  Note that the sequence of each component has no physical 

meaning but the components are aliened in Eq. (4-10) for the convenience of ap-

plying to the flutter derivatives example in the next section. 
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The system parameters can be successively identified by OEE methods to 

minimize relative errors in responses.  Since, however, the solution of the dynam-

ic system in Eq. (4-5) are not linear with respect to the unknown parameters in Eq. 

(4-10), the minimization problem in Eq. (4-9) can not yield the quadratic problem 

with respect to the unknown parameters.  Hence, as mentioned in the beginning of 

this section, the complicated sensitivity analysis or complex eigen-value analysis 

with the iterative procedure should be employed to identify the system parameters. 

4.1.2 System identification based on equation error estimation method (EEE) 

In case the complete time history of displacement, velocity and acceleration 
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are available, the unknown system parameters can be identified by the minimiza-

tion procedure based on the EEE. 

For convenience of formulation, the known parts and unknown parts of Eq. 

(2-1), are represented as following separated functions defined in discrete time step, 

it . 

)()()( iiikn ttt pMaF −=  (4-12)
 

XsKuCvXF )()()(),( iiiiun tttt =−−=  (4-13)
 

where subscripts ‘kn’ and ‘un’ represent the known and unknown force, while s  

sensitivity matrix which is composed of displacement and velocity at time step it , 

which can be expressed as following equation. 
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The purpose of EEE methods is to minimize the equation error of the force 

equilibrium equation in Eq. (4-5) with respect to the unknown system parameters 

of the dynamic system. 
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In case the excitation force, the acceleration, velocity and displacement histo-

ry is given a priori, the known force and sensitivity matrix in Eq. (4-12) and (4-14) 



 

 

 

106

can be determined from the known dynamic responses and material properties. 

Therefore, the system parameter X  is the only unknown and can be uniquely 

identified by solving Eq. (4-15). 

Substitution of equation Eq. (4-13) into Eq. (4-15) leads to the following ma-

trix form of minimization problem.  

 

∑

∑

=

=

+−=

−⋅−=Π

nt

i
ikni

T
kn

nt

i
iiunikniiunikn

tt

tttttt

1

TT

1

T

)()(
2
1

2
1

)))(,()(()))(,()((
2
1)(Min

FFGXSXX

XFFXFFX
X

 (4-16)

 

where S  and G  are global sensitivity matrix and gradient vector expressed as 

following equation, respectively. 
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Since the unknown force in Eq. (4-13) is linear with respect to the system pa-

rameter, X , the minimization problem in Eq. (4-16) forms a quadratic problem 

with respect to the system parameter.  Hence, the solution of Eq. (4-16) is simply 

obtained by solving the first-order necessary condition for the quadratic problem, 

which is linear algebraic equation.  
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As no iterative solution scheme, or complicated sensitivity analysis are re-

quired to solve the minimization problem, a unique solution is always determined 

by Eq. (4-18) as long as a sufficient amount of measured dynamic responses of a 

section model are provided.   

It is customary in the SI procedures to carry out multiple measurements for a 

dynamic system to reduce the effect of noise in measurements on the identified 

system parameters.  In most of the OEE methods, the system parameters are iden-

tified for each measurement independently, and then are averaged to obtain repre-

sentative values.  The EEE scheme is capable of identifying the system 

parameters with a single minimization process using all measurements obtained in 

each measurement together without critical consideration of the initial conditions. 

The minimization problem in Eq. (4-15) is modified to accommodate data 

measured in each measurement within one optimization statement. 
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Here, N denotes the number of measurements for a structural system, and the vari-

ables with superscript k represent those for the k-th measurement.  The solution of 

Eq. (4-18) is given as follows: 
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4.2 Free vibration test for the flutter derivatives 

Various SI algorithms have been proposed to extract the flutter derivatives 

form the free-vibration teat of the 2-DOF sectional model.  The Ibrahim time do-

main (ITD) method [Ibrahim 1977] and the unifying least-square (ULS) method 

[Gu 2000] are representative and most widely used algorithms among them.  

Sarkar et al. (1992) proposed the modified ITD (MITD) method by employing an 

instrumental variable (IV) in the least-square process to enhance the accuracy and 

stability of the ITD method.  Bartoli et al. (2009) also proposed the modified ULS 

(MULS) method by improving the solution algorithm of the ULS method.  The 

(M)ITD method identifies the system matrix in the state-space form of the equation 

of motion by the complex eigenvalue analysis of the shift operator formed from the 

measured displacement.  The (M)ULS method are based on a nonlinear optimiza-

tion problem on the least square errors between the measured and the predicted 

displacements using the eigenvalues and eigenvectors of the system matrix of the 

state-space form.  Both the (M)ITD and the (M)ULS methods require the complex 

eigenvalue analysis. 

Identification schemes that utilize complete information about the state varia-

ble have been proposed for the free-vibration test.  The iterative least square (ILS) 

method proposed by Chowdhury and Sarkar (2003) utilizes velocity and accelera-

tion reconstructed from measured displacement using digital filters.  Although the 

ILS method utilizes information on acceleration, the reconstruction is based on the 

measured displacement.  Since, moreover, it requires the IV procedure with the 
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state-space model to minimize the relative error between calculated and measured 

response, the ILS is a kind of the OEE using the measured displacement. 

Most of previously proposed identification schemes for free-vibration test are 

based on the minimization of errors between measured and calculated displace-

ments using the state-space form of the equation of motion and requires an com-

plex eigen-value analysis and iterative solution procedures.  Moreover these 

methods can not be directly employed for the SI procedure of the forced-vibration 

test, which contains solely steady-state response.  

In this chapter, the EEE method in the previous section is adopted for the SI 

procedure of the flutter derivatives.  As the aeroelastic forces are assumed to be 

linear with respect to the flutter derivative, the minimization of the EEE is ex-

pressed as a quadratic problem, and thus neither iterative solution scheme nor 

complex eigen-value analysis is required.  Because of the aforementioned lineari-

ty of the EEE, the proposed method is able to identify representative flutter deriva-

tives corresponding to multiple measurements for a wind velocity in one 

optimization process.  Since, moreover, both the free-vibration test and forced-

vibration test are governed by the same equation; the EEE method can be em-

ployed for the forced-vibration test also.  

 

4.2.1 Dynamic equation for the aeroelastic motion of 2-DOFs system 

In this chapter, the dynamic equation for flutter derivatives and the fundamen-

tal assumption for identification of flutter derivatives from the free vibration test 
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are presented.  The flutter derivatives of a bridge deck are usually identified 

through wind tunnel tests on a section model.  

An elastically supported section model with 2-DOF in the vertical (h) and the 

rotational (α) directions is illustrated in Fig. 4-1.  The equation of motion for the 

section model per unit length is defined as follows: 

 
( ) ( ) ( ) ( ) ( )( )tUtttt ae ,,,, XUXUFKUUCUM =++ &&&  (4-21)

 

where KCM ,,  and aeF are the mass, damping, stiffness matrix of the structural 

system and the aeroelastic force vector, respectively, while U , U  and X are the 

displacement vector containing h and α, the flow field and the vector of the flutter 

derivatives which will be defined in next section.  The overhead dot denotes dif-

ferentiation with respect to time. 

 

 
 

 

 

 

 

 
Figure 4-1. 2-DOF section model 
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The aero-dynamic force in the right side of the Eq. (4-21) acts as an outer 

force for the structural system, and the motion of structure recursively influence to 

boundary conditions of the aero-dynamic force.  This moving boundary problem 

has several nonlinearity regard to the amplitude, the vibrational mode shape and etc. 

[Falco 1992, Matsumoto 1993 and Morgenthal 2000] caused by the interaction and 

the flutter derivatives should be determined by proper experimental procedures 

which can consider this nonlinear effect of the original problem. 

The mechanical properties of the structural system represented by CM,  and 

K are generally assumed to be uncoupled.  Hence, there is no off-diagonal term 

in the matrices and the section model behaves as separated 1 DOF systems in the 

vertical and rotational direction as following equation. 
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The aeroelastic force acting on a sinusoidal oscillating section model in a sin-

gle mode is assumed as a linear function to the motion of the section and its first 

order derivative [Iwamoto 1995 and Scanlan 1971]: 
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where aeL  and aeM  are the aeroelastic lift force and moment, respectively, 

while ω is the circular frequency of the oscillation, and mH  and mA  

( 4,3,2,1=m ) are the flutter derivatives.  It is customary to use normalized ex-

pressions of the flutter derivatives [Scanlan 1971].  For the simplicity of presenta-

tion, however, this thesis presents discussions with the un-normalized forms of the 

flutter derivatives. 

The aeroelastic force, aeF , in Eq. (4-23) are assumed to be linear function to 

the displacement and velocity response, and the flutter derivatives are the function 

of the modal frequency.  Matsumoto et al. (1993) have tried to clarify the depend-

ency of the flutter derivatives to the vibrational mode shape.  From their discus-

sion, the flutter derivatives have closely related to both the modal frequency and 

the modal shape of the vibration especially for a bluff body.  Besides the depend-

ency to the mode shape, the original aeroelastic system in Eq. (4-21) contains vari-

ous factor of nonlinearity caused by the interaction between the structure and wind. 

Though the assumptions of linear and mode shape independency in Eq. (4-23) have 

a significance for simplicity of the identification of flutter derivatives and an analy-

sis of the aeroelastic system.  But the experiment should be performed to consider 

the nonlinearity and the dependency to the modal shape. 

Since the section model always vibrates in two distinct modes for the free-

oscillation test, the total aeroelastic force acting on the section model is obtained by 

summing up the aeroelastic forces induced by each mode [Chen 2004 and Iwamoto 
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1995]. 
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where variables with subscript i denote those corresponding to the i-th mode, and 

21 hhh += , 21 α+α=α .  Since sixteen flutter derivatives appear in Eq. (4-24) 

for a 2-DOF system, a free-oscillation test should provide at least sixteen pieces of 

information on dynamic behaviors of a section model.  Unfortunately, however, 

the responses of a section model measured from a free-oscillation test contain only 

eight pieces of information on modal frequencies, modal damping ratios, ampli-

tudes and phases, and thus the sixteen flutter derivatives can not be uniquely de-

termined [Iwamoto 1995].  Because it is impossible to increase an amount of 

information in measurements, a certain type of approximation should be introduced 

to reduce the number of unknowns. 

Most of previous works based on the state-space form express Eq. (4-24) in 

terms of the total responses of the section model as follows: 
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Eight flutter derivatives appear in Eq. (4-23), and thus are identifiable with the ILS, 

(M)ITD or (M)ULS methods using measured data.  Since, however, no clear defi-
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nition on the frequency appearing in each flutter derivative is given in the afore-

mentioned works; the frequency dependency of each flutter derivative is unidenti-

fiable. 

Iwamoto and Fujino (1995) and Chen and Kareem (2004) reduce the number 

of the flutter derivatives by eight based on an assumption that the vertical motion 

strongly defends on the first mode and the rotational motion is dominant to the se-

cond mode, respectively.  That is, 1hh ≈  and 2α≈α  because 12 hh <<  and 

21 α<<α .  With this assumption the aeroelastic forces are defined with eight 

flutter derivatives, which can be identified through a single free-oscillation test. 
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In contrast to Eq. (4-25), the dependency of each flutter derivative on the fre-

quency is clearly defined in Eq. (4-26). 

It is worthwhile to investigate the validity of the aforementioned assumption 

on the relative dependency.  The degree of dependency in each DOF between two 

modes is represented by the following ratios of the fast Fourier transform (FFT) on 

measured displacements at the modal frequencies. 
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Figure 4-2. Dependency ratios of section models: (a) a thin rectangular section and 
(b) a bluff H-type section 

0.0

0.5

1.0

1.5

0 2 4 6 8

Ch

Cα

D
ep

en
de

nc
y

Wind velocity (m/s)

a 

0.0

0.5

1.0

1.5

0 2 4 6 8

Ch

Cα

D
ep

en
de

nc
y

Wind velocity (m/s)

b 



 

 

 

117

Here, Fh and Fα denote the FFT of measured vertical displacements and rotational 

angles, respectively.  Ch and Cα are referred to as the vertical and the rotational 

dependency ratios, respectively.  The ratios defined in Eq. (4-27) stay near zero if 

the dependency effect follows the assumption of Iwamoto and Fujino (1995), 

12 hh <<  and 21 α<<α .  But the motion of the section model dose not meet 

these conditions, the ratios significantly deviate from zero. 

The two dependency ratios are drawn in Fig. 4-2 for a thin rectangular section 

model and a bluff H-type section model.  These section models are utilized in the 

verification examples of this study.  Both the ratios for the thin rectangular section 

are relatively small for all wind velocity, and thus the assumption of dominant de-

pendency seems to be reasonable in case the motions of the thin rectangular section 

model.  In case of the bluff H-type section model, however, the rotational depend-

ency ratio becomes large for intermediate wind velocities, while the vertical de-

pendency ratio increases rapidly at high wind velocities.  This fact implies that the 

assumption is no longer appropriate for a bluff section.  In case that the mechani-

cal properties of the structural system are not diagonal, the motions of the section 

model have dependency to both modes even for the windless condition, and the 

dependency ratios seriously deviate from zero in low wind velocities.  The as-

sumption of dominant dependency is, therefore, not valid in a general sense.  

This thesis proposes a new interpretation on the flutter derivatives identified 

from free-oscillation tests that the aeroelastic forces are expressed through eight 

flutter derivatives using the total responses of a section model rather than the mod-
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al responses of a section: 
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The variables with overbar in Eq. (4-28) represent flutter derivatives for the total 

responses of a section model.  Eqs. (4-26) and (4-28) seem to be identical, but 

they are based on quite different concepts.  Eq. (4-26) is an approximation of Eq. 

(4-24) with respect to the responses of a section model, while Eq. (4-28) is an ap-

proximation of the flutter derivatives defined in Eq. (4-24).  As far as the deriva-

tives themselves are concerned, of course, Eqs. (4-26) and (4-28) should yield 

identical results for the same measurements.  Physically, however, the flutter de-

rivatives in Eq. (4-26) are considered as functions of the individual frequency or 

the modal responses, and those in Eq. (4-28) should be interpreted as functions of 

both frequencies, i.e., the total responses.  Consequently, a crucial question arises 

on the similitude law to be applied for the analysis of a real bridge deck corre-

sponding to the section model.  The assumption for Eq. (4-26) is not valid for all 

cases, but it is easy to apply a frequency-based similitude law as it is a modal re-

sponse-based approximation.  It is believed that further investigations should be 

followed on the physical significance of the flutter derivatives identified from free-

oscillation tests. 
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4.1.2 Identification of flutter derivatives from the free vibration test based on the 

EEE 

In case the complete time history of displacement, velocity and acceleration 

are available, the flutter derivatives are identified by employing the EEE proposed 

in section 4.1 as follows: 
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here, X is the vector of the flutter derivatives to be identified. 

 
TAAAAHHHH )( 43214321=X  (4-30)

 

)( ist tF  and ),( iae tXF  are the structural resistance force and the aeroelastic 

force at time ti, respectively.  
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The aeroelastic force given in (4-28) is rewritten in terms of the vector of 

the flutter derivatives. 
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Following the solution procedure of the EEE method in Eq. (4-16) ~ Eq. (4-

18), a unique solution is always determined by Eq. (4-18) as long as a sufficient 

amount of measured dynamic responses of a section model are provided. 

It is customary in wind tunnel tests to carry out multiple measurements for a 

wind velocity to reduce the effect of noise in measurements on the identified flutter 

derivatives.  In most of the previously proposed schemes the flutter derivatives 

are identified for each measurement independently, and then are averaged to obtain 

representative values.  The EEE is capable of identifying the flutter derivatives 

with a single minimization process using all measurements obtained in each meas-

urement together as defined in Eq. (4-18).  Li et al. (2003) proposed a similar ap-

proach for the calculation of complex eigenvalues in the ULS method, but the 

corresponding eigenvectors are evaluated for an individual measurement and the 

representative eigenvectors are obtained by averaging them.   

Complete dynamic responses, i.e., displacement, velocity and acceleration, 

should be measured simultaneously to identify the flutter derivatives based on the 

EEE.  Although displacement and acceleration may be measured together in wind 

tunnel tests, it is troublesome to install several different types of transducers on the 

same locations of a section model.  Furthermore, direct measurement of velocity 

is almost impossible due to the very limited availability of transducers.  To cir-
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cumvent the difficulty in the complete measurement of the dynamic responses, this 

study utilizes reconstructed displacement and velocity from measured acceleration 

by the FFIR filter, which is presented in the chapter 3. 

As pointed out by Bartoli et al. (2009), extraction schemes that use variables 

reconstructed by digital filters suffer from the loss of measured data, which may 

lead to inaccurate or unstable identification of the flutter derivatives especially for 

high wind velocities.  This drawback can be overcome in the proposed scheme by 

the simultaneous use of data measured from each measurement as formulated in Eq. 

(4-18) because the accuracy and stability of the identification are quickly improved 

as the amount of data used in the estimation increases. 

The FFIR filter in the section 3.1.3 is employed to reconstruct displacement 

and velocity simultaneously from the measured acceleration.  As discussed in the 

section 3.1.3, the FFIR filter is capable of reconstructing displacement and velocity 

components for the frequency range between the target frequency and 10% of the 

sampling frequency, sT fff 1.0≤≤ , within a 3% error for 97.0=αT .   

Therefore, the sampling frequency of measurement should be larger than the 

highest frequency of interest at least by 10 times, which is easily achieved with 

modern accelerometers and A/D converters. 

Since the FFIR filter is a finite and discrete filter, the Gibbs phenomenon, 

which is the rippling characteristics of a truncated Fourier series, is inevitably ob-

served in the accuracy function of the FEM-FIR filter.



 

 

 

122

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-3. Typical accuracy functions of the FEM-FIR filter and the definitions of 
correction factors: (a) Displacement and (b) Velocity  
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 By virtue of the accuracy functions of the FFIR filter, errors in reconstructed 

displacement and velocity are easily estimated. The typical accuracy functions of 

displacement and velocity are drawn in Fig. 4-3.  Assuming that the reconstructed 

errors in the vertical and rotational motion are mainly caused by the errors in the 

first and second mode, respectively, the reconstructed responses are modified to 

compensate the errors in the FEM-FIR filter for more accurate extraction of the 

flutter derivatives as follows: 
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where subscript r indicates the reconstructed responses, while correction factors, 

d
iγ   and v

iγ , are the values of the accuracy functions for the displacement and 

velocity at the i-th mode, respectively, as shown in Fig. 4-3. 
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4.3 Forced vibration test for the flutter derivatives 

Dissimilar to the free vibration test, the forced vibration test includes the ex-

ternal forcing term in the equation of motion as flowing equation. 

 
( ) ( ) ( ) ( ) ( )ttttt exae FFKUUCUM +=++ &&&  (4-34)

 

where exF  is external force.  Note that the external force is the reaction force in 

the displacement controlled test, which should be measured for the identification. 

Substitution of the matrix form of aero-elastic force in Eq. (4-23) to Eq. (4-34) 

yields following form of equation of motion with excitation force. 

 
( ) ( ) ( ) ( )tttt exeffeff FUKUCUM =++ &&&  (4-35)

 

where effC  and effK  are effective damping and stiffness matrixes of aero-

elastic system as follows. 

 
aeeff CCC −= ,  aeeff KKK −=  (4-36)

 

Since the 2-DOF section model is excited to damp out the transient response 

and the only steady-state response in a single frequency is adopted for the identifi-

cation procedure in the forced-vibration test, the flutter derivatives in Eq. (4-36) 

imply the linear force weighting corresponding to the single excitation frequency 

and is appropriate for the conventional law of similitude which is discussed in the 

previous section. 
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4.3.1 Forced vibration test controlled by prescribed displacement 

The displacement controlled forced vibration test is implemented by imposing 

the predefined sinusoidal displacement to the section model without the elastic 

suspension of springs. 
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where exω  is the angular frequency of the excitation motion. 

The absence of spring makes the mechanical damping and stiffness matrix in 

Eq. (4-19) zero, and the effective damping and stiffness matrix only contain 

aeroelastic terms as following equation. 

 
aeeff CC −= ,  aeeff KK −=  (4-38)

 

After the transient component damped out, the reaction in Eq. (4-34) also 

yields to sinusoidal motion. 
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where sL , cL , sM  and cM  are the measured amplitudes of sinusoidal reac-

tion.  Because the aero-elastic system has both amplitude and phase response in 

the transfer function, the reaction in Eq. (4-39) should contain not only sine term 
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but also cosine term. 

Substitution of Eq. (4-37) and Eq. (4-39) to Eq. (4-35) yields following alge-

braic equations. 
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Since only four algebraic relations given in Eq. (4-40) but there is eight un-

known flutter derivatives, the solution of the equation can not be determined from a 

single experimental test.  To acquire sufficient information for eight unknowns, at 

least two separated experiments with the independent excitation conditions should 

be tested. 
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where the additional subscript ‘1’ and ‘2’ denote the number of test.  If the ampli-

tudes of reaction in Eq. (4-41) are exactly given for the two tests, the flutter deriva-

tives can be identified by solving the simultaneous equation in Eq. (4-41). 

Since the displacement is predefined as Eq. (4-37) in the displacement con-

trolled forced vibration test, the velocity and the acceleration also can be calculated 

by the definition and regarded as the measured responses; hence the displacement 
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control test supply full-measurement condition in both state and space.  The con-

cept of SI in equation (4-41) exactly matches with the concept of the EEE for the 

multiple trials in Eq. (4-18) except that the least squared scheme is employed in the 

EEE procedure. 

The measured amplitude for the reaction, sL , cL , sM  and cM , are not 

free from various sources of noise, the direct solution of Eq. (4-41) yields errone-

ous results as the fundamental property of the inverse problem.  Moreover best-fit 

curves in sinusoidal form should be calculated for each excitation.  The optimiza-

tion method using the EEE can be directly employed to yield accurate and reliable 

results without any additional calculations.  
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Here, the structural resistance force includes the measured reaction force as 

following equation: 

 
( )iexiiiist ttttt FKUUCUMF −++= )()()()( &&&  (4-43)

 

By the virtue of the selection of the conventional displacement set as follow-

ing equation, Eq. (4-41) is represented by separated eight equations, in which con-

tains just one unknown respectively. 
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Substituting Eq. (4-44) to Eq. (4-41), the flutter derivatives are acquired as 

follows: 
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The displacement set in Eq. (4-44) is conventionally used to extract the flutter 

derivatives for the convenience of experimental implementation and the simplicity 

of identification procedure.  Since it is insufficient set to investigate the depend-

ency of the flutter derivatives to the vibrational mode shape, the EEE method with 

the arbitrary displacement set in Eq (4-41) can be more generally employed for the 

identification. 

Though the displacement control method in this section can successively iden-

tify the flutter derivatives from the experimental responses, but it divides the origi-

nal problem in Eq. (4-21) into separated structural system and aero-dynamic 
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system by imposing the prescribed boundary condition, then author believe that 

this experimental procedure can not fully implement nonlinearity caused by the 

interaction of the original aeroelastic system. 

  

4.3.2 Forced vibration test controlled by prescribed excitation force 

The overall procedure of the force control test is very similar to the displace-

ment control except a change of displacement from input to output, but the force-

control test does not restrict the motion itself, the nonlinearity caused by the inter-

action can be fully considered in this method.  The force controlled forced vibra-

tion test is implemented by imposing the prescribed sinusoidal excitation force to 

the section model supported by the elastic springs. 

 

( ) ( )
( ) t

M
L

tM
tL

t ex
ex

ex
ex ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= sin

0

0F  (4-46)

 

The excitation force in Eq. (4-46) can be implemented by the four rotating mass 

subjected to the guide frame as Fig 4-4.  

 

Figure 4-4. Conceptual figure for the force controlled vibration test 
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The analytic solution for the forced vibration test in the steady-state response 

is presented by Jung et al. (2011).  The steady-state response to the force control 

test, which means the particular solution to the excitation forces of Eq. (4-35), is 

obtained by getting the particular solution of equation of motion in Eq. (4-35). 
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Substitution of Eq. (4-46) and Eq. (4-47) to Eq. (4-35) yields following equa-

tions. 
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As like to the displacement control test, the flutter derivatives can not be de-

termined from a single experimental test in Eq. (4-48) for the limited information.   

To acquire sufficient information for eight unknowns, at least two separated exper-

iments with the independent excitation conditions should be tested and be treated in 

a single optimization process.  Unlike to the displacement control test, however, 

the full-measurement in state is impossible unless the help of the reconstruction 

scheme and should be solved by the SI methods based on the OEE.  Since the 

analytic solution for the force control test in Eq. (4-48) is nonlinear function with 
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respect to the unknown flutter derivative but contains several matrix inversions, the 

sensitivity analysis for the OEE yields severely complex problem. 

By the virtue of the FFIR filter, from two or more tests with different inde-

pendent excitation forces, the flutter derivatives can be identified by employing the 

proposed EEE method in Eq. (4-42) and Eq. (4-43) with simplicity of the quadratic 

problems.   
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4.4 Numerical and Experimental Verification for the EEE method 

As commented in the previous section, the forced-vibration tests are not im-

plemented in the Seoul National University yet.  Hence, the experimental verifica-

tion is confined to the free-vibration test. 

For the verification of the proposed method for the free-vibration test, the flut-

ter derivatives are identified using measurements taken from a series of free-

oscillation tests for the two types of representative sections of bridge decks; a thin 

rectangular plate with the width-to-depth  (B/D) ratio of 20 and a bluff H-type 

section.  Fig. 4 shows the dimensions of the sections.  A series of push-back and 

sudden release tests were repeated with the change of wind velocity.  Four accel-

erometers as well as four noncontact displacement transducers were installed to 

measure 2-DOF motions of the section models.  The reconstruction of the dis-

placement and velocity is carried out by employing the FFIR filter and all the re-

constructed responses are modified with the correction factors in Eq. (4-33).  The 

instant when the actual reconstruction begins is set to 0=t  throughout the exam-

ples. 

The flutter derivatives are identified by the proposed method using the meas-

ured accelerations and by the MITD method using the measured displacements for 

comparison.  The identified results from both of the methods presented here are 

the representative values for multiple measurements.  The flutter derivatives iden-

tified for each measurement are averaged for the MITD method, while multiple 

measurements are considered together in optimization for the proposed method.   
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a 

 
b 

 
 

Figure 4-5. Dimension of cross-section considered: (a) a thin rectangular section 
(b) a bluff H-type section 

 
The initial conditions required in the MITD method are taken from the recon-

structed displacement and velocity time histories.  As recommended by Sarkar et 

al. (1994), the nearest integer smaller than the ratio of )4/(1 dtfΔ  is used for the 

first shift coefficient, 1N , and the second shift coefficient 2N  is set to the same 

value as 1N .  Here, tΔ  and df  denote the time increment and highest modal 

frequency, respectively. 

To present the identified flutter derivatives as functions of the reduced wind 

velocity in a conventional fashion, the following normalization is applied to the 

flutter derivatives defined in Eq. (4-26). 
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where *
iH  and )4~1(* =iAi  are the normalized flutter derivatives, wV  is the 

actual wind velocity, mV~  is the reduced wind velocity, ρ  is the air density and 

B  is the width of section model. 

 

4.4.1 Free-vibration test of a thin rectangular section of B/D=20 – case of a stream-

lined section 

The wind-tunnel tests for this example are preformed in the wind tunnel of 

Mokpo National University, Mokpo, Korea.  Fig. 4-6 shows the experimental set-

ups for this example.  The transverse movement is restrained with piano wires to 

simulate 2-DOF motions.  A 2-DOF free oscillation is introduced to the model by 

suddenly releasing two pneumatic pistons that push the section to induce initial 

displacements of 2cm in the vertical direction and 0.05 radians in the rotational 
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direction.  The free-oscillation test was performed for 20 wind velocities at an 

almost equal interval from 0 m/sec to 12.8 m/sec and repeated 10 times consecu-

tively for each wind velocity.  Standard time duration for the identification is set 

to 10 sec.  In case one of the 2-DOF responses is damped out before 10 sec, 

measurements taken up to the instant when one of the responses disappears is uti-

lized.  The shortest time duration of 1.31 sec is adopted at the maximum wind 

velocity of 12.8m/s. 

The two dominant frequencies identified at each wind velocity through the 

FFT of the measured accelerations are shown in Fig. 4-7.  The lower frequencies, 

which correspond to the 1st modal frequency, are adopted as the target frequencies 

of the FEM-FIR filter for the reconstruction of displacements and velocities. 

 

 

Mass per unit length: 4.69 (kg/m) 
Mass moment of inertia per unit length: 0.14 (kg-m2/m) 
Air density: 1.25 (kg/ m3) 

Figure 4-6. Experimental setup for the thin rectangular section 
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Figure 4-7. Two dominant frequencies of the thin rectangular section 
 

 

 

 

 

 

 
 

 
 
 
 
 
 
 

 
Figure 4-8. Correction factors applied for the thin rectangular section
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Figure 4-9. Measured and reconstructed displacements at the wind velocity of 
5.86m/s for the thin rectangular section: (a) vertical displacement and (b) rotational 

angle 
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The correction factors of reconstructed responses determined for each wind 

velocity are given in Fig. 4-8.  The reconstructed displacements of the section at 

the wind velocity of 5.86m/s are compared with the measured displacements in Fig. 

4-9.  The two displacements appear almost identical in the figure, and the recon-

structed responses for the other wind velocities maintain the same levels of accura-

cy as shown in Fig. 8.  The mechanical frequencies and the damping ratios of the 

model are identified as 1f =2.72Hz, 2f =3.98Hz, 1ξ =0.274% and 2ξ =0.124% 

using the reconstructed displacements for the windless condition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-10. Identified flutter derivatives for the thin rectangular section - *H com-

ponents: (a) *
1H , (b) *

2H , (c) *
4H  and (d) *

3H  
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Figure 4-11. Identified flutter derivatives for the thin rectangular section - *A com-

ponents: (a) *
1A , (b) *

2A , (c) *
4A  and (d) *

3A  
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3A  components 

by the Theodorsen function in the figures do not include added mass terms 
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tives in an overall sense even though slight differences in the *
1H  component are 

found between the two methods.  As the identification of the flutter derivatives is 

a type of ill-posed inverse problem, the results may depend on numerical schemes 

to some extent (Scanlan and Tomko, 1971), and the differences seem to be within 

an acceptable range.  The *
iA  components by both the proposed method and the 

MITD method are almost identical to those predicted by the Theodorsen function. 

As compared to the *
iA  components, the *

iH  components identified by both 

the proposed and MITD method, somewhat deviate from the theoretical values 

predicted by the Theodorsen function.  This kind of phenomenon also has been 

reported by Scanlan and Tomko (1971). 

 
 

 

 

 

 

 
 

 
 
 
 
 
 
 

 
Figure 4-12. Identified damping ratios for the thin rectangular section 
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 The frequencies and the damping ratios of the section are calculated through 

the complex eigenvalue analysis of Eq. (4-1) with the identified flutter derivatives, 

and are presented in Fig. 4-7 and Fig. 4-12, respectively.  The calculated frequen-

cies show good agreements with those identified by the FFT of the measured accel-

erations. The MITD method yields slightly larger damping ratios for the 1st mode 

and a smaller damping ratio for the 2nd mode than the proposed method. 

As the last step of the verification, the displacement time history is calculated 

by solving Eq. (4-1) in the time domain with the Newmark’s method.  The aver-

age acceleration assumption and the time increment of 0.001 sec are utilized for the 

numerical integration.  The initial conditions are taken from the reconstructed dis-

placement and velocity.  Fig. 4-13 compares the measured displacements with the 

calculated ones for a wind velocity of 5.86 m/sec.  Virtually no phase error is 

found in either the vertical displacement or rotational angle.  The amplitude of the 

calculated rotational angle is almost identical to the measurement.  However, the 

flutter derivatives identified by the proposed method result in slightly larger ampli-

tude in the vertical displacement than in the measurement.  It seems that the pro-

posed method somewhat underestimates the damping for the vertical motion. 
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Figure 4-13. Calculated displacements with extracted flutter derivatives for the thin 
rectangular section at the wind velocity of 5.86m/s: (a) vertical displacement and 

(b) rotational angle 
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4.4.2 Free-vibration test of an H-type section – case of a bluff section 

A bluff H-type section of B/D=9.6 shown in Fig. 4-5(b) is tested in this exam-

ple.  The dimensions of the section and the locations of sensors are illustrated in 

Fig. 4-14.  These types of sections are widely used in medium-span cable-stayed 

bridges.  The wind tunnel tests were performed at the Boundary Layer Wind Tun-

nel Laboratory at the University of Western Ontario in Ontario, Canada (Kim and 

King, 2007).  This example is adopted from the work by Hong et al. (2010), in 

which the details on the experimental setups and reconstruction parameters are pre-

sented.  Sudden release tests were carried out for 16 different wind velocities, and 

20 measurements were taken for each wind velocity.  

 

 

 

 

 

 

 

 

 

 

 

Mass per unit length: 3.64 (kg/m) 
Mass moment of inertia per unit length: 0.102 (kg-m2/m) 
Air density: 1.25 (kg/ m3) 

 
Figure 4-14. Experimental setup for the bluff H-type section 

Accelerometer Laser displacement transducer 
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The correction factors used for the reconstruction are shown in Fig. 4-15.  

The displacements for all wind velocity are successfully reconstructed, and the 

same levels of accuracy as shown in Fig. 4-9 are obtained but are not presented 

here.  The frequencies and damping ratios for the windless condition are identi-

fied as 1f =3.05Hz, 2f =5.13Hz, 1ξ =0.671% and 2ξ =0.316% with the recon-

structed displacement and velocity. 

Figs. 4-16 and 4-17 show the identified *
iH  components and *

iA  compo-

nents, respectively. The flutter derivatives of the bluff section exhibit much more 

complicated variations with wind velocities than the thin rectangular section.  

This is because flow fields around bluff sections are severely perturbed, and thus 

strong turbulence is developed.   

 

 

 

 

 

 
 
 

 
 
 
 
 

 
Figure 4-15. Correction factors applied for the bluff H-type section 
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The cubic spline fits of the identified results by the proposed method are also 

drawn in the figures.  Most of the flutter derivatives by the proposed method show 

good agreements with those by the MITD method.  Although some differences 

are observed for *
1H  for higher wind velocities as in the thin rectangular section, 

the overall consistency between the proposed method and the MITD method is 

confirmed for the bluff section. 

Figs. 4-16 and 4-17 show the identified *
iH  components and *

iA  compo-

nents, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-16. Identified flutter derivatives for the bluff H-type section - *H compo-

nents: (a) *
1H , (b) *

2H , (c) *
4H  and (d) *

3H  
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Figure 4-17. Identified flutter derivatives for the bluff H-type section - *A compo-

nents: (a) *
1A , (b) *

2A , (c) *
4A  and (d) *

3A   
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method is confirmed for the bluff section. 

Figs. 4-18 and 4-19 show the modal frequencies and the damping ratios calcu-

lated with identified flutter derivatives, respectively. The calculated modal frequen-

cies agree well with those identified by the FFT of the measured accelerations.  

The damping ratios for the 1st and 2nd mode are identified as being slightly lower 

and higher, respectively, by the proposed method than by the MITD method.  

Near zero damping ratios are predicted for the 1st and 2nd mode at wind velocities 

of around 5 m/sec and 3.6 m/sec, respectively.  Fig. 4-20 compares the calculated 

displacements by Eq. (4-1) to the measured displacements at a wind velocity of 

4.27m/s.  The same numerical integration scheme used in example 1 is employed.  

Both the phase and amplitude of the rotational angle are predicted accurately with 

the identified results, while the amplitude of the vertical displacement is calculated 

somewhat larger than the measurement as in the previous example. 
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Figure 4-18. Two dominant frequencies of the bluff H-type section 
 

 

 

 

 

 
 

 
 
 
 
 
 
 

 
Figure 4-19. Identified damping ratios for the bluff H-type section  
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Figure 4-20. Calculated displacements with extracted flutter derivatives for the 
bluff H-type section at the wind velocity of 4.27m/s: (a) vertical displacement and 

(b) rotational angle 
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4.4.3 Numerical simulation of forced-vibration test controlled by a prescribed force  

The proposed EEE method is applied to an extraction of the flutter derivatives 

for the numerically simulated force-control test of the thin rectangular section in 

the section 4.4.1.  To simulate the analytic motion response, the optimized flutter 

derivatives of the section presented by Jung et al. (2011), which is modified to sat-

isfy causality condition through proper optimization, are adopted for the exact flut-

ter derivatives of the numerical analysis. 

Two forced vibration tests of the section model are conducted by applying fol-

lowing excitation forces for 10 seconds, respectively. 
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The analytic solution for the force-control test in Eq. (4-31) and (4-32) is derived 

from the Scanlan’s equation, the linearity and vibrational mode shape independen-

cy are satisfied.  Hence any sets of two excitation forces with different ratios of 

amplitudes in the vertical and rotational direction can be properly employed for the 

force-control test.  The analytic acceleration is obtained from the second order 

differentiation of Eq. (4-31). 
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The acceleration is calculated for the several reduced frequencies from 2 to 20 

with constant increment and measured at the sampling of 100 Hz.  Though the 

analytic displacement and velocity can be possibly calculated, to simulate the actu-

al situation, the displacement and velocity are reconstructed by the FFIR filter in 

the section 3.  To alleviate the rippling error of the FFIR filter the reconstructed 

responses are modified with the same procedure in Eq. (4-33) which is used for the 

modification of the response in the free-vibration test.  Since the analytic accel-

eration of the forced-vibration test is solely single frequency components without 

noise, near exact displacement and velocity are reconstructed by this modification 

procedure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-21. Identified flutter derivatives for the numerically simulated force con-

trol test - *H components: (a) *
1H , (b) *

2H , (c) *
4H  and (d) *

3H  
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Figure 4-22. Identified flutter derivatives for the numerically simulated force con-

trol test - *A components: (a) *
1A , (b) *

2A , (c) *
4A  and (d) *

3A  
 

Figs. 4-21 and 4-22 show the identified *
iH  components and *

iA  compo-

nents with the exact value of flutter derivatives, respectively.  The identified flut-

ter derivatives perfectly agree with the exact values in this numerical study.  
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5. Conclusion and further study 

Conclusions 

This study proposes three types of FIR filters, the CFIR FDM-FIR filter and 

FFIR filter, to reconstruct displacement from measured accelerations.  The BEF 

transfer function is derived by taking the variation of the minimization problem 

that defines an inverse problem for the reconstruction of displacement.  The regu-

larization factor in the inverse problem is determined with the desired accuracy at 

the target frequency.  The CFIR filter directly approximates the BEF transfer 

function in the frequency domain by the truncated Fourier series, while FDM-FIR 

filter and the FFIR filter are obtained by discretizing the minimization problem 

itself with FDM and the variational statement of the minimization problem with the 

standard FEM, respectively.  The second order central difference method is uti-

lized to discretize the second order differentiator and the Hermitian shape function 

is utilized to interpolate displacement in each finite element.  By the virtue of the 

FFIR filter, velocity as well as displacement can be reconstructed simultaneously 

from the same measurement.   

The proposed filters are capable of suppressing the low frequency noises be-

low the target frequency, and reconstructing displacement accurately above the tar-

get frequency.  The longer filter size results in smaller rippling amplitude in three 

filters.  The CFIR filter exhibits a uniform frequency response from the target fre-

quency to the Nyquist Frequency in case the filter size is set to either the standard 
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or long filter size.  The filter sizes other than the two filter sizes cause diverging 

rippling amplitudes in the transfer function of the CFIR filter, which may be con-

sidered to be the one shortcoming of the CFIR filter.  On the other hand, the size 

of the FDM-FIR filter and FFIR filter size can be adjusted freely as needed in ap-

plications and the rippling amplitude of them damps out quickly for all filter sizes.  

Although the accuracy of the FDM-FIR filter and FFIR filter deteriorates in higher 

frequency ranges, the overall performance is not affected seriously because the 

high frequency contents in measured accelerations contribute little to the recon-

structed displacement.  From the aforementioned facts, it may be concluded that 

the CFIR filter is a good choice for the reconstruction in systems with a wide fre-

quency spectrum while the FDM-FIR filter and FFIR filter are suitable for low-

frequency dominant systems.  To reconstruct velocity as well as displacement, 

however, the FFIR filter should be employed. 

Four examples are presented to verify the proposed FIR filters.  In the nu-

merical simulation study and field experiment, the proposed FIR filters yield very 

accurate displacement, and exhibit robust behaviors against measurement noises.   

In the last example, the flutter derivatives for the section model of a bridge 

deck system with plate girders are identified by the reconstructed displacement, 

and are compared with those by measured displacement.  Both the identified de-

rivatives show good agreement with each other.  Therefore, the proposed FFIR 

filters can be applied to the identification of the flutter derivatives of long-span ca-

ble-supported bridges in service, in which the measurements of displacement are 
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considered to be one of the major obstacles.  It is believed that the proposed FFIR 

filters provide accurate and reliable alternatives to direct measurement of dynamic 

displacements, which is costly, difficult and almost impossible, especially for large- 

manifest scale structures. 

 

Further study 

Scope of the proposed reconstruction scheme  

In the near-field of an earthquake the effects of the rotational components of 

ground motion may not be negligible compared to the effects of translational mo-

tions.  Several analyses of the equations of motion of horizontal and vertical pen-

dulum show that horizontal sensors are sensitive not only to translational motion 

but also to tilts.  In this reasons, different groups of researchers in earthquake field 

have tried to measure the displacement responses in the longitudinal, transverse 

and vertical directions with consideration of the tilts components [Graizer 2005 and 

Graizer 2006]. 

The scope of the reconstruction scheme in this study, however, is to recon-

struct the tangential displacement and velocity which correspond to the measured 

tangential acceleration rather than the horizontal and vertical responses.  Under 

the small deformation assumption in serviceability state, these tangential responses 

can be regarded as the vertical or horizontal responses.   

Since the accelerometers commonly have an accurate high-frequency resolu-

tion but it is insensitive to near-zero frequency responses like pseudo-static compo-



 

 

 

158

nents.  This study has mainly investigated the displacement and velocity recon-

struction for the pure dynamic responses which are defined with harmonic func-

tions through the Duhamel integral.  

 

Expansion of the scope of the proposed reconstruction scheme  

In civil structure accelerometers are most often used, however displacement 

sensors, such as non-contact optical techniques as well as GPS-based methods are 

becoming more common.  The accelerometers commonly have an accurate high-

frequency resolution but it is insensitive to near-zero frequency responses like 

pseudo-static components.  On the other hand, displacement-based sensors can 

measure the pseudo-static components and the permanent displacement while the 

high-frequency resolution limited, and often relatively low sampling rates are used.  

It is suggested, if possible, to exploit the redundancy in the sensors and combine 

the acceleration and displacement measurements in a manner which yields highly 

accurate motion data.  Though this study mainly investigates the displacement 

reconstruction for the pure dynamic responses by setting the static equilibrium po-

sition to be zero, the proposed method has possibilities to be expended for the re-

sponses from different types of sensor by imposing non-zero static equilibrium 

position to the regularity condition.  Continuous researches on these fields should 

be intensively performed to apply the displacement reconstruction to more general 

monitoring of the civil structures. 
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Investigation of the similitude law for the flutter derivatives identified from the 

free-vibration test and implementation of the force-control test in the wind tunnel 

for the estimation of flutter derivatives 

 

There is apparent uncertainty in frequency dependency for the flutter deriva-

tives identified from the 2-DOF free-vibration test and the frequency similarity in 

Eq. (4-49) is hardly applied for the flutter derivatives of the bluff body section.  

As far as the frequency dependency of the flutter derivatives is concerned, the dis-

placement-control test can be best solution.  However, the displacement-control 

test is not free from the limitation that the mutual influence of structural dynamics 

and fluid flow in regions of moving boundaries are not fully considered.  In this 

reason, the force-control test should be implemented and further research on the 

relationship and relative differences among three tests should be intensively veri-

fied from the result of experiments. 

One of the alternative methods to extract the flutter derivatives rather than the 

wind tunnel test is the computerized fluid dynamic (CFD) analysis.  After the im-

plementation of the force-control test, continuous researches about the relation be-

tween the wind tunnel tests and the CFD method and limitation of each 

experimental method should be performed. 
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국문초록 

 

변위, 속도, 가속도와 같은 구조물의 동적응답특성은 구조물의 건전성감시(Structural 

Health Monitoring)와 제어(Control)에 있어서 필수적인 계측치들이다. 이러한 동적응답 중 

변위이력은 비선형 거동을 하는 구조물의 건전성감시와 제어에 있어서 중요한 정보를 

담고 있기 때문에 이러한 변위 이력을 확보하는 것은 매우 중요하다. 하지만 일반적으로 

교량이나 고층빌딩과 같은 대형구조물에서 이러한 변위 이력을 측정하기 위한 변위계의 

고정된 지점을 확보하는 것이 불가능하며 이러한 이유로 인하여 대형 토목구조물에서 

변위를 직접적으로 측정하는 것은 한계가 있다. 이에 반해, 가속도는 관성을 기반으로 

하여 측정되기 때문에 고정된 지점을 확보할 필요가 없으며 넓은 주파수 범위에서 다양

한 종류의 가속도계가 상업적으로 판매되기 때문에 대형구조물로부터 측정이 용이하다. 

이러한 측정의 용이성과 높은 해상도로 인해 가속도가 여러 공학적 문제에서 가장 손쉽

게 측정되는 동적응답이라고 할 수 있다.  

수학적으로 가속도는 변위의 2계 미분에 해당하고, 따라서 이러한 정의를 바탕으로 측정

가속도로부터 변위를 계산하기 위해서 많은 노력이 시도되었다. 이중 뉴마크방법으로 대

표되는 시간누적속성(time-marching)에 기반을 둔 적분 알고리즘은 측정가속도로부터 변

위를 계산하기 위한 가장 손쉽고도 명확한 방법이라고 할 수 있다. 하지만 이러한 시간

누적성에 기반을 둔 적분알고리즘들은 여러 가지 원인에서 기인한 문제점들을 갖고 있

다. 먼저 이러한 시간누적성에 기초한 적분을 수행하기 위해서 필요한 초기값인 변위와 

속도의 초기값은 일반적인 문제에서 측정이 불가능하거나 혹은 부정확하다는 문제점이 

있다. 이러한 초기치 오차로 인한 문제뿐만 아니라, 가속도 측정과정에서는 일반적으로 

여러 가지 요인에 의해서 무작위(random) 측정오차가 가속도 측정치에 포함되고 이러한 
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측정오차는 물리적으로 의미 없는 결과를 만들게 된다. 특히 이러한 측정 잡음 중 저주

파 성분은 2차 적분과정에서 증폭되어 계산된 변위를 심각하게 왜곡시킨다. 또한 이러한 

저주파 성분의 변위 오차 증폭은 특히 대형토목구조물과 같이 저주파 변위가 지배적인 

구조물에서 복원된 변위의 신뢰도를 매우 저하시킨다. 

이러한 이유로 이 논문은 측정 가속도로부터 변위 및 속도를 정확하게 재구성하는 기법

을 제안한다. 이러한 시간영역에서의 재구성기법에서는 측정가속도로부터 변위 및 속도

를 계산하는 문제를 기존의 시간누적속성에 기초한 초기치문제(initial value problem)로서 

보는 것이 아니라 유한한 크기의 측정된 가속도에 대해서 경계조건문제(boundary value 

problem)로 정의하여 변위 및 속도를 재구성하게 된다. 시간창(time window)이라고 하는 

유한한 크기의 시간에 대해서 가속도이력이 이미 측정되어 주어져 있다면, 변위의 2계 

미분은 가속도이기 때문에 변위는 하나의 시간 창 내부에서 측정된 가속도와 재구성될 

변위의 2계 시간 미분사이의 차를 최소화하는 최적화 문제를 풀어 구할 수 있다. 그리고 

이 2계 시간미분은 중앙차분(central finite difference) 또는 유한요소법(finite element method)

를 이용하여 근사할 수 있다. 이러한 이산화를 통해 변위재구성을 최종적으로 FIR-

filter(finite impulse response filter) 형태로 제안하고 필터 관점에서의 건전성을 평가한다.  

Scanlan 에 의해 공탄성(aeroelastic) 방정식에 근거한 플러터계수가 제안된 이래로 풍동실

험을 통한 교량단면의 플러터계수 추정에 대해서 많은 연구들이 수행되었다. 일반적으로 

풍동실험에서 변위이력만을 측정하고 또한 직접적인 속도의 측정은 매우 난해하기 때문

에, 풍동실험은 공간(space)상에서는 모든 자유도가 측정 가능하지만 상태(state)상에는 완

전측정(full measurement)이 불가능하다. 따라서 계수추정문제는 부분측정(partial measure-

ment)으로 인해 동방정식에서 바로 구할 수 없다.  

이러한 문제를 해결하기 위해서 많은 기법들이 수학적 모델로부터 구해진 시스템변위응

답과 측정변위 사이의 상대오차를 최소화하는 OEE(output error estimation)에 기반하여 제

안되었다. 하지만 완전측정이 가능한 경우, 이러한 OEE기반의 최소화 문제를 풀지 않고 
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직접 동방정식상에서 힘의 오차를 최소하는 문제를 통해 플러터계수를 추정할 수 있다. 

따라서 이 논문에서는 재구성기법을 통한 완전측정치를 이용하여 직접적으로 동방정식

의 오차를 최소화하여 플러터계수를 추정하는 EEE(equation error estimation) 방법을 제안

한다. 또한 측정 가속도도부터 변위와 속도이력을 계산하여 완전측정이 가능하게 하는 

FFIR필터를 플러터계수 추정에 이용하는 과정을 제안한다. 
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